当前位置:文档之家› 统计学第5章概率及概率分布

统计学第5章概率及概率分布

统计学第5章概率及概率分布

统计学第5章概率及概率分布

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

常用医学统计学方法汇总

选择合适的统计学方法 1连续性资料 1.1 两组独立样本比较 1.1.1 资料符合正态分布,且两组方差齐性,直接采用t检验。 1.1.2 资料不符合正态分布,(1)可进行数据转换,如对数转换等,使之服从正态分布,然后对转换后的数据采用t检验;(2)采用非参数检验,如Wilcoxon检验。 1.1.3 资料方差不齐,(1)采用Satterthwate 的t’检验;(2)采用非参数检验,如Wilcoxon检验。 1.2 两组配对样本的比较 1.2.1 两组差值服从正态分布,采用配对t检验。 1.2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。 1.3 多组完全随机样本比较 1.3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.3.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Kruscal-Wallis法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用成组的Wilcoxon检验。 1.4 多组随机区组样本比较 1.4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey 法,Scheffe法,SNK法等。 1.4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然后用符号配对的Wilcoxon检验。 ****需要注意的问题: (1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t 检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。 (2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大犯假阳性错误的概率。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两

《概率统计学》答案

单项选择题: 1.D 对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器在有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于()。 A、0.9 B、0.75 C、0.675 D、0.525 2.D 袋中有5个球(3个新球,2个旧球)。现每次取一个,无放回的抽取两次,则第二次取到新球的概率是()。 A、3/5 B、3/4 C、1/2 D、3/10 3.B 已知在10个电子元件中有2只是次品,从其中取两次,每次随机的取一只,做不放回抽取,则第二次取出的是次品的概率是()。 A、1/45 B、1/5 C、16/45 D、8/45 4.A 已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=3/16,则事件A,B,C全不发生的概率等于()。 A、7/16 B、3/4 C、1/4 D、9/16 5.D 6.C

7.B 8.B 甲、乙两袋内都装有两个黑球和两个白球,现从甲、乙两袋中各摸取一个球,记事件A为“从甲袋中摸出白球”,B为“从乙袋中摸出白球”,C为“摸出的两个球颜色不同”,则有()。 A、A,B,C相互独立 B、A,B,C三个事件两两独立 C、A,B,C三个事件两两互不相容 D、AB与C互不相容 9.D 10.C 对于任意两个事件A与B,则有P(A-B)为() A、P(A)-P(B) B、P(A)-P(B)+P(AB) C、P(A)-P(AB) D、P(A)+P(AB) 11.C

12.D 13.A 14.C 15.B

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

统计学第5章概率论作业

一、选择 1、一项试验中所有可能结果的集合称为() A事件B简单事件C样本空间D基本事件 2、每次试验可能出现也可能不出现的事件称为() A必然事件B样本空间C随机事件D不可能事件 3、抛3枚硬币,用0表示反面,1表示正面,其样本空间Ω=() A{000,001,010,100,011,101,110,111} B{1,2,3}C{0,1}D{01,10} 4、随机抽取一只灯泡,观察其使用寿命t,其样本空间Ω=() A{t=0} B{t<0} C{t>0} D{t≥0} 5、观察一批产品的合格率P,其样本空间为Ω=() A{0

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

统计学常用分布

二项分布(,)B n p n 为试验次数,p 为每次成功概率 {}x x n x n p X x C p q -== 其中1p q += (),()E X np Var X npq == ()()tX t n E e q pe =+其中t -¥<<¥ 解释:n 重贝努里实验中正好成功x 次的概率 几何分布()Geo p p 为成功概率 ()x P X x pq == 2(),()E X q p Var X q p == ()(1),ln tX t E e p qe t q =-<- 解释:n 重贝努里实验中首次成功正好在第x+1次 负二项分布(,),1NB k p k >,k 为成功次数,01p <<,p 为成功概率 1{}x k x k x P X x C p q +-== 2(),()E X kq p Var X kq p == ()(),ln 1tX k t p E e t q qe =<-- 解释:贝努里实验系列中第k 次成功正好出现在第x +k 次实验上地概率 泊松分布()P l {},0! x P X x e x l l l -==> (),()E X Var X l l == (1)()t tX e E e e l -=,t -¥<<¥ 解释:贝努里概型中的实验次数很大,但每次成功的概率很小,平均成功次数接近于常数

均匀分布(,)U a b 1 (),X f x a x b b a =<<-;(),X x a F x a x b b a -=<<- 2 ()(),()212a b b a E X Var X +-== 11 ()(1)()r r r b a E X r b a ++-=+- 正态分布2(,)N m s 2 1) 2()x X f x m s -- = 2(),()E X Var X m s == 22 1 2()t t tX E e e m s += 对数正态分布2log (,)N m s 2 1 ln () 2()x X f x m s --=2 221 22(),()(1)E X e Var X e e m m s s ++==- 22 1 2()t t t E X e m s += 解释:如果X~2log (,)N m s ,则logX ~2(,)N m s 指数分布()Exp l ()x X f x e l l -=,()1x X F x e l -=- 21 1 (),()E X Var X l l == (1) ()r r r E X l G += 1()(1,X t M t t l l -=-<

统计学名词解释

名词解释 1.统计学:是应用概率论和数理统计的基本原理和方法,研究数据的收集、整 理、分析、表达和解释的一门科学。 2.医学统计学:是应用统计学的基本原理和方法,研究医学及其有关领域数据 信息的搜集整理、分析、表达和解释的一门科学。 3.抽样:是从研那个研究总体抽取少量有代表性的个体,称为抽样。 4.统计推断:是根据已知的样本信息来推断未知的总体,是统计分析的目的, 包括参数估计和假设检验。 5.总体:是根据研究目的确定的同质研究对象的全体。 6.概率:是随机事件发生可能性大小的数值度量。 7.同质:是指所研究的观察对象具有某些相同的性质或特征。 8.变异:是同质个体的某项指标之间的差异,即个体差异。 9.正态分布:频数分布的高峰在中间,两端基本对称,逐步减少,这种分布称 为近似正态分布,如果两端完全对称则称为正态分布。 10.医学参考值范围:又称正常值范围,医学上常将包括绝大多数正常人的某指 标值的波动范围称为该指标的正常值范围。 11.动态数列(dynamic series):是按照一定的时间顺序,将一系列描述某事 物的统计指标依次排列起来,观察和比较该事物在时间上的变化和发展趋势,这些统计指标可以为绝对数、相对数或平均数。 12.人口金字塔:将人口的性别与年龄资料结合起来以图形的方式表达人口的性 别与年龄结构,以年龄为纵轴,人口百分比为横轴,左侧为男,右侧为女,两个对应的直方图,其形似金字塔。 13.负担系数(dependency ratio):又称抚养比或抚养系数,是指人口中非劳 动年龄人数与劳动年龄人数之比。 14.标准化死亡比(SMR):实际死亡人数与期望死亡人数之比称为标准化死亡比。

概率论与数理统计学1至7章课后答案

第二章作业题解: 掷一颗匀称的骰子两次, 以X 表示前后两次出现的点数之和, 求X 的概率分布, 并验证其满足(2.2.2) 式. 解: 由表格知X 并且,361)12()2(= ===X P X P ;362)11()3(====X P X P ; 363)10()4(====X P X P ;364)9()5(====X P X P ; 36 5)8()6(= ===X P X P ;366)7(==X P 。 即 36 | 7|6)(k k X P --== (k =2,3,4,5,6,7,8,9,10,11,12) 设离散型随机变量的概率分布为,2,1,}{Λ===-k ae k X P k 试确定常数a . 解:根据 1)(0 ==∑∞=k k X P ,得10 =∑∞ =-k k ae ,即 111 1 =---e ae 。 故 1-=e a 甲、乙两人投篮时, 命中率分别为 和 , 今甲、乙各投篮两次, 求下列事件的概率: (1) 两人投中的次数相同; (2) 甲比乙投中的次数多. 解:分别用)2,1(,=i B A i i 表示甲乙第一、二次投中,则 12121212()()0.7,()()0.3,()()0.4,()()0.6,P A P A P A P A P B P B P B P B ======== 两人两次都未投中的概率为:0324.06.06.03.03.0)(2121=???=B B A A P , 两人各投中一次的概率为: 2016 .06.04.03.07.04)()()()(1221211212212121=????=+++B B A A P B B A A P B B A A P B B A A P 两人各投中两次的概率为:0784.0)(2121=B B A A P 。所以: (1)两人投中次数相同的概率为3124.00784.02016.00324.0=++ (2) 甲比乙投中的次数多的概率为:

spss教程-常用的数据描述统计:频数分布表等--统计学

第二节常用的数据描述统计 本节拟讲述如何通过SPSS菜单或命令获得常用的统计量、频数分布表等。 1.数据 这部分所用数据为第一章例1中学生成绩的数据,这里我们加入描述学生性别的变量“sex”和班级的变量“class”,前几个数据显示如下(图2-2),将数据保存到名为“2-6-1.sav”的文件中。 图2-2:数据输入格式示例 1.Frequencies语句 (1)操作 打开数据文件“2-6-1.sav”,单击主菜单Analyze /Descriptive Statistics / F requencies…,出现频数分布表对话框如图2-3所示。 图2-3: Frequencies定义窗口 把score变量从左边变量表列中选到右边,并请注意选中下方的Display frequency table复选框(要求显示频数分布表)。如果您只要求得到一个频数分布表,那么就可以点OK按钮了。如果您想同时获得一

些统计量,及统计图表,还需要进一步设置。

①Statistics选项 单击Statistics按钮,打开对话框,请按图2-4自行设置。有关说明如下: (ⅰ)在定义百分位值(percentile value)的矩形框中,选择想要输出的各种分位数,SPSS提供的选项有: ●Quartiles四分位数,即显示25%、50%、75%的百分位数。 ●把数据平均分为几份。如本例中要求平均分为3份。 ●Percentile显示用户指定的百分位数,可重复多次操作。本例中要求15%、50%、85%的百分位数。(ⅱ) 在定义输出集中趋势(Central Tendency)的矩形框中,选择想要输出的集中统计量,常用的选项有: ●Mean 算术平均数 ●Median 中数 ●Mode 众数 ●Sum 算术和 (ⅲ)在定义输出离散统计量(Dispersion)的矩形框中,选择想要输出的离散统计量,常用的选项有:●Std. Deviation 标准差 ●Variance 方差 ●Range 全距 ●Minimum 最小值 ●Maximum 最大值 ●S.E. mean 平均数的标准误 (ⅳ)描述数据分布(Distribution)的统计量 ●Skewness 偏度,非对称分布指数。 ●Kurtosis 峰度,CASE围绕中心点的扩展程度。 另外,频数过程(Frequence)除了能够提供上面常用的统计量外,还可以对分组数据计算百分位数和中数(Values are group midpoints),即对于已经分组的数据,并且数据中的原始数据表示的是组中数的数据计算百分位数的值和中位数。

概率论与统计(第三版)复旦大学版第五章课后习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,10n ??Φ≥ ? ??? 查表 1.64,10n ≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200台,每部机床开动的概率为0.7,假定各机床开动与否互不影 响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要 满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7), ()140,()42,E X D X == 1400.95{0}().42m P X m P X m -?? =≤≤=≤=Φ ??? 查表知 140 1.64,42 m -= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 1 205 ~(0,1).100100 20201212 k k V Z N =-?= =??∑近似的 于是105205{105}1010020201212P V P ????-?? >=>???? ????? 1000.3871(0.387)0.348,102012V P ????-?? =>≈-Φ=????????? 即有 P {V >105}≈0.348 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少?

统计学常用分布及分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分 布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分布密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。

请注意:t 分布的分布密度也是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。这时, t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。 3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=m Y n X 的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=???? ?????>++-??? ??Γ??? ??Γ??? ??+Γ?。其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也是非对称分布,它的分布密度与自由度的次序有关,当Z ~F (n , m )时,Z 1~F (m ,n )。 4. t 分布与F 分布的关系 若X ~t(n ),则Y=X 2~F(1,n )。 证:X ~t(n ),X 的分布密度p(x )=??? ??Γ?? ? ??+Γ221n n n π2121+-???? ??+n n x 。 Y=X 2的分布函数F Y (y ) =P{Y0时,F Y (y ) =P{-y

概率统计学答案

读书破万卷下笔如有神 单项选择题: 1.D 对以往数据分析的结果表明,机器在良好状态时,生产的产品合格率为90%,而当机器在有故障状态时,产品合格率为30%,每天开机时机器良好的概率为75%。当某天开机后生产的第一件产品为合格品时,机器是良好状态的概率等于()。 A、0.9 B、0.75 C、0.675 D、0.525 2.D 袋中有5个球(3个新球,2个旧球)。现每次取一个,无放回的抽取两次,则第二次取到新球的概率是()。 A、3/5 B、3/4 C、1/2 D、3/10 3.B 已知在10个电子元件中有2只是次品,从其中取两次,每次随机的取一只,做不放回抽取,则第二次取出的是次品的概率是()。 A、1/45 B、1/5 C、16/45 D、8/45 4.A 已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=3/16,则事件A,B,C全不发生的概率等于()。 A、7/16 B、3/4 C、1/4 D、9/16 5.D

6.C 读书破万卷下笔如有神 7.B 8.B 甲、乙两袋内都装有两个黑球和两个白球,现从甲、乙两袋中各摸取一个球,记事件A为“从甲袋中摸出白球”,B为“从乙袋中摸出白球”,C为“摸出的两个球颜色不同”,则有()。 A、A,B,C相互独立 B、A,B,C三个事件两两独立 C、A,B,C三个事件两两互不相容 D、AB与C互不相容 9.D 10.C 对于任意两个事件A与B,则有P(A-B)为()

A、P(A)-P(B) B、P(A)-P(B)+P(AB) C、P(A)-P(AB) D、P(A)+P(AB) 11.C 读书破万卷下笔如有神 12.D 13.A 14.C

概率论与数理统计复旦大学出版社第五章课后答案

概率与数理统计 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,Φ≥?? 查表 1.64,10≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位.问 至少供应多少单位电能才可以95%的概率保证不致因供电不足 而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ 查表知 1.64,= ,m =151. 所以供应电能151×15=2265(单位).

概率论与数理统计第五章习题解答

第五章 假设检验与一元线性回归分析 习题详解 解:这是检验正态总体数学期望μ是否为 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 -=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显着为 32.0kg/cm 2。 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:, 240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

概率论与数理统计第5章题库完整

第5章 大数定律和中心极限定律 填空题 1、设随机变量X 的数学期望()E X 与方差()D X 都存在,则对任意的 0ε>,有 ≤≥-}|)({|εX E X P _________. 答案: 2 ) (ε X D 知识点:5.1 大数定律 参考页: P113 学习目标: 1 难度系数: 1 提示一:5.1 大数定律 提示二:无 提示三:无 提示四(同题解) 题型:填空题 题解:由切比雪夫不等式直接得到. 2、设12,,,,n X X X L L 是相互独立的随机变量序列,(),()(1,2,)i i E X X i D =L 存在,并且存在常数0C >,使得()(1,2,)i X C i D ≤=L ,对于任意的0ε>, }|)(11{|lim 1 1ε<-∑∑==→∞n i i n i i n X E n X n P =_________. 答案:1 知识点:5.1 大数定律 参考页: P113 学习目标: 2 难度系数: 1 提示一:5.1 大数定律 提示二:无 提示三:无

提示四(同题解) 题型:填空题 题解:由切比雪夫大数定律直接得到. 3、设12,,,,n X X X L L 是独立同分布的随机变量序列,并且数学期望和方差都存在,且 2 (), ()(1,2,)===L i i E X D X i μσ ,则对于任意的0ε>,有}|1{|lim 1 εμ<-∑=→∞n i i n X n P =______. 答案:1 知识点:5.1 大数定律 参考页: P113 学习目标: 2 难度系数: 1 提示一:5.1 大数定律 提示二:无 提示三:无 提示四(同题解) 题型:填空题 题解:由切比雪夫大数定律直接得到. 4、设A n 是n 重伯努利试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的0ε>,有}|{| lim ε<-→∞ p n n P A n =_________. 答案:1 知识点:5.1 大数定律 参考页: P113 学习目标: 2 难度系数: 1 提示一:5.1 大数定律 提示二:无 提示三:无 提示四(同题解) 题型:填空题

《统计学》概率论与数理统计概述

【基础理论知识衔接】第三章1-3节《概率论与数理统计》 一、总结和复习描述数据的方法 二、密度曲线 三、关于概率 (一)三种解释: 古典概率(63页) 统计概率(64页) 主观概率(65页) 概率的以上三种定义,各有其特定的应用范围,也存在局限性,都缺乏严密性。 ?古典定义要求试验的基本事件有限且具有等可能性 ?统计定义要求试验次数充分大,但试验次数究竟应该取多大、频率与概率有多么接近都没有确切说明 ?主观概率的确定又具有主观随意性 苏联数学家柯尔莫哥洛夫于1933年提出了概率的公理化定义 ——通过规定应具备的基本性质来定义概率 公理化定义为概率论严谨的逻辑推理打下了坚实的基础。 (二)概率的基本性质(67页) ?非负性:对任意事件A,有0 ≤P(A)≤ 1。 ?规范性:必然事件的概率为1,即:P(Ω)=1;不可能事件的概率为0 ,即:P(Φ)=0。 ?可加性:若A与B互斥,则:P ( A∪B ) = P ( A ) + P ( B ) 对于多个两两互斥事件A1,A2,…,A n,则有: P ( A1∪A2∪… ∪A n) = P ( A1) + P (A2) + …+ P (A n) 上述三条基本性质,也称为概率的三条公理。 四、随机变量及其数字特征 (75---86页) 随机变量——表示随机试验结果的变量 取值是随机的,事先不能确定取哪一个值 一个取值对应随机试验的一个可能结果 用大写字母如X、Y、Z...来表示,具体取值则用相应的小写字母如x、y、z…来表示 根据取值特点的不同,可分为: ?离散型随机变量——取值可以一一列举 ?连续型随机变量——取值不能一一列举 离散型随机变量 (1)离散型随机变量的第一个数字特征 是指数学期望,又称均值 描述一个随机变量的概率分布的中心位置 离散型随机变量X的数学期望:(77页公式3.12) 相当于所有可能取值(以概率为权数)的加权平均值 数学期望的主要数学性质 ?若k是一常数,则E (k X) =k E(X) ?对于任意两个随机变量X、Y,有E(X+Y)=E(X)+E(Y) ?若两个随机变量X、Y相互独立,则E(XY)=E(X) E(Y) (2)离散型随机变量X的方差——第二个数字特征 ?方差是它的各个可能取值偏离其均值的离差平方的均值,记为D(x)或σ2

相关主题
文本预览
相关文档 最新文档