当前位置:文档之家› 静电场中的导体和电介质

静电场中的导体和电介质

静电场中的导体和电介质
静电场中的导体和电介质

第八章 静电场中的导体和电介质

§8-1 静电场中的导体

一、静电感应 导体的静电平衡条件 1、静电感应

2、导体静电平衡条件

(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。 (2)静电平衡条件 从场强角度看:

①导体内任一点,场强0=E

②导体表面上任一点E

与表面垂直。

从电势角度也可以把上述结论说成:

①?导体内各点电势相等;

②?导体表面为等势面。 用一句话说:静电平衡时导体为等势体。 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布

如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑?=

?内

S S

q s d E 0

导体静电平衡时其内0=E

∴ 0=??s d E S

, 即0=∑内

S q 。

S 面是任意的,∴导体内无净电荷存在。 结论:静电平衡时,净电荷都分布在导体外表面上。

2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况

如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:

∑?=?内S S

q s d E 01

ε 静电平衡时,导体内0=E

∴ 0=∑内

S q ,即S 内净电荷为0,

空腔内无其它电荷,静电平衡时,导体内又无净电荷

∴空腔内表面上的净电荷为0。

但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。

结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。

(2)空腔内有点电荷情况

如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为

∑?=?内S S

q s d E 01

ε 静电平衡时0=E

, ∴ 0=∑内

S q 。

又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。

结论:静电平衡时,腔内表面有感应电荷-q ,外表面有感应电荷+q 。 3、导体表面上电荷分布

设在导体表面上某一面积元S ?(很小)上,电荷分布如图所示 ,过S ?边界作一闭合柱面,S 上下底1S 、2S 均与S ?平行,S 侧面3S 与S ?垂直,柱面的高很小,即1S 与

2S 非常接近S ?,此柱面并且是关于S ?对称的。S 作为高斯面,高斯定理为∑?=?内S S

q s d E 01ε S

E ES ds E s

d E s d E s d E s d E s d E s S S S S S S

?==?=?=?+?+?=???????11

1

3

2

1

很小

S q S ?=

∑σεε00

1

1

S S E ?=??σε01

0εσ=

E (注意与无限大带电平面0

2εσ=E 的区别)。 结论:导体表面附近,σ∝E 。

4、导体表面曲率对电荷分布影响

根据实验,一个形状不规则的导体带电后, 在表面上曲率越大的地方场强越强。由上面讲 到的结果知,E 大的地方,σ 必大,所以曲率 大的地方电荷面密度大。 5、尖端放电

三、静电屏蔽

由于空腔中的场强处处为零,放在空腔中的物体,就不会受到外电场的影响,所以空心金属球体对于放在它的空腔内的物体有保护作用,使物体不受外电场影响。

另一方面,一个接地的空心导体可以隔绝放在它的空腔内的带电体和外界的带电体之间的静电作用,这就是静电屏蔽原理。

应用:如电话线从高压线下经过,为了防止高压线对电话线的影响, 在高压线与电话线之间装一金属网等。

例8-1:在电荷+q 的电场中,放一不带电的金属球,从球心

O 到点电荷所在距离处的矢径为r ,试问

(1)金属球上净感应电荷='q ?

(2)这些感应电荷在球心O 处产生的场强E

解:(1)='q 0

(2)球心O 处场强0=E (静电平衡要求),即+q 在O 处产生的场强+E

与感应电荷

在O 处产生场强的矢量和=0。

0=++感E E

r r q E E 3

04πε=-=+感 方向指向+q 。

(感应电荷在 O 处产生电势=?球电势=?选无穷远处电势=0。)

§8-2 电容 电容器

一、孤立导体的电容

在真空中设有一半径为R 的孤立的球形导体,它的电量为q ,那么它的电势为(取无限远处电势=0)

R

q U 04πε=

对于给定的导体球,即R 一定,到q 变大时,U 也变大,q 变小时,U 也变小,但是

R U

q

04πε=确不变,此结论虽然是对球形孤立导体而言的,但对一定形状的其它导体也是如此,U

q

仅与导体大小和形状等有关,因而有下面定义。

定义:孤立导体的电量q 与其电势U 之比称为孤立导体电容,用C 表示,记作:

U q

C = (8-1)

对于孤立导体球,其电容为R R

q q

U

q C 0044πεπε===。C 的单位为:F (法)

,1F=1C/1V 。在实用中F 太大,常用F μ或pF ,他们之间换算关系: pF F F 12610101==μ。

(电容与电量的存在与否无关) 二、电容器

实际上,孤立的导体是不存在的,周围总会有别的导体,当有其它导体存在时,则必然因静电感应而改变原来的电场分布,当然影响导体电容。下面我们具体讨论电容器的电容。 1、电容器:

两个带有等值而异号电荷的导体所组成的带电系统称为电容器。电容器可以储存电荷,以后将看到电容器也可以储存能量。

2、电容器电容:

如图所示,两个导体A 、B 放在真空中,它们所带的电量分别为+q ,-q ,如果A 、B 电势分别为A U 、B U ,那么A 、B 电势差为B A U U -,电容器的电容定义为:

B

A U U q

C -= (8-2)

由上可知,如将B 移至无限远处,B U =0。所以,上式就是孤立导体的电容。所以,孤立导体的电势相当于孤立导体与无限远处导体之间的电势差。所以,孤立导体电容是

B 放在无限远处时B A U U q

C -=的特例。导体A 、B 常称电容器的两个电极。

三、电容器电容的计算 1、平行板电容器的电容

设A 、B 二极板平行,面积均为S ,相距为d , 电量为+q ,-q ,极板线度比d 大得多,且不计边 缘效应。所以A 、B 间为均匀电场。

由高斯定理知,A 、B 间场强大小为

)(0S

q E +==σεσ

d

S U U q

C d S q Ed U U B A B A 00εε=-=?==-

(8-3)

2、球形电容器

设二均匀带电同心球面A 、B ,半径A R 、B R ,电荷为+q ,

-q 。A 、B 间任一点场强大小为:2

04r

q

E πε=, B

A A

B B A R R R R R R B A R R )R R (q ]R R [

q dr r

q Edr d U U B

A

B

A

B

A

00

2

41

144πεπεπε-=-=

==

?=-?

??

A B B A B

A A

B B A R R R R R R R R q q

U U q C -=

-=-=

0044)(πεπε。 讨论:(1)当A A B R R R ??-时,有A B R R ≈, 令d R R A B =-,则d

S d R U U q

C A A B A 02

04επε==-=

即——平行板电容器结果。

(2)A 为导体球或A 、B 均为导体球壳结果如何? 3、圆柱形电容器

圆柱形电容器是两个同轴柱面极板构成的,如图所示,设A 、B 半径为A R 、B R ,电荷为+q ,-q ,除边缘外,电荷

均匀分布在内外两圆柱面上,单位长柱面带电

量l

q

=λ,l 是柱高。由高斯定理知,A 、B 内

任一点P 处E

的大小为

r

E 02πελ

=

A

B R R R R R R B A R R dr r Edr d U U B

A

B

A

B

A

ln 2200πελ

πελ===

?=

-?

?? A

B

A B B

A R R l

R R q

U U q

C ln 2ln 200πεπελ

=

=

-=

(可知:在计算电容器时主要是计算两极间的电势差)。 四、电介质对电容器电容的影响

以上所得电容是极间为真空情况,若极间充满电介质(不导电的物质),实际表明,此时电容C 要比真空情况电容0C 大,可表示

10

>=r C C

ε,或0C C r ε=。 r ε 与介质有关,称为相对介电系数 。

以上各情况若充满电介质(极间),有:

球形: A B B A A B B A r B A R R R R R R R R U U q

C -=-=-=πεεπε440;

平板:d S

d S C r εεε==0;

柱形:A

B A B r R R ln l

R R ln l C πεεπε220=

=。 r εεε0=称为介质的介电常数。

000C C C r εε

ε=????→?→充介质后(1>r ε)

五、电容器的串联与并联

在实际应用中,现成的电容器不一定能适合实际的要求,如电容大小不合适,或者电容器的耐压程度不合要求有可能被击穿等原因。因此有必要根据需要把若干电容器适当地连接起来。若干个电容器连接成电容器的组合,各种组合所容的电量和两端电压之比,称为该电容器组合的等值电容。 1、串联:

几个电容器的极板首尾相接(特点:各电容的电量相同)。

设A 、B 间的电压为B A U U -,两端极板电荷分别为+q ,-q ,由于静电感应,其它极板电量情况如图,

n

B A

C q

C q C q C q U U ++++=- 321 。

由电容定义有

n

B

A C C C C U U q C 11111

3++++=-=

(8-4) 2、并联:

每个电容器的一端接在一起,另一端也接 在一起。(特点:每个电容器两端的电压相同, 匀为B A U U -,但每个电容器上电量不一定相等) 等效电量为:

n q q q q q ++++= 321,

由电容定义有:

n n C C C C U U q q q q U U q

C ++++=-++++=-= 321321

(8-5)

例8-2:平行板电容器,极板宽、长分别为a 和b ,间距为d ,今将厚度t ,宽

为a 的金属板平行电容器极板插入电容器中,不计边缘效应,求电容与金属板

插入深度x 的关系(板宽方向垂直底面)。

解:由题意知,等效电容如左下图所示,电容为:

3

23

21'1C C C C C C C C ++=+=

0001100110011

000()

()()

()

()()[]

ax

ax

a b x d d t d ax ax

d

d d t d a b x ax

d

d t d d a b x ax a

tx

b d d t d d t

εεεεεεεεεε?

---=

+

+---=+--+-=

+

=

+

--

说明:C 大小与金属板插入位置(距极板距离)无关;

注意:(1)掌握串并联公式;

(2)掌握平行板电容器电容公式。

例8-3:半径为a 的二平行长直导线相距为d (d>>a ),二者电荷线密度为λ+,λ-,

试求(1)二导线间电势差;(2)此导线组单位长度的电容。

解:(1)如图所取坐标,P 点场强大小为:

)

(2200x d x E E E B A -+=+=πελ

πελ

a

a d ln )a a d a a d ln(a

a

d x d x ln a a d )]x d ln(x [ln dx

])x d (x [Edx x d E U a

d a

B A B A AB -=-?-=--=---=

-+==?=???-00000022222πελπελπελπελπελ

πελ

(2)a

a d a a d U U q C B

A -=-?=-=ln ln 10

0πεπελλ 注意:(1)r

E 02πελ

=公式。

(2)此题的积分限,即明确导体静电平衡的条件。 §8-3 电介质的电极化

一、电极化

实验表明,充电后的电容器去掉电源,再插入某种电介质(如:玻璃,硬橡胶等),则极板间电压减小了。由Ed U =知,E 减小了。E

是如何减少的呢?从平板电容场强公

εσ

=

E 知,E 的减小,意味着电介质与极板的接触处的电荷面密度σ减小了。但是,极板上的电荷0q 没变,即电荷面密度0σ没变,这种改变只能是电介质上的两个表面出现了如图所示

的正、负电荷'q ±。电介质在外电场0E

作用下,其表面出现净电荷的现象称为电介质的电极化。电极化时电介质表面处出现的净电荷称为极化电荷(束缚电荷),0q 称为自由电荷。可见,电荷面密度0σσ=(自由电荷面密度)-'σ(极化电荷面密度),

即减小了。( 束缚电荷受到限制,∴束缚电荷量比自由电荷少的多,故'σ比0σ少的多。)

∴E 减小。另外,可从图看出,'

q ±产生的场强'

E ,与0q ±产生的场强0E 相反,所以它的场强为'0E E E -=,即减小了,这也可以解释实验结果。 二、电极化的微观机理 1、电介质分类(2类)

(1)无极分子电介质:无外电场时,分子正负电荷中心重合(如42,,CH He H 等)。 (2)有极分子电介质:即使无外电场时,分子的正负电荷中心也不重合(如:

CO

O H NH HCl ,,,23等)。

分子正负电荷中心不重合时相当于一电偶极子。 2、电极化微观机理 (1)无极分子的电极化

无极分子在没有受到外电场作用时,它的正负电荷的中心是重合的,因而没有电偶极矩,如图a 所示,但当外电场存在时,它的正负电荷的中心发生相对位移,形成一个

电偶极子,其偶极矩p 方向沿外电场0E

方向,如图b 所示。对一块介质整体来说,由于电介质中每一个分子都成为电偶极子,所以,它们在电介质中排列如图,在电介质内部,相邻电

偶极子正负电荷相互靠近,因而对于均匀电介质来说,其内部仍是电中性的,但在和外电场垂直的两个端面上就不同了。由于电偶极子的负端朝向电介质一面,正端朝向另一面,所以电介质的一面出现负电荷,一面出现正电荷,显然这种正负电荷是不能分离的,

故为束缚电荷。

结论:无极分子的电极化是由于分子的正负电荷的中心在外电场的作用下发生相对

位移的结果,这种电极化称为位移电极化。

(2)有极分子的电极化

有极分子本身就相当于一个电偶极子,在没有外电场时,由于分子做不规则热运动,这些分子偶极子的排列是杂乱无章的,如图d 所示,所以电介质内部呈电中性。当有外电场时,每一个分子都受到一个电力矩作用,如图所示,这个力矩要使分子偶极子转到外电场方向,只是由

于分子的热运动,各分子偶极子不能完全转到外电场的方向,只是部分地转到外电场的

方向,即所有分子偶极子不是很整齐地沿着外电场0E

方向排列起来,如图f 所示。但

随着外电场0E

的增强,排列整齐的程度要增大。无论排列整齐的程度如何,在垂直外电场的两个端面上都产生了束缚电荷。

结论:有极分子的电极化是由于分子偶极子在外电场的作用下发生转向的结果,故这种电极化称为转向电极化。

说明:在静电场中,两种电介质电极化的微观机理显然不同,但是宏观结果即在电介质中出现束缚电荷的效果时确是一样的,故在宏观讨论中不必区分它们。

§8-4 电介质中的电场 高斯定理 电位移

一、电介质中的电场

从上节看到,当电介质受外电场0E

作用而电极化时,电介质出现极化电荷,极化电

荷也要产生电场,所以,电介质中的电场是外电场0E

与极化电荷产生电场'E 的叠加,

即'E E E

+=0,大小:'0E E E -=。

1、下面以平行板电容器为例求电介质中场强 E 。 由电容器定义,有

000U q

C = (无介质) 0U 为电压,0q 为电量。

U

q

C 0= (有介质) U 为电压,0q 为电量。

0000000

00

0E E C C E E E Ed d E U U U q U q C C r ε==?==== εσε00==r E E ???????

==εσεσ0

000E E 介质中真空中 r

εεεε00=→ 2、极化电荷面密度'σ

介质内电场:'

E E E +=0 '0E E E -= 。

即: 0

000εσεσεσ'

-

= (’σ极化电荷面密度) )(r

'εσεσεσσ1

10000-=-=?

(8-6)

二、有介质时的高斯定理

根据真空中的高斯定理,通过闭合曲面S 的电场强度通量为给面所包围的电荷除以

0q ,即

∑?=

?内

S S

q s d E 0

此处,

∑内

S q 应理解为闭合面内一切正、负电荷的代数和,在无电介质存在时,

q q S 0

1

1

εε=

∑内

;在有介质存在时,S 内既有自由电荷,又有极化电荷,∑内

S q 应是S 内一

切自由电荷与极化电荷的代数和,即

∑∑?+==?内内S 'S S

)q q (q s d E 00011εε 0q 、'q 分别表示自由电荷和极化电荷。实际上,

'

q 难以测量和计算,故应设法消除之。下面以平行板电容器为例,来讨

论之。设极板上自由电荷面密度为0

σ±,介质在极板分界面

上极化电荷面密度为'

σ±,介质相对介电常数为r ε。取柱形高斯面,底面1S 、2S 分别在介质和极板内,且与板面平行,

3

S 为侧面,与板面垂直。此时,高斯定理为

∑∑?===

-

-=

-=

+=

?内

S

r r

'S 'S

q S S )](S S [)

S S ()q q (S d E 0

001001010

1010

00

1

1

11

1

1εεσεεσεσσεσσεε

)),1

1((1000S q S r

σεσσ=-

=∑内

’其中

∑?=??内

S S

q s d E 0

ε

由上可知,'q 不出现了。

定义:

(8-7) D

称为电位移矢量(注意此式只适用于各向同性电介质,而对各向同性的均匀电介质,ε为一常数)。 高斯定理为:

(8-8)

说明:(1

(2)D 是辅助量,无真正的物理意义。算出D

后,可求)D (E ε

=。

(3)如同引进电力线一样,为描述方便,可引进电位移线,并规定电位移线的切

线方向即为D

的方向,电位移线的密度(通过与电位移线垂直的单位面积上的电

位移线条数)等于该处D

的大小。所以,通过任一曲面上电位移线条数为s d D S

??,

称此为通过S 的电位移通量;对闭合曲面,此通量为s d D S

??。可见有介质存在

时,高斯定理陈述为:电场中通过某一闭合曲面的电位移通量等于该闭合曲面内包围的自由电荷的代数和。

(4)电位移线与电力线有着区别:电位移线总是始于正的自由电荷,止于负的自由电荷(可从定理看出);而电力线是可始于一切正电荷和止于一切负电荷(即包括极化电荷)。如:平行板电容器情况(不计边缘效应)。

例8-4:平行板电容器,板间有二种各向同性的均匀介质,分界面平行板面,介电常数

分别为1ε、2ε,厚度为1d 、2d ,自由电荷面密度为σ±。求(1)D 、E

=?

(2)电容器C=?

解:(1)D

=?

设二种介质中电位移矢量分别为1D 、2D ,在左极板处做高斯面S ,一对面平行板

面,面积均为A ,侧面垂直板面,由高斯定理∑?=?内

S S

q s d D 0

A

D dS D DdS S d D S

d D S d D S d D S d D S

1

1

===

?=?+

?+

?=

????????右底面

右底面

右底面

侧面

右底面

左底面

其中,左底面D =0,侧面上S d D ⊥。又A q S σ=∑内

0,

A A D σ=?1,即 σ=1D ,方向垂直板面向右。

同样在右极板处做高斯面'S ,一对面平行极板面, 面积均为'A ,侧面与板面垂直,由高斯定理

∑?=?内

S S

q S d D 0

有:

'

S

A

D

dS D DdS DdS S d D S

d D S d D S d D S d D 2

2

-=-=-==

?=?+

?+

?=

?????????左底面

左底面

左底面

左底面

侧面

右底面

左底面

'S A q

σ=∑内

''A A D σ-=-?2,即σ=2D ,方向向右。

可见,21D D =,即两种介质中D

相同(法向不变)。

ε

D E =

∴ ???

???

?===

=2

2221

11

1εσεεσεD E D E 方向向右。

(2)C=?

22

1122112

2

11221111d d S

d d S d

d q d E d E q U q C εεεσεσσεσεσ+=

+=

+=

+==

例8-5:在半径为R 的金属球外,有一外半径为'R 的同心均匀电介质层,其相对介电常

数为r ε,金属球电量为Q ,试求:(1)场强空间分布;(2)电势空间分布。

解:(1)由题意知,均是球对称的,取球形高斯面S ,由∑?=?内

S S

q s d D 0有

?

??=?Q r D 0

42

π

)()(球外球内 εD E = ∴????

??

?

??

=)

(4)(4)(0202

0介质外介质内球内r Q

r

Q

E r πεεπε Q>0:E 沿半径向外;Q<0:E

沿半径向内。 (2)介质外任一点P 电势

p

r r r P r Q

dr r Q Edr r d E U P P P 02

044πεπε???∞

∞∞===?= 介质内任一点Q 电势

]R )R r ([Q R Q ]R r [

Q r Q r Q dr E dr E r d E r d E r d E U '

'Q r ''Q r

R R r r R R r R R r r P '

'

Q

'

'Q

'

'Q

Q

111144114440002

02

0+-=+-=

+=?+?=?+?=?=?

?

?????∞

∞∞∞επεπεεπεπεεπε

球为等势

体,电势为 ]R

)R R (

[

r Q

dr

r

Q dr r

Q r d E r d E r d E U ''r

R R R

r R R R

R

'

'

'

'1111

44402

02

0+-=

?+?=?+?=?=?

?

???∞

∞∞επεπεεπε

例8-6:有一个带电为+q 半径为1R 的导体球,与内外半径分别为

3

R 、4R 带电量为-q

的导体球壳同心,二者之间有两层均匀电介质,内层和外层电介质的介电常数分别为1ε、2ε,且二电介质分界面也是与导体球同心的半径为2R 的球面。试求: (1)电位移矢量分布;

(2)场强分布;

(3)导体球与导体空间电势差; (4)导体球壳构成电容器的电容。 解:(1)由题意知,场是球对称的。 选球形高斯面S, 由∑?=?内

S S

q s d D 0

有 ∑=?内

S q r D 024π

得 ??

???

><<<=)(0)(4)(03322

1R r R r R r

q

R r D π, D

沿半径向外。

(2) ε

D

E =

∴????

??

???><<<<<=)(0)(4)(4)(033222212

11R r R r R r q R r R r q

R r E πεπε

E

与D 同向,即沿半径向外。 (3)

3

2121112332123222112

22

141

14114443

2

2

132

21

3

1

R R R ]R )R R (R )R R [(q ]R R [q ]R R [

q dr

r

q

dr r

q

r d E r d E r d E U U R R R R R R R R R R επεεεπεπεπε

πε-+-=

-+-=

+=?+?=?=-??

??? 表球

(4)1

12332123

2121)()(4R R R R R R R R R U U q C εεεπε-+-=-=表球

强调:(1)E

与D 关系;

(2)电势差求法;

(3)电容器的概念及电容求法

§8-5 电场的能量

一、带电电容器的能量

一个电中性的物体,周围没有电场,当把电中性物体的正、负电荷分开时,外力作了功,这时该物体周围建立了电场。 所以,通过外力做功可以把其它形式能量转变 为电能,贮藏在电场中。

今以带电电容器为例进行讨论。 如图所示,设t 时刻,两极板上电荷分

别为+q(t)和-q(t),A 、B 间电势差为:

C

t q t U t U B A )

()()(=-

再把电量dq 从B 移到A ,外力做的功为

dq C

)

t (q dq )U U (dW B A =-=。

当A 、B 上电量达到+Q 和-Q 时,外力做的总功为:

)(21

)(2121)(220B A B A Q

U U Q U U C C Q dq C

t q dW W -=-====??

外力功全部转化为带电电容器贮藏的电能e W , ∴电容器储存的电能为:

)(2

1)(212122B A B A e U U Q U U C C Q W -=-== (8-9)

二、电场的能量

??

?

??==-d S C Ed

U U B A ε ∴):(2

1

21212222电容器体积Sd V V E Sd E d E d S W e ====εεε

由上可知,平行板电容器能量与E,V,ε有关。

因为场强为匀强电场,e W 应均匀分布,故单位体积内能量,即能量密度为

DE E

W w e 112===ε (8-10)

(8-11)

说明:(1

(2)对任一带电系统整个电场能量为

dV E dV )DE (dV w We V

V V e 221

21ε???===。

(3)由(1)知,能量存在是由于电荷的存在,电荷是能量的携带者,但(2)式表明,能量是存在于电场中,电场是能量的携带者。在静电场中能量究竟是电荷的携带的还是电场携带的,是无法判断的。因为在静电场中,电场和电荷是不可分割地联系在一起的,有电场必有电荷,有电荷必有电场,而且电场与电荷之间有一一对应关系,因而无法判断能量是属于电场还是属于电荷。但是,在电磁波情形下就不同了,电磁波是变化的电磁场的传播过程,变化的电场可以离开电荷而独立存在,没有电荷也可以有电场,而且场的能量能够以电磁波的形式传播,这一事实证实了能量是属于电场的,而不是属于电荷的。

例8-7:无限长圆柱形电容器是由半径为1R 的导体圆柱和同轴的导体组成的,(1)电容器上具有的电场能量;(2)证明:

C Q We 2

21=,Q 、C 分别为l 长导体上电量及l 长电容器电容。

解:如图所取坐标,原点在圆柱轴线为r 轴。由题已知,其场是轴对称的,由高斯定理知,介质内任一点 P 的场强大小为

r D E πελε2==(介质外E=0) 在半径为r ,厚为dr ,高为

l 的薄圆筒内,电场能量为

dr r

l rRdr r rRdr

E dV w dWe e πελπεπλεπε4242122

1

22

2222=?=?==

所求能量为:12

22442

1

R R ln

l dr r l dV w We R R

e πελπελ===??。 证明:

1

22122212

1R R ln dr r r d E U U R R R R πελ

πελ==?=-??

1

2122

1ln 2ln 2R R l R R l U U Q C πεπελλ==-=

We R R l R R l l C Q ==?=1221

2

2

2ln 4ln 21)(2121πελπελ

例8-8:有一个均匀带电荷为Q 的球体,半径为R ,试求电场能量。 解:由高斯定理知,场强为

??????

?><=)(4)(4203

0R r r Q R r r R Q

E πεπε 在半径为r ,厚为dr 的球壳内,能量为: dr r E dr r E dr

r w dV w dWe e e 2

202202242

14πεπεπ=?=== 所求能量为:

)R Q (R Q R R Q dr r

Q

dr r R Q

dr r ]r Q [dr r ]r R Q [dV w We R R

R

V R e 534184018842422

002560220

20

4

6

0222002

23000πεπεπεπεπεπεπεπεπε=+=+=

+==?????∞

注意:(1)dWe 表达式建立;(2)积分分段。

第八章 静电场中的导体和电介质

103 第八章 静电场中的导体和电介质 一、基本要求 1.理解导体的静电平衡,能分析简单问题中导体静电平衡时的电荷分布、场强分布和电势分布的特点。 2.了解两种电介质极化的微观机制,了解各向同性电介质中的电位移和场强的关系,了解各向同性电介质中的高斯定理。 3.理解电容的概念,能计算简单几何形状电容器的电容。 4.了解电场能量、电场能量密度的概念。 二、本章要点 1.导体静电平衡 导体内部场强等于零,导体表面场强与表面垂直;导体是等势体,导体表面是等势面。 在静电平衡时,导体所带的电荷只能分布在导体的表面上,导体内没有净电荷。 2.电位移矢量 在均匀各向同性介质中 E E D r εεε0== 介质中的高斯定理 ∑??=?i i s Q s d D 自 3.电容器的电容 U Q C ?= 电容器的能量 C Q W 2 21= 4.电场的能量 电场能量密度 D E w ?= 2 1 电场能量 ? = V wdV W 三、例题 8-1 下列叙述正确的有(B) (A)若闭合曲面内的电荷代数和为零,则曲面上任一点场强一定为零。 (B)若闭合曲面上任一点场强为零,则曲面内的电荷代数和一定为零。

104 (C)若闭合曲面内的点电荷的位置变化,则曲面上任一点的场强一定会改变。 (D)若闭合曲面上任一点的场强改变,则曲面内的点电荷的位置一定有改变。 (E)若闭合曲面内任一点场强不为零,则闭合曲面内一定有电荷。 解:选(B )。由高斯定理??∑=?0/εi i q s d E ,由 ∑=?=00φq ,但场强则 不一定为零,如上题。 (C )不一定,受静电屏蔽的导体内部电荷的变动不影响外部场强。 (D )曲面上场强由空间所有电荷产生,改变原因也可能在外部。 (E )只要通过闭曲面电通量为0,面内就可能无电荷。 8-2 如图所示,一半径为R的导体薄球壳,带电量为-Q1,在球壳的正上方距球心O距离为3R的B点放置一点电荷,带电量为+Q2。令∞处电势为零,则薄球壳上电荷-Q1在球心处产生的电势等于___________,+Q2在球心处产生的电势等于__________,由叠加原理可得球心处的电势U0等于_____________;球壳上最高点A处的电势为_______________。 解:由电势叠加原理可得,球壳上电荷-Q1在O 点的电势为 R Q U 0114πε- = 点电荷Q2在球心的电势为 R Q R Q U 02 0221234πεπε= ?= 所以,O 点的总电势为 R Q Q U U U 01 2210123ε-= += 由于整个导体球壳为等势体,则 0U U A =R Q Q 01 2123ε-= 8-3 两带电金属球,一个是半径为2R的中空球,一个是半径为R的实心球,两球心间距离r(>>R),因而可以认为两球所带电荷都是均匀分布的,空心球电势为U1,实心球电势为U2,则空心球所带电量Q1=___________,实心球所带电Q2=___________。若用导线将它们连接起来,则空心球所带电量为______________,两球电势为______________。 解:连接前,空心球电势R Q U 2401 1πε= ,所以带电量为

第13章静电场中的导体和电介质

思考题 13-1 尖端放电的物理实质是什么? 答: 尖端放电的物理实质,是尖端处的强电场致使附近的空气分子电离,电离所产生的带电粒子在电场的作用下急剧运动和相互碰撞,碰撞又使更多的空气分子电离,并非尖端所带的电荷直接释放到空间去。 13-2 将一个带电+q 半径为R B 的大导体球B 移近一个半径为R A 而不带电的小导体球A ,试判断下列说法是否正确?并说明理由。 (1) B 球电势高于A 球。 答: 正确。不带电的导体球A 在带电+q 的导体球B 的电场中,将有感应电荷分布于表面。另外,定性画出电场线,在静电场的电力线方向上电势逐点降低,又由图看出电场线自导体球B 指向导体球A ,故B 球电势高于A 球。 (2) 以无限远为电势零点,A 球的电势: V A < 0 答: 不正确。若以无穷远处为电势零点V ∞=0,从图可知A 球的电力线伸向无穷远处。所以,V A >0。 13-3 怎样能使导体净电荷为零 ,而其电势不为零? 答:将不带电的绝缘导体(与地绝缘并与其它任何带电体绝缘)置于某电场中,则该导体有∑=0q 而导体的电势V ≠0 。 图13-37 均匀带电球体的电场能

13-4 怎样理解静电平衡时导体内部各点的场强为零? 答: 必须注意以下两点: (1) 这里的“点”是指导体内的宏观点,即无限小体积元。对于微观点,例如导体中某电子或某原子核附近的一个几何点,场强一般不为零; (2) 静电平衡的这一条件,只有在导体内部的电荷除静电场力以外不受其他力(如“化学力”)的情况下才能成立。 13-5 怎样理解导体表面附近的场强与表面上对应点的电荷面密度成正比? 答: 不应产生这样的误解:导体表面附近一点的场强,只是由该点的一个面电荷元S ?σ产生的。实际上这个场强是导体表面上全部电荷所贡献的合场强。如果场中不止一个导体,则这个场强应是所有导体表面上的全部电荷的总贡献。 13-6 为什么不能使一个物体无限制地带电? 答: 所谓一个物体带电,就是指它因失去电子而有多余的净的正电荷或因获得电子而有多余的负的净电荷。当物体带电时,在其周围空间产生电场,其电场强度随物体带电量的增加而增大。带电体附近的大气中总是存在着少量游离的电子和离子,这些游离的电子和离子在其强电场作用下,获得足够的能量,使它们和中性分子碰撞时产生碰撞电离,从而不断产生新的电子和离子,这种电子和离子的形成过程如雪崩一样地发展下去,导致带电物体附近的大气被击穿。在带电体带电的作用下,碰撞电离产生的、与带电体电荷异号的电荷来到带电体上,使带电体的电量减少。所以一个物体不能无限制地带电。如尖端放电现象。 13-7 感应电荷的大小和分布怎样确定? 答: 当施感电荷Q 接近于一导体时,导体上出现等量异号的感应电荷±q ′。其分布一方面与导体的表面形状有关,另一方面与施感电荷

静电场中的导体和电介质习题详解

习题二 一、选择题 1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。 设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q Q E U r r εε= = ππ; (B )01 0, 4Q E U r ε==π; (C )00, 4Q E U r ε==π; (D )020, 4Q E U r ε== π。 答案:D 解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得 00 0202 Q Q Q Q U r r r r εεεε-= + += 4π4π4π4π 2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。设地的电势为零,则球上的感应电荷q '为[ ] (A )0; (B )2 q ; (C )2q -; (D )q -。 答案:C 解:导体球接地,球心处电势为零,即000044q q U d R πεπε'=+ =(球面上所有感应电荷到 球心的距离相等,均为R ),由此解得2 R q q q d '=-=-。 3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2 200,44r Q Q E D r r εεε= =ππ; (B )22 ,44r Q Q E D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )22 00,44Q Q E D r r εε==ππ。 答案:C

第6章 静电场中导体和电介质

第6章 静电场中的导体与电介质 一、选择题 1. 当一个导体带电时, 下列陈述中正确的是 (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 [ ] 2. 关于带电导体球中的场强和电势, 下列叙述中正确的是 (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 [ ] 3. 当一个带电导体达到静电平衡时 (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 [ ] 4. 一个带正电的小球放入一个带等量异号电荷、半径为R 的球壳中,如图1所示.在距球心为r (R r <)处的电场与放入小球前相比将 (A) 放入前后场强相同 (B) 放入小球后场强增加 (C) 因两者电荷异号, 故场强减小 (D) 无法判定 [ ] 5. 设无穷远处电势为零, 半径为R 的导体球带电后其电势为V , 则球外离球心距离为r 处的电场强度大小为 (A) 23R V r (B) V r (C) 2RV r (D) V R [ ] 6. 有两个大小不等的金属球, 其大球半径是小球半径的两倍, 小球带有正电荷.当用金属细线连接两金属球后 (A) 大球电势是小球电势的两倍 (B) 大球电势是小球电势的一半 (C) 所有电荷流向大球 (D) 两球电势相等 [ ] 7. 在某静电场中作一封闭曲面S .若有 ??=?s S D 0d ? ρ, 则S 面内必定 (A) 没有自由电荷 (B) 既无自由电荷, 也无束缚电荷 (C) 自由电荷的代数和为零 (D) 自由电荷和束缚电荷的代数和为零 [ ] 8. 有一空气球形电容器, 当使其内球半径增大到两球面间的距离为原来的一半时, 此电容器的电容为 (A) 原来的两倍 (B) 原来的一半 (C) 与原来的相同 (D) 以上答案都不对 [ ] 9. 一均匀带电Q 的球体外, 罩一个内、外半径分别为r 和R 的同心金属球壳,如图2所示.若以无限远处为电势零点, 则在金属球壳r <R '<R 的区域内 q 图1

导体和电介质习题

第六章静电场中的导体与电介质 6 -1 将一个带正电的带电体A从远处移到一个不带电的导体B附近,则导体B的电势将() (A)升高(B)降低(C)不会发生变化(D)无法确定

分析与解不带电的导体B相对无穷远处为零电势。由于带正电的带电体A移到不带电的导体B附近时,在导体B的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A)。 6 -2 将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷。若将导体N的左端接地(如图所示),则() (A)N上的负电荷入地(B)N上的正电荷入地 (C)N上的所有电荷入地(D)N上所有的感应电荷入地

分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。因而正确答案为(A )。 6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )d q v E 04,0πε= = (B )d q v d q E 02 04,4πεπε= = (C )0,0==v E (D )R q v d q E 02 04,4πεπε= =

分析与解达到静电平衡时导体内处处各点电场强度为零。点电荷q在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O点激发的电势为零,O点的电势等于点电荷q在该处激发的电势。因而正确答案为(A)。 6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是( ) (A)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B)若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C)若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D)介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E)介质中的电位移矢量与自由电荷和极化电荷的分布有关

静电场中的导体和电介质作业

第6章 静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r /2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪一 种情况? [ ] (A)对球壳内外电场无影响 (B)球壳内外电场均改变 (C)球壳内电场改变, 球壳外电场不变 (D)球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ](A)表面上电荷密度较大处电势较高(B)表面上曲率较大处电势较高 (C)表面上每点的电势均相等(D)导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ](A)导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C)导体内的电势与导体表面的电势相等 (D)导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ](A)导体内任一点与其表面上任一点的电势差为零 (B)表面曲率较大处电势较高 (C)导体内部的电势比导体表面的电势高 (D)表面上电荷密度较大处电势较高 5. 一点电荷q 放在一无限大导体平面附近, 相距d , 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) 2q (B)2 q -(C)q (D)q - 6. 在一个绝缘的导体球壳的中心放一点电荷q , 则球壳内、外表面上电荷均匀分布.若 使q 偏离球心, 则表面电荷分布情况为 [ ] (A)内、外表面仍均匀分布(B) 内表面均匀分布, 外表面不均匀分布 (C)内、外表面都不均匀分布 (D)内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m , 小球半径为n , 当静电平衡后, 两球表面的电荷密度之比σm /σn 为 [ ] (A)n m (B)m n (C)22n m (D)22m n 8. 真空中有两块面积相同的金属板, 甲板带电q , 乙板带电Q .现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A)0(B)-q (C)2Q q +-(D)2 Q q + T6-1-1图 T6-1-5图 T6-1-8图

静电场中的导体

第七章 静电场中的导体、电介质 一、选择题: 1. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ,如图所示,则板外两侧的电场强度的大小为:[ ] (A )E=0 2εσ (B )E=02εσ (C )E=0εσ (D )E=02d εσ 2. 两个同心薄金属体,半径分别为R 1和R 2(R 2>R 1),若分别带上电量为q 1和q 2的电荷,则两者的电势分别为U 1和U 2(选无穷远处为电势零点),现用导线将两球壳相连接,则它们的电势为[ ] (A )U 1 (B )U 2 (C )U 1+U 2 (D )2 1 (U 1+U 2) 3.如图所示,一封闭的导体壳A 内有两个导体B 和C ,A 、C 不带电,B 带正电,则A 、B 、C 三导体的电势U A 、U B 、U C 的大小关系是[ ] (A )U A =U B =U C (B )U B > U A =U C (C )U B >U C >U A (D )U B >U A >U C 4.一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ,则板的两侧离板的距离均为h 的两点a 、b 之间的电势差为: [ ] (A )零 (B )02εσ (C )0εσh (D )0 2εσh 5. 当一个带电导体达到静电平衡时: [ ] (A) 表面上电荷密度转大处电势较高

(B) 表面曲率较大处电势。 (C)导体内部的电势比导体表面的电势高。 (D)导体内任一点与其表面上任一点的电势差等于零。 6. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一内、 外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为: [ ] (A )E= r Q U r Q 02 04,4πεπε= (B )E=0, 1 04r Q πε (C )E=0, r Q 04πε (D )E=0,2 04r Q πε 7. 设有一个带正电的导体球壳,若球壳内充满电介质,球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内、外均为真空时,壳外一点的场强大小和电势用E 2、U 2表示,则两种情况下,壳外同一处的场强大小和电势大小的关系为: [ ] (A )E 1=E 2, U 1=U 2 (B )E 1=E 2, U 1>U 2 (C )E 1>E 2, U 1>U 2 (D )E 1

第6章 静电场中的导体和电介质习题讲解

第6章静电场中的导体和电介质 一、选择题 1. 一个不带电的导体球壳半径为r , 球心处放一点电荷, 可测得球壳内外的电场.此后将该点电荷移至距球心r/2处, 重新测量电场.试问电荷的移动对电场的影响为下列哪 一种情况? [ ] (A) 对球壳内外电场无影响 (B) 球壳内外电场均改变 (C) 球壳内电场改变, 球壳外电场不变 T6-1-1图 (D) 球壳内电场不变, 球壳外电场改变 2. 当一个导体带电时, 下列陈述中正确的是 [ ] (A) 表面上电荷密度较大处电势较高 (B) 表面上曲率较大处电势较高 (C) 表面上每点的电势均相等 (D) 导体内有电力线穿过 3. 关于带电导体球中的场强和电势, 下列叙述中正确的是 [ ] (A) 导体内的场强和电势均为零 (B) 导体内的场强为零, 电势不为零 (C) 导体内的电势与导体表面的电势相等 (D) 导体内的场强大小和电势均是不为零的常数 4. 当一个带电导体达到静电平衡时 [ ] (A) 导体内任一点与其表面上任一点的电势差为零 (B) 表面曲率较大处电势较高 (C) 导体内部的电势比导体表面的电势高 (D) 表面上电荷密度较大处电势较高 T6-1-5图

5. 一点电荷q放在一无限大导体平面附近, 相距d, 若无限大导体平面与地相连, 则导体平面上的总电量是 [ ] (A) qq (B) - (C) q (D) -q 22 6. 在一个绝缘的导体球壳的中心放一点电荷q, 则球壳内、外表面上电荷均匀分布.若 使q偏离球心, 则表面电荷分布情况为 [ ] (A) 内、外表面仍均匀分布 (B) 内表面均匀分布, 外表面不均匀分布 (C) 内、外表面都不均匀分布 (D) 内表面不均匀分布, 外表面均匀分布 7. 带电量不相等的两个球形导体相隔很远, 现用一根细导线将它们连接起来.若大球半径为m, 小球半径为n, 当静电平衡后, 两球表面的电荷密度之比σ m/σ n 为 mnm2n2 [ ] (A) (B) (C) 2 (D) 2 nmnm 8. 真空中有两块面积相同的金属板, 甲板带电q, 乙板带电Q.现 将两板相距很近地平行放置, 并使乙板接地, 则乙板所带的电量为 [ ] (A) 0 (B) -q (C) - q+Qq+Q (D) 22 T6-1-8图 9. 在带电量为+q的金属球的电场中, 为测量某点的电场强度E, 现在该点放一带电量为(+q/3)的试验电荷, 电荷受力为F, 则该点的电场强度满足 6F 3F[ ] (A) E> (B) E> qq 3F 3FT6-1-9图 (C) E< (D) E= qq 测得它所受力为F.若考虑到q不是足够小, 则此时F/q比P点未放q 时的场强 [ ] (A) 小 (B) 大 (C) 相等 (D) 大小不能确定 10. 在一个带电量为Q的大导体附近的P点, 置一试验电荷q, 实验

10静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质 一 选择题 1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。设无限远处的电势为零,则导体球的电势为 ( ) 2 02 00π4 . D ) (π4 . C π4 . B π4 .A R) (a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ??'±'±='= ' = 'q q q R R q V 0d π41π4d 00 εε 点电荷q 在球心处的电势为 a q V 0π4ε= 据电势叠加原理,球心处的电势a q V V V 00π4ε= '+=。 所以选(A ) 2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为σ ,如图所示,则板外两侧的电场强度的大小为 ( ) 2 . D . C 2 . B 2 .A εd E= εE= E E σσεσ εσ= = 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0 εσ= E 。 所以选(C ) 3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d

大学物理同步训练第2版第七章静电场中的导体详解

第七章 静电场中的导体和电介质 一、选择题 1. (★★)一个不带电的空腔导体球壳,内半径为R 。在腔内离球心的 距离为a 处(a

静电场中的导体和电介质

第十章 大学物理辅导 静电场中的导体和电介质 ~53 ~ 第十章 静电场中的导体和电介质 一、教材的安排与教学目的 1、教材安排 本章的教材安排,讲授顺序可概括为以下五个方面: (1)导体的静电平衡; (2)电介质的极化规律; (3)电位移矢量和有介质时的高斯定理; (4)电容和电容器; (5)电容器的储能和电场的能量。 2、教学目的 本章的教学目的是: (1)使学生确切理解并掌握导体的静电平衡条件及静电平衡导体的基本性质; (2)使学生了解电介质极化的机构,了解极化规律;理解电位移矢量的定义和有介质时的高斯定理; (3)使学生正确理解电容概念,掌握计算电容器的方法。 (4)使学生掌握电容器储能公式,并通过电容器的储能了解电场的能量。 二、教学要求 1、掌握导体的静电平衡条件,明确导体与电场相互作用的大体图象; 2、了解电介质的极化规律,清楚对电极化强度矢量是如何定义的,明确极化强度由总电场决定,并且'=σθP cos ; 3、理解电位移矢量的定义,注意定义式 D E P =+ε0是普遍适用的,明确 D 是一个 辅助矢量; 4、掌握有介质时的高斯定理; 5、掌握电容和电容器的概念,掌握电容器电容的计算方法; 6、了解电容器的储能和电场能量 三、内容提要 1、导体的静电平衡条件 (1)导体的静电平衡条件是导体内部场强处处为零。所谓静电平衡,指的是带电体系中的电荷静止不动,因而电场分布不随时间而变化。导体的特点是体内存在着自由电荷,它们在电场作用下可以移动从而改变电荷的分布。电荷分布的改变又会影响到场的分布。这样互相影响,互相制约,最后达到静电平衡。 (2)从导体的静电平衡条件出发,可以得出三个推论 导体是个等势体,表面是个等势面; 导体表面外侧的场强方向处处垂直于表面,并且有导体内部无净电荷,即电荷体密度,电荷只分布在导体表面。 ;E =??? ??? =σερ00 2、电介质的极化规律

静电场中的导体和电介质

第八章 静电场中的导体和电介质 §8-1 静电场中的导体 一、静电感应 导体的静电平衡条件 1、静电感应 2、导体静电平衡条件 (1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。 (2)静电平衡条件 从场强角度看: ①导体内任一点,场强0=E ; ②导体表面上任一点E 与表面垂直。 从电势角度也可以把上述结论说成: ①?导体内各点电势相等; ②?导体表面为等势面。 用一句话说:静电平衡时导体为等势体。 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑?= ?内 S S q s d E 0 1ε 导体静电平衡时其内0=E , ∴ 0=??s d E S , 即0=∑内 S q 。 S 面是任意的,∴导体内无净电荷存在。 结论:静电平衡时,净电荷都分布在导体外表面上。 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况

如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为: ∑?=?内S S q s d E 01 ε 静电平衡时,导体内0=E ∴ 0=∑内 S q ,即S 内净电荷为0, 空腔内无其它电荷,静电平衡时,导体内又无净电荷 ∴空腔内表面上的净电荷为0。 但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。 结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。 (2)空腔内有点电荷情况 如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为 ∑?=?内S S q s d E 01 ε 静电平衡时0=E , ∴ 0=∑内 S q 。 又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。 结论:静电平衡时,腔内表面有感应电荷-q ,外表面有感应电荷+q 。 3、导体表面上电荷分布 设在导体表面上某一面积元S ?(很小)上,电荷分布如图所示 ,过S ?边界作一闭合柱面,S 上下底1S 、2S 均与S ?平行,S 侧面3S 与S ?垂直,柱面的高很小,即1S 与 2S 非常接近S ?,此柱面并且是关于S ?对称的。S 作为高斯面,高斯定理为∑?=?内S S q s d E 01ε S E ES ds E s d E s d E s d E s d E s d E s S S S S S S ?==?=?=?+?+?=???????11 1 3 2 1 很小 S q S ?= ∑σεε00 1 1 内 S S E ?=??σε01 0εσ= E (注意与无限大带电平面0 2εσ=E 的区别)。 结论:导体表面附近,σ∝E 。

大学物理第7章静电场中的导体和电介质课后习题及答案

大学物理第7章静电 场中的导体和电介质课后习题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球 上电荷分布的影响。试证明:R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+= =??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π41 00εε+ ? 03π4π400=+'=R q R q εε

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。试求: (1) 球壳内外表面上的电荷; (2) 球心O 点处,由球壳内表面上电荷产生的电势; (3) 球心O 点处的总电势。 习题10-1图 解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。 (2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为 0d 4q q U a πε-= ?a q 04επ-= (3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和 q Q q q O U U U U +-++= 04q r πε= 04q a πε- 04Q q b πε++ 01114()q r a b πε=-+04Q b πε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。试求: (1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。 习题10-2图 解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为 . 在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理, ()22 0cos 024P q E r b θσ επε⊥= +=+ ∴ () 2 /32 22/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ( ) 32 2 2d d d //Q S qbr r r b σ==-+ q Q a b O r

第9章_静电场中的导体和电介质

第9章静电场中的导体和电介质 什么是导体什么是电介质 静电场中的导体静电平衡 9.1.1 静电感应静电平衡 金属导体:金属离子+、自由电子- 1、静电感应:在外电场作用下,导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。(感应电荷与外加电场相互影响,比如金属球置于匀强电场中,外电场使电荷重新分布,感应电荷的分布使均匀电场在导体附近发生弯曲。) 2、导体静电平衡条件 不受外电场影响时,无论对整个导体或对导体中某一个小部分来说,自由电子的负电荷和金属离子的正电荷的总量是相等的,正负电荷中心重合,导体呈现电中性。

若把金属导体放在外电场中,比如把一块金属板放在电场强度为0E r 的匀强电场中,这时导体中的自由电子在作无规则热运动的同时,还将在电场力作用下作宏观定向运动,自由电子逆着电场方向移动,从而使导体中的电荷重新分布。电荷重新分布的结果使得金属板两侧会出现等量异号的电荷。这种在外电场作用下,引起导体中电荷重新分布而呈现出的带电现象,叫做静电感应现象,对应的电荷称为感应电荷。 感应电荷在金属板的内部建立起一个附加 电场,其电场强度'E r 和外在的电场强度0E r 的方向相反。这样,金属板内部的电场强度E r 就是0 E r 和'E r 的叠加。开始时0'E E <,金属板内部的 电场强度不为零,自由电子会不断地向左移动, 从而使'E r 增大。这个过程一直延续到金属板内部的电场强度等于零,即0'0E E E =+=r r r 时为止。这时,导体上没有电荷作定向运动,导体处于静电平衡 状态。 当导体处于静电平衡状态时,满足以下条件:

静电场中的导体和电介质

第十章静电场中的导体和电介质§10-1 静电场中的导体 一、导体的静电平衡 1、金属导体的电结构及静电感应 (1)金属导体:由带正电的晶格和带负电的自由电子组成. 带电导体:总电量不为零的导体; 中性导体:总电量为零的导体; 孤立导体:与其他物体距离足够远的导体. “足够远”指其他物体的电荷在该导体上激发的场强小到可以忽略. (2)静电感应过程:导体内电荷分布与电场的空间分布相互影响的过程. (3)静电平衡状态:导体中自由电荷没有定向移动的状态. 2、导体静电平衡条件 (1)从场强角度看: ①导体内任一点,场强; ②导体表面上任一点与表面垂直. 证明:由于电场线与等势面垂直,所以导体表面附近的电场强度必定与该处表面垂直. 说明:①静电平衡与导体的形状和类别无关.

②“表面”包括内、外表面; (2)从电势角度也可以把上述结论说成:静电平衡时导体为等势体. ①导体内各点电势相等; ②导体表面为等势面. 证明:在导体上任取两点A,B,.由于=0,所以. (插话:空间电场线的画法. 由于静电平衡的导体是等势体,表面是等势面.因此,导体正端发出的电场线绝对不会回到导体的负端.应为正电荷发出的电场线终于无穷远,负电荷发出的电场线始于无穷远.) 二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布 如图所示,导体电荷为Q,在其内作一高斯面S,高斯定理为: 导体静电平衡时其内, , 即. S面是任意的,导体内无净电荷存在. 结论:静电平衡时,净电荷都分布在导体外表面上. 2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况 如图所示,导体电量为Q,在其内作一高斯面S,高斯定理为:

ch7-静电场中的导体和电介质-习题及答案

第7章 静电场中的导体和电介质 习题及答案 1. 半径分别为R 和r 的两个导体球,相距甚远。用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。试证明: R r =21σσ 。 证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以 半径为R 的导体球的电势为 R R V 0211π4επσ= 14εσR = 半径为r 的导体球的电势为 r r V 0222π4επσ= 24εσr = 用细导线连接两球,有21V V =,所以 R r =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。 证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 部的闭合圆柱面为高斯面,由高斯定理得 S S d E S ?+==??)(1 0320 σσε 故 +2σ03=σ 上式说明相向两面上电荷面密度大小相等、符号相反。 (2)在A 部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即 022220 4 030201=---εσεσεσεσ

又 +2σ03=σ 故 1σ4σ= 3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。 解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V 由电势叠加原理,球心电势为 = O V R q dq R 3π4π4100εε+ ? 03π4π400=+'= R q R q εε 故 - ='q 3 q 4.半径为1R 的导体球,带有电量q ,球外有外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。 (1)求导体球和球壳的电势1V 和2V ; (2)如果将球壳接地,求1V 和2V ; (3)若导体球接地(设球壳离地面很远),求1V 和2V 。 解:(1)应用均匀带电球面产生的电势公式和电势叠加原理求解。 半径为R 、带电量为q 的均匀带电球面产生的电势分布为 ???????>≤=)( 4)( 400 R r r q R r R q V πεπε 导体球外表面均匀带电q ;导体球壳表面均匀带电q -,外表面均匀带电Q q +,由电势叠加原理知,空间任一点的电势等于导体球外表面、导体球壳表面和外表面电荷在该点产生的电势的代数和。 导体球是等势体,其上任一点电势为 )( 413 210 1R Q q R q R q V ++-= πε 球壳是等势体,其上任一点电势为

第28讲静电场中的导体静电场中的电介质

教学要求 了解有极分子和无极分子,有极分子的取向极化、无极分子的位移极化、电极化强度。了解电介质的静电场。 理解静电平衡的条件、推论及其性质、静电平衡时导体上的电荷分布,空腔导体内外的静电场、静电屏蔽,有电介质时的高斯定理及应用、电位移的定义、D ,E ,P 之间的关系。 9.5 静电场中的导体 9.5.1 导体的静电平衡 导体的特点是导体内存在着大量的自由电荷,对金属导体(本书讨论都是金属导体)而言,就是自由电子。即金属导体在它内部有可以自由移动的电荷—自由电子。一个不带电的中性导体放在静电场中,在电场力作用下,它内部自由电子将受静电场的作用而产生定向运动而改变导体上的电荷分布。这电荷的分布的改变又将反过来改变导体内外的电场分布。这种现象叫做静电感应。导体由于静电感应而带的电荷叫感应电荷。因此,当电场中有导体存在时,电荷分布和电场分布相互影响、相互制约。当导体内部和表面都没有电荷的宏观定向运动时,我们称导体处于静电平衡状态。导体达到静电平衡状态所满足的条件叫静电平衡条件。 如图9-27,我们将一块导体板放入一均匀电场E 中,电场力则驱动金属板内部的自由 电荷逆着电场的方向运动,使得金属板的两个侧面出现等量异号的电荷。这些电荷将在金属 板的内部建立一个附加电场'E ,附加电场'E 的方向与原场E 相反。金属板内部的电场强度就是E 和'E 的叠加。开始时,E E <',金属板内部的电场不为零,自由电子会不停地向左移动,从而使' E 增大。这个过程一直达到静电平衡状态为止。 int 0 E = 'E E 图9-27 导体的静电平衡 E E

静电平衡状态只有在导体内部场强处处为零时才有可能达到和维持。否则,导体内部的自由电子在电场的作用下将发生定向移动。同时,导体表面附近的电场强度必定和导体表面垂直。显然,导体的静电平衡条件是:导体内部场强处处为零,即int 0E ≡ ,导体表面紧邻 处的场强s E 垂直于导体表面。这里所说的电场强度,指的是外加的静电场E 和感应电荷产 生的附加电场'E 叠加后的总电场,即=E E E '+ 总。由于将导体放入电场中到建立静电平衡 的时间是极短的(610s -的数量级),所以通常在我们处理静电场中的导体问题时,若非特别说明,总是把它当作已达到静电平衡的状态来讨论。 处于静电平衡状态的导体,除了电场强度满足上述的静电平衡条件外,还具有以下性质: (1)导体是等势体,导体表面是等势面。当导体处于静电平衡时,因为其内部电场强度处处为零,而且表面紧邻处的电场强度都垂直于表面,所以导体中以及表面上任意两点间的电势必然为零。 (2)导体内部处处没有未被抵消的净电荷,净电荷只分布在导体的表面上。 为了证明上述结论,我们在导体内部围绕任意点P 作一个小闭合曲面S (如图9-28),由于静电平衡时导体内部电场强度处处为零,因此通过此封闭曲面的电通量必然为零。按高斯定理,此闭合曲面内电荷的代数和为零,由于P 点是任意的,封闭曲面也可以作得任意地小,所以导体内部各处净电荷为零,电荷只能分布在表面。 (3) 导体以外,靠近导体表面附近场强大小和导体表面在该处的面电荷密度 的关系 为 E σε= (9-30 图9-29导体表面电荷与场强的关系 ' S ?int 0 E = E 图9-28 导体内无净电荷 p σ

相关主题
文本预览
相关文档 最新文档