当前位置:文档之家› 伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流/交流伺服电机)

伺服电机servomotor

“伺服”一词源于希腊语“奴隶”的意思。“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。

伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。

伺服电机分为交流伺服和直流伺服两大类

交流伺服电机的基本构造与交流感应电动机(异步电机)相似。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。

直流伺服电机基本构造与一般直流电动机相似。电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。直流伺服电动机具有良好的线性调节特性及快速的时间响应。

直流伺服电机的优点和缺点

优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。

缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜)

交流伺服电机的优点和缺点

优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可

伺服基础知识

1,伺服驱动器制动电阻选择的问题? 答:制动电阻的问题,这是个大问题。当然从工程的角度来讲,因为有些东西无法准确的计算,为安全起见,对于频繁启动停止,频繁正反转的场合,可以简单的用能量守恒原理来进行计算。而对于制动电阻的阻值选择的一般规律是制动电阻的阻值不能够太大,也不能够太小,而是有一个范围的。如果阻值太大的话,简单点说,假如是无穷大的话,相当于制动电阻断开,制动电阻不起制动的作用,伺服驱动器还是会报警过电压;如果阻值太小的话,则制动的时候通过该电阻的电流就将非常大,流过制动功率管的电流也会非常大,会将制动功率管烧毁,而制动功率管的额定电流一般是等同于驱动管的,所以制动电阻的最小值是不应当低于710/伺服驱动器的额定电流的(假定伺服驱动器是三相380V电压输入)。另外制动电阻分为两种:铝合金制动电阻和波纹制动电阻。当然网上资料说两种制动电阻各有优劣,但是我想对于一般的工程应用应该是都可以的。另外对于变频器的制动电阻的选择原理上与伺服驱动器是相似的。 2,为什么伺服驱动器加上使能后,所连接的伺服电机的轴用手不能转动? 答:以伺服驱动器处于位置控制方式为例。运用自动控制的基本原理就可以进行解释。因为伺服驱动器加上使能后,整个闭环系

统就开始工作了,但这个时候伺服系统的给定却为零,假定伺服驱动器处于位置控制方式的话,那么位置脉冲指令给定则为零,如果用手去转动电机轴的话,相当于外部扰动而产生了一个小的位置反馈,因为这个时候的位置脉冲指令给定为零,所以就产生了一个负的位置偏差值,然后该偏差值与伺服系统的位置环增益的乘积就形成了速度指令给定信号,然后速度指令给定信号与内部的电流环输出了力矩,这个力矩就带动电机运转试图来消除这个位置偏差,所以当人试图去转动电机轴的时候就感觉转动不了。 3,伺服驱动器电子齿轮比的设置的问题? 答:这里首先要区分伺服的控制方式,当然这里假定伺服是以接受脉冲的方式来控制的(伺服如果以总线的方式来控制的话,伺服驱动器就不用设置电子齿轮比了,但是在上位系统中却会有另外一个东西需要设置,这个东西就是脉冲当量,本质上和伺服驱动器的电子齿轮比是一回事),然后还有伺服是位置控制方式还是速度控制方式或力矩控制方式的问题,如果伺服是速度控制方式或力矩控制方式的话,显然电子齿轮比的设置就失去了意义。也就是说电子齿轮比的设置仅在位置控制方式的时候才有效。还有个问题就是伺服是作为直线轴还是作为旋转轴来使用。对于绣花机来说,X轴,Y轴,M轴,SP轴都是直线轴,因为大豪上位认为是1000个脉冲为一转,所以对于这些轴的电子齿轮比的

MSDA043A1A交流伺服电机驱动器简介

附录三MSDA043A1A 交流伺服电机驱动器简介1.外部结构和主要接线插座 MSDA043A1A 交流伺服电机驱动器外部结构如图1所示。 图1 MSDA043A1A 交流伺服电机驱动器外部结构1)CN SER/CN NET:变频器与计算机或其它控制器连接接口; 2)CN SIG:编码器连接接口; 3)CN 1/F:各种控制信号输入/输出接口。

2. CN 1/F接口常用控制信号接线端子的功能。 CN 1/F接口常用控制信号接线端子的功能如表1所示 表1 : 常用控制信号接线端子的功能 端子号符号信号名称功能 7COM+外接电压正 输入给变频器提供直流24V或12V工作电压 41COM-外接电压负 输入 29SRV-ON伺服使能输 入此端与COM-接通后,变频器允许工作 8CWL正向脉冲禁 止输入当此端与COM-断开时,正向脉冲输出信号被禁止 9CCWL反向脉冲禁 止输入当此端与COM-断开时,反向脉冲输出信号被禁止 3PULS1指令脉冲输 入1)当使用双脉冲输出方式时,PULS为正脉冲输出端,而 SIGN为负脉冲输出端;2)当使用单脉冲输出方式时,PULS为脉冲输出端,而 SIGN为方向输出端。 4PULS2 5SIGN1指令符号输 入 6SIGN2 37ALM+伺服故障输 出端当控制器出现故障时,此输出断开。 36ALM- 35S-RDY+伺服准备好当主电源接通且没有故障时,此 输出端接通。 34S-RDY- 31A-CLR故障复位当此端与COM-接通时,故障被 清除。

3.前面板 可以利用前面板作监视器、参数设定、EEPROM写入器、自动增益调整和其它辅助功能。MSDA043A1A 交流伺服电机驱动器操作面板如图2所示。 图2 操作板结构 操作面板各部分的功能如表2所示。

什么是伺服电机,伺服电机知识汇总

什么是伺服电机,伺服电机知识汇总 “伺服”一词源于希腊语“奴隶”的意思。“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。 伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。 伺服电机分为交流伺服和直流伺服两大类 交流伺服电机的基本构造与交流感应电动机(异步电机)相似。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。 直流伺服电机基本构造与一般直流电动机相似。电机转速n=E /K1j=(Ua-IaRa)/K1j,式中E为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua 或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。直流伺服电动机具有良好的线性调节特性及快速的时

间响应。 直流伺服电机的优点和缺点 优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。 缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜) 交流伺服电机的优点和缺点 优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可实现恒力矩,惯量低,低噪音,无电刷磨损,免维护(适用于无尘、易爆环境)缺点:控制较复杂,驱动器参数需要现场调整PID参数确定,需要更多的连线。 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对使用环境有要求,通常用于对成本敏感的普通工业和民用场合。 无刷电机体积小重量轻,出力大响应快,速度高惯量小,力矩稳定转动平滑,控制复杂,智能化,电子换相方式灵活,可以方波或正弦波换相,电机免维护,高效节能,电磁辐射小,温升低寿命长,适用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控

伺服电机知识汇总(直流-交流伺服电机)

伺服电机知识汇总(直流/交流伺服电机) 伺服电机servomotor “伺服”一词源于希腊语“奴隶”的意思。“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动;当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。 伺服电机是自动控制装置中被用作执行元件的微特电机,其功能是将电信号转换成转轴的角位移或角速度。 伺服电机分为交流伺服和直流伺服两大类 交流伺服电机的基本构造与交流感应电动机(异步电机)相似。在定子上有两个相空间位移90°电角度的励磁绕组Wf和控制绕组WcoWf,接恒定交流电压,利用施加到Wc上的交流电压或相位的变化,达到控制电机运行的目的。交流伺服电机具有运行稳定、可控性好、响应快速、灵敏度高以及机械特性和调节特性的非线性度指标严格(要求分别小于10%~15%和小于15%~25%)等特点。 直流伺服电机基本构造与一般直流电动机相似。电机转速n=E/K1j=(Ua-IaRa)/K1j,式中E 为电枢反电动势,K为常数,j为每极磁通,Ua、Ia为电枢电压和电枢电流,Ra为电枢电阻,改变Ua或改变φ,均可控制直流伺服电动机的转速,但一般采用控制电枢电压的方法,在永磁式直流伺服电动机中,励磁绕组被永久磁铁所取代,磁通φ恒定。直流伺服电动机具有良好的线性调节特性及快速的时间响应。 直流伺服电机的优点和缺点 优点:速度控制精确,转矩速度特性很硬,控制原理简单,使用方便,价格便宜。 缺点:电刷换向,速度限制,附加阻力,产生磨损微粒(无尘易爆环境不宜) 交流伺服电机的优点和缺点 优点:速度控制特性良好,在整个速度区内可实现平滑控制,几乎无振荡,90%以上的高效率,发热少,高速控制,高精确度位置控制(取决于编码器精度),额定运行区域内,可

伺服电机的基本结构和工作原理

伺服电机的基本结构和工作原理 交流伺服电机通常都是单相异步电动机,有鼠笼形转子和杯形转子两种结构形式。与普通电机一样,交流伺服电机也由定子和转子构成。定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。固定和保护定子的机座一般用硬铝或不锈钢制成。笼型转子交流伺服电机的转子和普通三相笼式电机相同。杯形转子交流伺服电机的结构如图3-12由外定子4,杯形转子3和内定子5三部分组成。它的外定子和笼型转子交流伺服电机相同,转子则由非磁性导电材料(如铜或铝)制成空心杯形状,杯子底部固定在转轴7上。空心杯的壁很薄(小于0.5mm),因此转动惯量很小。内定子由硅钢片叠压而成,固定在一个端盖1、8上,内定子上没有绕组,仅作磁路用。电机工作时,内﹑外定子都不动,只有杯形转子在内、外定子之间的气隙中转动。对于输出功率较小的交流伺服电机,常将励磁绕组和控制绕组分别安放在内、外定子铁心的槽内。 交流伺服电机的工作原理和单相感应电动机无本质上 的差异。但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应

能立即停止转动。而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。 当电机原来处于静止状态时,如控制绕组不加控制电压,此时只有励磁绕组通电产生脉动磁场。可以把脉动磁场看成两个圆形旋转磁场。这两个圆形旋转磁场以同样的大小和转速,向相反方向旋转,所建立的正、反转旋转磁场分别切割笼型绕组(或杯形壁)并感应出大小相同,相位相反的电动势和电流(或涡流),这些电流分别与各自的磁场作用产生的力矩也大小相等、方向相反,合成力矩为零,伺服电机转子转不起来。一旦控制系统有偏差信号,控制绕组就要接受与之相对应的控制电压。在一般情况下,电机内部产生的磁场是椭圆形旋转磁场。一个椭圆形旋转磁场可以看成是由两个圆形旋转磁场合成起来的。这两个圆形旋转磁场幅值不等(与原椭圆旋转磁场转向相同的正转磁场大,与原转向相反的反转磁场小),但以相同的速度,向相反的方向旋转。它们切割转子绕组感应的电势和电流以及产生的电磁力矩也 方向相反、大小不等(正转者大,反转者小)合成力矩不为零,所以伺服电机就朝着正转磁场的方向转动起来,随着信号的增强,磁场接近圆形,此时正转磁场及其力矩增大,反转磁场及其力矩减小,合成力矩变大,如负载力矩不变,转子的速度就增加。如果改变控制电压的相位,即移相180o,旋转磁场的转向相反,因而产生的合成力矩方向也相反,伺

微型伺服电机基本知识

微型伺服电机基本知识(附录) 微型的伺服电机在无线电业余爱好者的航模活动 中使用已有很长一段历史,而且应用最为广泛,国内亦称之为“舵机”,含义为:“掌舵人操纵的机器”。舵机是一种位置伺服的驱动器。它是机器人、机电系统和航模的重要执行机构。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。标准的舵机有3条导线:电源线(红)、地线(黑或灰)、控制线(白或橙黄)。控 制线的输入是一个宽度可调的周期性方波脉冲信号(PWM),方波脉冲信号的周期为20ms(即频率为50 Hz),当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比,也就是利用占空比的变化来改变舵机的位置。可见,其主要用作运动方向的控制部件。因此,机器人模型中也常用到它作为可控的运动关节,这些活动关节在机械原理中常称它为自由度。 以180度角度伺服为例,那么对应的控制关系为:0.5ms--------------≈0度;

0.9ms-------------≈45度; 1.5ms-------------≈90度; 2.1ms------------≈135度; 2.5ms------------≈180度; 相关资料地址: https://www.doczj.com/doc/1215076015.html,/conan803/blog/item/2435c0fd02127c4ed7887d7d.html https://www.doczj.com/doc/1215076015.html,/question/111534191.html https://www.doczj.com/doc/1215076015.html,/zhidao/answer.aspx?id=108091132

伺服电机如何进行选型知识讲解

伺服电机选型技术指南 1、机电领域中伺服电机的选择原则 现代机电行业中经常会碰到一些复杂的运动,这对电机的动力荷载有很大影响。伺服驱动装置是许多机电系统的核心,因此,伺服电机的选择就变得尤为重要。首先要选出满足给定负载要求的电动机,然后再从中按价格、重量、体积等技术经济指标选择最适合的电机。 各种电机的T-ω曲线 (1)传统的选择方法 这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度ω(t),角加速度α(t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的最大功率P电机,最大应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用ω峰值,T峰值表示最大值或者峰值。电机的最大速度决定了减速器减速比的上限,n上限=ω峰值,最大/ω峰值,同样,电机的最大扭矩决定了减速比的下限,n下限=T峰值/T电机,最大,如果n下限大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。 (2)新的选择方法 一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。 在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的最大速度小于电机自身的最大速度ω电机,最大;二是,电机任意时刻的标准扭矩小于电机额定扭矩M额定。

伺服电机和伺服驱动器的使用介绍

伺服电机和伺服驱动器的使用介绍 一、伺服电机? 伺服驱动器的控制原理 伺服电机和伺服驱动器是一个有机的整体,伺服电动机的运行性能是电动机及其驱动器二者配合所反映的综合效果。 1、永磁式同步伺服电动机的基本结构 图1为一台8极的永磁式同步伺服电动机结构截面图,其定子为硅钢片叠成的铁芯和三相绕组,转子是由高矫顽力稀土磁性材料(例如钕铁錋)制成的磁极。为了检测转子磁极的位置,在电动机非负载端的端盖外面还安装上光电编码器。驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 图1 永磁式同步伺服电动机的结构 图2 所示为一个两极的永磁式同步电机工作示意图,当定子绕组通上交流电源后,就产生一旋转磁场,在图中以一对旋转磁极N、S表示。当定子磁场以同步速n1逆时针方向旋转时,根据异性相吸的原理,定子旋转磁极就吸引转子磁极,带动转子一起旋转,转子的旋转速度与定子磁场的旋转速度(同步转速n1)相等。当电机转子上的负载转矩增大时,定、转子磁极轴线间的夹角θ就相应增大,导致穿过各定子绕组平面法线方向的磁通量减少,定子绕组感应电动势随之减小,而使定子电流增大,直到恢复电源电压与定子绕组感应电动势的平衡。这时电磁转矩也相应增大,最后达到新的稳定状态,定、转子磁极轴线间的夹角θ称为功率角。虽然夹角θ会随负载的变化而改变,但只要负载不超过某一极限,转子就始终跟着定子旋转磁场以同步转速n1转动,即转子的转速为: (1-1)

图 2 永磁同步电动机的工作原理 电磁转矩与定子电流大小的关系并不是一个线性关系。事实上,只有定子旋转磁极对转子磁极的切向吸力才能产生带动转子旋转的电磁力矩。因此,可把定子电流所产生的磁势分解为两个方向的分量,沿着转子磁极方向的为直轴(或称d轴)分量,与转子磁极方向正交的为交轴(或称q轴)分量。显然,只有q轴分量才能产生电磁转矩。 由此可见,不能简单地通过调节定子电流来控制电磁转矩,而是要根据定、转子磁极轴线间的夹角θ确定定子电流磁势的q轴和d轴分量的方向和幅值,进而分别对q 轴分量和d轴分量加以控制,才能实现电磁转矩的控制。这种按励磁磁场方向对定子电流磁势定向再行控制的方法称为“磁场定向”的矢量控制。 2、位置控制模式下的伺服系统是一个三闭环控制系统,两个内环分别是电流环和速度环。 图 3 ? 稳态误差接近为零; ? 动态:在偏差信号作用下驱动电机加速或减速。

伺服系统介绍.doc

一、相关概念 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。 在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。 伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。 机器人用伺服电机

二、伺服系统的技术现状 2.1视觉伺服系统 随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。 视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。 其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。 2.2伺服系统控制技术 现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。 最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种: 1)矢量控制矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的

教你认识和了解交流伺服电机

教你认识和了解交流伺服电机 本文转载自:工控商务网 伺服电机内部的转于是永磁铁,驱动gS控制的u/V/W三相电形成电磁场转子在此礤场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较调整转子转动的角度。 伺服电机的精度决定于编码器的精度{线数)。两相电机和四相电机有何不同?真正的两相步进电机在定子上只有2个绕组,有4相出线,一般整步步距角为1.8半步为o。9”。在驱动器中,只要对两相绕组电流通断和电流方向进行控制就可以了。而4相步进电机在定子上有四个绕组,有8根出线,整步为O.9,半步为0.45 。不过在驱动器中需要刘4个绕组进行控制,电路的复杂性和成本都明显增加。所以一般我们都选择两相电机配两相驱动器.如果需要更小的步距角,可以采用细分驱动器。细心的用户会发现,四通电机公司生产的电机称为两相,实际有两相4线的,也有四相日线的;驱动器中有两相的却没有四相的。这是因为,四相绕组两两并联或串联后就成为两相绕组,这样四相电机就变成两相电机了,而串联和并联会带来电机.的绕组电阻和电感的成倍变化。从而带来电机运行性能的明显变化。 一般来说,并联使用时,电机有较好的加速性能.高速力矩保持得好,但是电机需要输入2倍‘额定电流的电流.发热较大.对驱动器输出能力的要求相应提高;而在串联使用时,电机有较好的低速稳定性,噪声和发热较小,对驱动器要求不高但是高速力矩损失较大。四通提供的驱动器全部呈两相的,所以电机也必须改接咸两相使用。这就是为什么我们往往要问客户电机,希望接成串联的还是并联的。过去我们的8线电机标成四相,但是经常造

成客户误会.认为四相电机.和两相驱动器不匹配为了减少类似麻烦,后来将电机均标成两相的了。所以,我们有晌简单回答这个问题两相电机.和四相电机实质上是一回事。两相和五相的混合式步进电机的应用场合有何一般来说.两相电机,步距角大.高速特性好,但是存在低速振动区。而五相电机步距角小,低速运行平稳,所以,在刘电机的运转精度要求较高,且主要在中低速段(一般低于日OOr/min) 的场合应选用五相电机.;反之,若追求电机的高速性能,对精度及平稳性无太多要求的场合应选用成本较低的两相电机。另外.五相电机的力矩通常在2NM以上,对小力矩的应用,一般采用两相电机,而低速平稳性的问题可以通过采用细分驱动器的方式解决。 如何控制步进电机的转动方向? 当您的控制韶(上位机)发出的是双脉冲[即正负脉冲)或脉冲信号的幅值不匹配时,需要用我们的信号模块转换为5V单脉冲(脉:中加方向)。 (1)输入为双脉冲信号模块的拨码开关应拨到·双脉:中·位置。当发正脉;中的,电机正转;当发负脉冲的,电机反转。正负脉冲不可同时给,具体时序可参照信号模块说明书。 (2)输入为单脉冲信号模块的拨码开关应拨到单脉冲”位置。当有脉冲输出时电机转动。改变方向信号的高低电平可改变电机转动方向。具体时序可参照信号模块说明书。 伺服电机和步进电机相比,有何优势? 和步进电机相比,伺服电机.有以下几点优势 (1)实现了位置,速度和力矩的闭环控制.克服了步进电机.失步的问题。

伺服电机介绍

直流伺服电机 一、直流伺服电机的发展史 在讯号来到之前,转子静止不动;讯号来到之后,转子立即转动;当讯号消失,转子能即时自行停转。由于它的“伺服”性能,因此而得名——伺服系统。 虽然直流伺服电机的各方面性能都会比其他的产品要好,但是直流伺服电机电机也不是最近才发展起来得,我们来简单看一下直流伺服电机电机的发展史吧~近几年来,随着数控技术的发展,直流伺服电机驱动器的优势明显突出来了,交流直流伺服电机系统的应用也越来越广泛,再后来国家对于制造装备及其技术改造工作的重视,全数字式交流永磁直流伺服电机系统的性价比也是逐步提高,各种工业的应用也是越来越广泛,未来直流伺服电机电机的发展将会成为一个大的趋势。 早在60年代直流直流伺服电机电动机就已经诞生和发展,并且当时在相关领域获得广泛应用,这是直流伺服电机系统的控制方式也发生了变化,开始有开环控制变成了闭环控制,这时在数控领域,永磁式直流电动机因共控制电路简单、无励磁损耗、低速性能好等一系列优点仍然占据着统治地位。直至80年代,随着电力电子技术、微电子技术、各种控制技术和计算机技术的发展,很快推动了交流直流伺服电机驱动技术的发展,这时就会督使交流直流伺服电机系统的性能逐渐提高,和其对应的直流伺服电机传动装置也经历模拟式、数模混合式和全数字化的发展历程。 直到90年代交流直流伺服电机系统的发展慢慢取代了开环直流伺服电机系统,现在,交流直流伺服电机系统的发展越来越成熟,市场也呈现出多元化发展。 二、特点 伺服电机的优点 绝对定位系统:使用伺服的要点是因为它们允许计算机设置电机将移动的特定角度。然而,不仅如此,如果伺服机构移动,控制器可以查询电机以确定其角度。 高速大扭矩:由于采用了传动系统,伺服系统可以产生大的扭矩,并且可以高速移动。 保持力矩:使用伺服系统的另一个好处是,一旦将其设置为特定角度,伺服系统将抵抗试图将其移出位置的力。如果伺服经受的力太大而伺服不能保持位置,并且电机移出位置,则一旦移除力,它将再次移回。

永磁同步电机基础知识

(一) PMSM 的数学模型 交流电机是一个非线性、强耦合的多变量系统。永磁同步电机的三相绕组分布在定子上,永磁体安装在转子上。在永磁同步电机运行过程中,定子与转子始终处于相对运动状态,永磁体与绕组,绕组与绕组之间相互影响,电磁关系十分复杂,再加上磁路饱和等非线性因素,要建立永磁同步电机精确的数学模型是很困难的。为了简化永磁同步电机的数学模型,我们通常做如下假设: 1) 忽略电机的磁路饱和,认为磁路是线性的; 2) 不考虑涡流和磁滞损耗; 3) 当定子绕组加上三相对称正弦电流时,气隙中只产生正弦分布的磁势,忽略气隙中的高次谐波; 4) 驱动开关管和续流二极管为理想元件; 5) 忽略齿槽、换向过程和电枢反应等影响。 永磁同步电机的数学模型由电压方程、磁链方程、转矩方程和机械运动方程组成,在两相旋转坐标系下的数学模型如下: (l)电机在两相旋转坐标系中的电压方程如下式所示: d d s d d c q q q s q q c d di u R i L dt di u R i L dt ωψωψ?=+-????=++?? 其中,Rs 为定子电阻;ud 、uq 分别为d 、q 轴上的两相电压;id 、iq 分别为d 、q 轴上对应的两相电流;Ld 、Lq 分别为直轴电感和交轴电感;ωc 为电角速度;ψd 、ψq 分别为直轴磁链和交轴磁链。 若要获得三相静止坐标系下的电压方程,则需做两相同步旋转坐标系到三相静止坐标系的变换,如下式所示。 cos sin 22cos()sin()3322cos()sin()33a d b q c u u u u u θθθπθπθπθπ?? ?-????? ??=--- ? ???? ???? ?+-+? ? (2)d/q 轴磁链方程: d d d f q q q L i L i ψψψ=+???=?? 其中,ψf 为永磁体产生的磁链,为常数,0f r e ωψ=,而c r p ωω=是机械角速度,p 为同步电机的极对数,ωc 为电角速度,e0为空载反电动势,其值为每项 倍。

交流伺服电机的工作原理概述

交流伺服电机的工作原理概述 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品 化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或摶旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到 7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。 以生产机床数控装置而著名的日本法奴克(Fanuc)公司,在20世纪80年代中 期也推出了S系列(13个规格)和L系列(5个规格)的永磁交流伺服电动机。L系列 有较小的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。 日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列)、东芝精机(SM系列)、大隈铁工所(BL 系列)、三洋电气(BL系列)、立石电机(S系列)等众多厂商也进入了永磁交流伺服系统的竞争行列。 德国力士乐公司(Rexroth)的Indramat分部的MAC系列交流伺服电动机共有7个机座号92个规格。 德国西门子(Siemens)公司的IFT5系列三相永磁交流伺服电动机分为标准型和短型两大类,共8个机座号98种规格。据称该系列交流伺服电动机与相同输出力矩的直流伺服电动机IHU系列相比,重量只有后者的1/2,配套的晶体管脉宽调制驱动器6SC61系列,最多的可供6个轴的电动机控制。 德国宝石(BOSCH)公司生产铁氧体永磁的SD系列(17个规格)和稀土永磁的SE系列(8个规格)交流伺服电动机和ServodynSM

伺服电机常识

伺服电机常识 收藏此信息打印该信息添加:未知来源:未知 交流伺服电动机原理? 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 伺服电动机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 作用:伺服电机,可使控制速度,位置精度非常准确。 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。 无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。

伺服电动机基本知识讲解 伺服电动机 伺服电动机又叫执行电动机,或叫控制电动机。在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。其容量一般在0.1-100W,常用的是30W以下。伺服电动机有直流和交流之分。 一、交流伺服电动机 交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似,如图1所示。其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。所以交流伺服电动机又称两个伺服电动机。 交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子,如图2所示。空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。

伺服电机基本知识范文

伺服电机 中文名称:伺服电机 英文名称:servo motor 定义:转子转速受输入信号控制,并能快速反应,在自动控制系统中作执行元件,且具有机电时间常数小、线性度高、始动电压所属学科:航空科技(一级学科) ;航空机电系统(二级学科) 伺服电机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。伺服电机,可使控制速度,位置精度非常准确。将电压信号转化为转矩和转速以驱动控制对象 一:伺服电机工作原理 1.伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 2.交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 3.伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。 4.什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降, 5.交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。

伺服电机综述

伺服电机综述 luqingsong@https://www.doczj.com/doc/1215076015.html, 摘要:文章对伺服电机及其工作原理进行了简要介绍,并介绍了伺服控制系统同时分析了国内外伺服电机的研究现状。 关键词:伺服电机伺服系统研究现状 1伺服电机简介 伺服电机(servo motor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。[1] 2伺服电机工作原理 伺服电机在控制系统的控制下,实现相应的动作,其相应的命令就是输入的电压信号,一般由单片机提供,有几伏电压到几千伏电压驱动的伺服电机,伺服电机通过接受到的电压信号,识别信号的占空比,从而实现伺服电机的转速的输出控制,伺服电机把输入的电压信号转换为伺服电机的转矩,其占空比比较大,时间常数相应比较小,能够快速的响应,其归根结底则是根据输入的信号电平转化为伺服电机电机轴的角位移或者角速度输出,达到信号旋转驱动后面负载的元器件的功能,其作为一个动力驱动源,应用很广泛。 伺服电机一般度较小,现今使用的多为交流伺服电机,交流伺服电机有着优良的特性,体积小,执行相应时间小,其功率值的调动范围很大,相对于交流伺服电机而言直流伺服电机体积比较大,其执行的精度虽高,但在成本和实用下,性能比远远低于交流伺服电机。现如今,工业企业等大小的实验,均采用的是交流伺服电机,交流伺服电机分为同步交流伺服电机和异步交流伺服电机。交流伺服电机采用的是单片机输入的PWM脉宽数,执行相应的反应动作,交流伺服电机通过接收到的PWM脉宽数,执行电机的主轴输出轴的转速的控制。

伺服系统基础知识资料

交流永磁同步伺服驱动系统 一、伺服系统简介 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。 交流永磁同步伺服驱动系统(以下简称伺服系统),是基于国外高端伺服技术开发出适合于国内环境的伺服驱动系统,具有性能优异、可靠性强,广泛应用于数控机床、织袜机械、纺织机械、绣花机、雕刻机械等领域,在这些要求高精度高动态性能以及小体积的场合,应用交流永磁同步电机(PMSM)的伺服系统具有明显的优势。其中,PMSM具备十分优良的低速性能、可以实现弱磁高速控制,调速范围宽广、动态特性和效率都很高。交流伺服系统的性能指标可以从调速范围、定位精度、稳速精度、动态响应和运行稳定性等方面来衡量。伺服系统调速范围一般的在1:5000~1:10000;定位精度一般都要达到±1个脉冲;稳速精度,尤其是低速下的稳速精度,比如给定1rpm时,一般的在±0.1rpm以内,高性能的可以达到±0.01rpm以内;动态响应方面,通常衡量的指标是系统最高响应频率,即给定最高频率的正弦速度指令,系统输出速度波形的相位滞后不超过90°或者幅值不小于50%。应用在特定要求高的一些场合,目前国内主流产品的频率在200~500Hz。运行稳定性方面,主要是指系统在电压波动、负载波动、电机参数变化、上位控制器输出特性变化、电磁干扰、以及其他特殊运行条件下,维持稳定运行并保证一定的性能指标的能力。 二、伺服系统的组成 伺服系统的组成 1.上位机 上位机通过控制端口发送指令(模拟指令或脉冲指令)给驱动器。驱动器跟随外部指令来执行,同时驱动器反馈信号给上位机。 2.驱动器

交流伺服电机的工作原理

交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动, 同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。 伺服电机的精度决定于编码器的精度(线数)。 4. 什么是伺服电机?有几种类型?工作特点是什么? 答:伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴 上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转 现象,转速随着转矩的增加而匀速下降, 请问交流伺服电机和无刷直流伺服电机在功能上有什么区别? 答:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便 宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技 术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善 和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。 90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺 服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。 ⑶惯量小,易于提高系统的快速性。 ⑷适应于高速大力矩工作状态。 ⑸同功率下有较小的体积和重量。 自从德国MANNESMANN 的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、 抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、 新型数字信号处理器(DSP 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定 位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动器,其中D系列适用于数控机床(最高转速为1000 r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D系列和R系列。由旧系列矩 形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足

相关主题
文本预览
相关文档 最新文档