当前位置:文档之家› 光强分布的测量

光强分布的测量

光强分布的测量
光强分布的测量

光强分布的测量实验

一、实验目的

1.观察单缝衍射现象,加深对衍射理论的理解。

2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 4. 验证马吕斯定律。

二、实验原理

如图1所示,

图1 夫琅禾费单缝衍射光路图

与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得:

式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。

当πβk =,即:

2

20

sin ββ

I I A =)sin (λ

φ

πβb =

b

K

λφ=sin )

,,,???±±±=321(K

时,出现暗条纹。

除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,…

图2 夫琅禾费衍射的光强分布

夫琅禾费衍射的光强分布如图2所示。

图3 夫琅禾费单缝衍射的简化装置

用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时,

由上二式可得

三、实验装置

激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。

D

x /tan sin =≈φφx

D K b /λ=

图4 衍射、干涉等一维光强分布的测试

四、实验步骤

1. 接上电源(要求交流稳压220V ±11V ,频率50HZ 输出),开机预热15分钟;

2. 量程选择开关置于“1”档,衰减旋钮顺时针置底,调节调零旋钮,使数据显示为-.000; (一)单缝衍射一维光强分布的测试

1、 按图4搭好实验装置。此前应将激光管装入仪器的激光器座上,并接好电源;

2、 打开激光器,用小孔屏调整光路,使出射的激光束与导轨平行;

3、 打开检流计电源,预热及调零,并将测量线连接其输入孔与光电探头;

4、 调节二维调节架,选择所需要的单缝、双缝、可调狭缝等,对准激光束中心,使之在小

孔屏上形成良好的衍射光斑;

5、 移去小孔屏,调整一维光强测量装置,使光电探头中心与激光束高低一致,移动方向与

激光束垂直,起始位置适当;

6、 开始测量,转动手轮,使光电探头沿衍射图样展开方向(x 轴)单向平移,以等间隔的

位移(0.5mm )对衍射图样的光强进行逐点测量,记录位置坐标x 和对应的检流计(置适当量程)所指示的光电流值读数I ,要特别注意衍射光强的极大值和极小值所对应的坐标的测量;

7、 测量单缝到光电池的距离D ,测取相应移动座间的距离即可; 8、绘制衍射光的相对强度I/I 0与位置坐标x 的关系曲线。 (二)偏振光现象的观察与测试 1、按图4搭好实验装置;

2、同(一),打开激光电源,调好光路,使在平行光管后的小孔屏上可见一较均匀圆光斑;

检偏器

光电探头

小空屏

3、同(一),打开检流计,预热及调零;

4、旋去光电探头前的遮光筒,把探头旋接在起检偏装置上,然后连好测量线;

5、将起偏检偏器置于平行光管后并紧帖平行光管,使光斑完全入射起检偏器;

6、转动刻度手轮(连起偏器),在检流计上观察光强变化,以验证马吕斯定律。

7、置起偏器读数鼓轮于“0”位置,开始测量。转动分度盘(连检偏器)50,从检流计(置适当量程)上读取一个数值,逐点记录下来,测量一周。

五、数据记录及数据处理

1. 单缝衍射记录(从3-=K 测到3=K ,要特别注意衍射光强的极大值和极小值所对应

的坐标的测量)

=0I =λ mm 004.0=?

(1) 选取中央最大光强处为坐标原点,把测得的数据作归一化处理:即把在不同位置上测

得的检流计光强读数I 除以中央最大的光强读数0I ,然后在毫米方格(坐标)纸上做出

x I I

-0

衍射相对光强分布曲线。 (2) 根据分布曲线测量出各级最暗处距离明纹中心的距离K x ,利用公式 x D K b /λ=

计算不同级次下的K b ,然后求b 。

2.偏振光强记录

=0I

I -θ2cos 图,若为直线则验证了马吕斯定律 六、思考题

1. 缝宽的变化对衍射条纹有什么影响?

提示:从x D K b

/λ=可以看出,b 变大,对于同一级次而言,x 要变小,也就是说亮条纹变窄;从

b K /sin λφ=可以看出,b 变大,对于同一级次而言,φ要变小,也就是说亮条纹要向中心收缩。

2. 硅光电池前的狭缝光阑的宽度对实验结果有什么影响?

提示:本实验要求精确测量各点的光强,所以硅光电池前的狭缝光阑的宽度越小越好。缝太大,测量的将是一定宽度的平均光强,会丢失暗条纹的位置,因而会导致测量误差。

3. 若在单缝到观察屏的空间区域内,充满着折射率为n 的某种透明媒质,此时单缝衍射图样与不充媒质时有何区别?

提示:如果充满着折射率为n 的某种透明媒质,则出现暗条纹的公式可写为b nK /sin λφ=,显然,对

于同一级次,φ要变大,也就是说亮条纹变宽,可见条纹级数变少。

4. 用白光光源做光源观察单缝的夫琅禾费衍射,衍射图样将如何?

提示:将是一列彩色条纹。

5.夫琅和费衍射应符合什么条件?

提示:夫琅和费衍射为远场衍射,要实现夫琅禾费衍射,必须保证光源至单缝的距离和单缝到衍射屏的距离均为无限远(或相当于无限远),即要求照射到单缝上的入射光、衍射光都为平行光,屏应放到相当远处。

6.如果激光器输出的单色光照射在一根头发丝上,将会产生怎样的衍射花样?可用本实验的哪种方法测量头发丝的直径?

提示:根据巴比涅原理,一个细丝的衍射场与一个宽度相等的单缝衍射光场是互补的,即它们光场的位相相差1800,从而光强分布相同,衍射条纹是明暗相同的,条纹宽度是一致的。因此,只要测得细丝夫琅和费衍射光强的第k 级极小的位置,在已知光源波长和细丝到接收屏距离的条件下,即可求得细丝的直径。

光强分布的测量

图1 单缝衍射相对光强分布曲线图 9087848178757269666360575451484542 由图1可知: 1,当x=69时I=I0 ,出现主极大。此时,衍射图样光强最强,表现为中央亮纹。 2,夫琅禾费光强呈对称分布,主极大两侧次极大是等间距对称分

布。 3,光强分布只有一个主极大,而在其两侧分布有多个次极大,且两极间必有一极小,在衍射图样中表现为暗纹。 4,在主极大两侧的次极大相对光强比主极大小得多,中央明纹最宽最亮。 3.计算单缝宽度: D=82.0cm 第一级暗条纹: X=(76-62)/2=7cm b1=kλD/X=1×650×10∧﹣9×0.82/(7×10∧﹣3)=0.076mm 第二级暗条纹: X=(82-55)/2=13.5 cm b2=kλD/X=2×650×10∧﹣9×0.82/(13.5×10∧﹣3)=0.079mm 第三级暗条纹: X=(90-48)/2=21cm b3=kλD/X=3×650×10∧﹣9×0.82/(21×10∧﹣3)=0.076mm k=(b1+b1+b1)/3=(0.76+0.79+0.76)/3=0.077mm 分析误差:实验误差有可能来自于环境附加光强的影响以及转动螺旋侧位装置的过程中由于转动一周又向回转的原因以及其他操作所引起的误差等。

2.双缝衍射数据的处理:

图2双缝衍射相对光强分布曲线图 4.衍射现象的规律和特征: 以上图样依次为GS1,GS2 ,SK1/2/3, JK ,双缝衍射示意图。 由图可知: GS1衍射呈矩形分布,亮纹为点型,且以中央处最亮,向外亮度依 次递减。 GS2衍射呈线型分布,亮纹为点型,且以中央处最亮,向两侧亮 度依次递减。 SK1/2/3 衍射呈同心圆分布,以中央处为最亮,向外侧亮度依次 递减。

单缝衍射光强分布实验报告

单缝衍射光强分布实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有限远时产生的衍射,称菲涅尔衍射;一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽,θ 为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 【实验内容】 (一) 定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪 器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m 。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。

实验7 LED光强分布测试实验

实验7 LED光强分布测试实验 【实验目的】 1.了解和掌握LED光强分布的测试原理; 2.掌握LED光强分布测试基本操作和数据处理方法; 3.学会设计符合某种要求的配光曲线。 【仪器用具】 LED520 LED光强分布测试仪,电脑,直插式LED灯若干个 【实验原理】 图7-1 LED光强测试中的问题 光强的定义为:单位立体角光源辐射出去的光通量。在测量LED灯的光强分布时如果简单套用点光源的测试方法则会遇到问题。如图7-1所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。因此,CIE-127(CIE国际照明协会)提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE -127条件已经被各LED制造商和检测机构引用。 图7-2 CIE-127推荐LED光强测试条件 如图7-2所示,CIE除了规定了两种测量条件,分别是远处测试(探头到灯的距离为31 6mm)和近场测试(探头到灯的距离为100mm)之外,而且还规定了光电探头的的面积大小为100 mm2。因此,LED灯在行内的光强测试才具有统一的标准。 在光强测试系统中,测量是通过转动LED的垂直转轴并且探头保持不动来实现的。因为垂直转轴通过LED的光学中心,所以这就相对于探头绕着LED在离LED一定距离的球面上作圆周运动(图7-3)。

图7-3 LED 光强分布测试原理图 根据光度学相关知识可以知道,照度和光强的关系可以由下式来表示: 2cos r I E θ =(7-1) 式中:E 为照度,I 为光强,r 为光源到光接收面的距离,θ为光束中心与光接收面法线的夹角。在本系统中,θ始终为0,所以c osθ始终为1,公式简化为: 2r I E = (7-2) 因此, 2r E I ?=(7-3) 照度值E 由仪器测出,光源到探头的距离r 由用户按规定条件设定,那么光强值也就得到了。 本系统测试的另一个参数等效光通量Ф是在假设LED 的发光特性在同一环带上是各向同性的前提下通过光强对立体角的积分来得到的,即将测试平面内(X 平面)两个与光轴夹角相等的测试点光强值作算术平均后得到一条X 平面内的光强分布曲线(关于光轴对称),见图7-4。然后将这条曲线绕光轴旋转180°得到LED 在整个空间的光强分布。计算公式如下式所示: ?Ω?=Φi i d I (7-4) 式中,Ii 为两个与光轴夹角相等的测试点光强的算术平均值,Ωi 为同纬度环带立体角。即,假想一个以LED 光学中心为球心、LED 光轴为极轴、测试距离为r 半径的球面,把光强分布曲线测试点的光强等效成球面上同纬度环带的平均值。 图7-4 X 平面内光强分布及等角度环带图 【实验步骤】 1. 光强分布测试步骤和内容: (1)判断直插式LED 灯是正负引脚(长脚为正极,短脚为负极)。

光强分布的测量

光强分布的测量实验 一、实验目的 1.观察单缝衍射现象,加深对衍射理论的理解。 2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 4. 验证马吕斯定律。 二、实验原理 如图1所示, 图1 夫琅禾费单缝衍射光路图 与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得: 式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。 当πβk =,即: 2 20 sin ββ I I A =)sin (λ φ πβb = b K λφ=sin ) ,,,???±±±=321(K

时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,… 图2 夫琅禾费衍射的光强分布 夫琅禾费衍射的光强分布如图2所示。 图3 夫琅禾费单缝衍射的简化装置 用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时, 由上二式可得 三、实验装置 激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。 D x /tan sin =≈φφx D K b /λ=

单缝衍射与光强分布(大物实验)

实验单缝衍射及光强分布测试 光的干涉和衍射现象揭示了光的波动特性。 光的衍射是指光作为电磁波在其传播路径上如果遇到障碍物,它能绕过障碍物的边缘而进入几何阴影区内传播的现象。光在衍射后产生的明暗相间的条纹或光环叫衍射图样,包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑等。 根据观察方式的不同,通常把光的衍射现象分为两种类型。一种是光源和观察屏(或二者之一)距离衍射孔(或缝、丝)的长度有限,或者说入射波和衍射波都是球面波,这种衍射称为菲涅耳衍射,或近场衍射。另一种是光源和观察屏距离衍射孔(或缝、丝)均为无限远或相当于无限远,这时入射波和衍射波都可看作是平面波,这种衍射称为夫琅禾费衍射,或远场衍射。实际上,夫琅禾费衍射是菲涅耳衍射的极限情形。 观察和研究光的衍射不仅有助于进一步加深对光的波动理论和惠更斯—菲涅耳原理的理解,同时还有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光信息处理等。衍射使光强在空间重新分布,本实验利用硅光电池等光电器件测量光强的相对分布,是一种常用的光强分布测量方法。【实验目的】 1. 观察单缝衍射现象,加深对波的衍射理论的理解。 2. 测量单缝衍射的相对光强分布,掌握其分布规律。 3. 学会利用衍射法测量微小量的思想和方法。 4. 加深对光的波动理论和惠更斯—菲涅耳原理的理解。 【实验原理】 1. 单缝衍射的光强分布 光线在传播过程中遇到障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长

相近,那么,这样的衍射现象就比较容易观察到。 散射角极小的激光器产生激光束,通过一条很细的狭缝(0.1~0.3mm 宽),在狭缝后大于0.5m 的地方放上观察屏,就可看到衍射条纹。由于激光束的方向性很强,可视为平行光束,因此观察到衍射条纹实际上就是夫琅禾费衍射条纹,如图1所示。 光照射在单缝上时,根据惠更斯—菲涅耳原理:把波阵面上的各点都看成子波波源,衍射时波场中各点的强度由各子波在该点相干叠加决定。即就是说单缝上每一点都可看成是向各个方向发射球面子波的新波源,由于子波迭加的结果,在屏上可以得到一组平行于单缝的明暗相间的条纹。 图1中宽度为d 的单缝产生的夫琅禾费衍射图样,其衍射光路图满足近似条件: d D >> D x ≈ ≈θθsin 产生暗条纹的条件是: λθk d =sin (k=±1,±2,±3,…) (1) 暗条纹的中心位置为: d D K x λ = (2) 两相邻暗纹之间的中心是明纹中心; 由理论计算可得,垂直入射于单缝平面的平行光经单缝衍射后光强分布的规律为 22 s i n ββ I I = (3) d 是狭缝宽,λ是波长,D 是单缝位置到光电池位置的距离,x 是从衍射条纹的中心位置到测量点之间的距离,其光强分布如图2所示。 d θ D x 屏 亮 暗 图1

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) s i n () s i n ( s i n λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线

单缝衍射光强分布的测定

单缝衍射光强分布的测定 光的衍射现象是光的波动性又一重要特征。单缝衍射是衍射现象中最简单的也是最典型的例子。在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。所以,研究衍射现象及其规律,在理论和实践上都有重要意义。 实验目的 1. 观察单缝衍射现象及特点。 2. 测定单缝衍射时的相对光强分布 3. 应用单缝衍射的光强分布规律计算缝的宽度α。 实验仪器 光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。 实验原理 光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍 射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射如图二 所示。 当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。 实验时,若取α≤10-4m, L ≥1.00m ,入射光是 He-Ne 激光,其波长是632.8nm,就可满足上述条件。所以,实验时就可以采用如图一装置。 λ<

根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为 当衍射角?等于或趋于零时,即?=0(或?→0),按式,有 故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。 当衍射角?满足 时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则 故X k =L ?=k λL/α,当λ、L 固定时,X k 与α成反比。缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。同时可推导出中央主极大的角度(即±1级暗纹的间距)??=2λ/α,两相邻暗纹的衍射角之差为??= λ/α。两相邻暗纹间的亮纹称为次极大。 sin ? 0 ±1.43λ/α ±2.46λ/α ±3.47λ/α … I I 0 0.47 I 0 0.017 I 0 0.008 I 0 … 各极极大的位置和相应的光强如下图三所示: 实验内容和步骤 实验装置如图一所示,按图搭好实验仪器。实验采用发散度甚小的He-Ne 激光作为光源,满足入射光为平行光的条件。为满足夫琅和费衍射条件,应尽量将显示衍射图像的屏远 ? ?? ? ?=?? ? ??=λ?πsin sin 2 0αu u u I I 1sin lim =u u () ±±±==,2,1sin k k α λ ?α λ ??k ≈≈sin 图三 单缝衍射的相对光强分布曲线

LED灯具配光曲线

LED 灯具配光曲线 一 ?实验目的 1、 理解配光曲线测试仪的基本原理。 2、 掌握正确运用灯具配光曲线测试仪对 LED 灯具进行测试。 3、 掌握理解和分析配光曲线的测试报告的方法。 二?仪器用具 G01900L 灯具配光测试系统,各种灯,夹具,米尺,灯具接头, 三?实验原理 1、测量系统构造和原理 在本系统中,测量是通过转动灯具的垂直转轴并且探头保持不动来实现的。 因为垂直转轴 通过灯具的光学中心,所以这就相当于探头绕着灯具在离灯具一定距离的球面上作圆周运动。 根据光度学相关知识可以知道,照度和光强的关系可以由下式来表示 I COST 2 r 式中:E 为照度,I 为光强,r 为光源到光接收面的距离,B 为光束中心与光接收面法线的 夹 角。在本系统中,B 始终为0,所以cos 9始终为1,公式简化为: (8-2) 因此, 二 E *r 2 照度值E 由仪器测出,光源到探头的距离r 由用户按规定条件设定,那么光强值也就得到 了。 本系统测试的另一个参数等效光通量①是在假设LED 灯具的发光特性在同一环带上是各 向同 性的前提下通过光强对立体角的积分来得到的,即将测试平面内( X 平面)两个与光轴夹 角相等的测试点光强值作算术平均后得到一条 X 平面内的光强分布曲线(关于光轴对称), 见图8-2。然后将这条曲线绕光轴旋转180。得到LED 在整个空间的光强分布。计算公式如下 式所示: (8-4) 式中,l i 为两个与光轴夹角相等的测试点光强的算术平均值, Q i 为同纬度环带立体角。假想 一个以灯具光学中心为球心、 灯具光轴为极轴、测试距离为半径的球面,把光强分布曲线测试 点的光强等效成球面上同纬度环带的平均值。 (8-1 ) (8-3)

实验七 CCD多道光强分布测量

实验七 CCD 多道光强分布测量 随着科技进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,先进的光学实验室不再用测量望远镜或丝杠带动光电池来测量干涉、衍射花样的光强分布,所使用的 都是以CCD 器件为核 心构成的各种光学测量仪器。 LM99MP 单缝衍射仪/多道光强分布测量系统用线阵CCD 器件接收光谱图形和光强分布,经过微处理系统的分析处理,在监视器上显示出光强曲线,并以之为对象进行测量而展开实验。LM99MP 具有分辨率高(微米级),实时采集、实时处理和实时观测,物理现象显著,物理内涵丰富等明显的优点。 一、 实验目的 CCD 单缝衍射仪用于光学实验项目中作单缝、单丝、双缝、多缝、双光束等的干涉、衍射实验。通过采集系统实时获得曲线,测量其相对光强分布和衍射角,进而测量单缝的缝宽、单丝的直径、光源的波长、双缝的缝宽和缝间距、光栅常数、激光束发散角测量等。 二、 实验原理 光的衍射现象是光的波动性的一种表现,可分为菲涅耳衍射击与夫琅禾费衍射两类。菲涅耳衍射是近场衍射,夫琅禾费衍射是远场衍射,又称平行光衍射。见图8。将单色点光源放置在透镜L1的前焦面,经透镜后的光束成为平行光垂直照射在单缝AB 上,按惠更斯--菲涅耳原理,位于狭缝的波阵面上的每一点都可以看成一个新的子波源,他们向各个方向发射球面子波,这些子波相叠加经透镜L2会聚后,在L2的后焦面上形成明暗相间的衍射条纹,其光强分布规律为: 2 20sin ?? θI I =(1) 其中 ?π λ θ= a sin ,a 是单缝宽度,θ是衍射角,λ为入射光波长。 图1 单缝衍射 参见图2,由(1)式可见: 1、 当θ=0时,I I θ=0,为中央主极大的强度,光强最强,绝大部分的光能都落在中央明

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) sin () sin ( sin λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线 2.测入射光波波长 d θD x 亮 暗

LED性能参数及测试方法

LED选修课总结 LED性能参数及测试方法 院(系)名称 专业班级 学号 学生姓名 指导教师 2011年11月24日

摘要 发光二极管(英语:Light-Emitting Diode,简称LED)是一种能发光的半导体电子元件。这种电子元件早在1962年出现,早期只能发出低光度的红光,之后发展出其他单色光的版本,时至今日能发出的光已遍及可见光、红外线及紫外线,光度也提高到相当的光度。而用途也由初时作为指示灯、显示板等;随着白光发光二极管的出现而续渐发展至被用作照明。 LED只能往一个方向导通(通电),叫作正向偏置(正向偏压),当电流流过时,电子与电洞在其内重合而发出单色光,这叫电致发光效应,而光线的波长、颜色跟其所采用的半导体物料种类与故意渗入的元素杂质有关。具有效率高、寿命长、不易破损、开关速度高、高可靠性等传统光源不及的优点。但当LED的发光强度达至足以用于室内照明的话,其效率会下降到比萤光灯更差(比萤光灯耗电),成本也高至极不合理水平,这是当前LED照明未能普及的重要原因。(September,2011)白光LED的发光效率,在近几年来已经有明显的提升,同时,在每千流明的购入价格,也因为投入市场的厂商相互竞争的影响,而明显下降。因此,LED照明虽然尚未达到全面普及的程度,但是在光电转换效率及有效照度对用电量的比值上,均已经超过萤光灯,甚至有机会挑战低压钠灯(Low Pressure Sodium light)。 关键词:正向偏置、电致发光 ·

目录 Ⅰ检测性能参数的方法 (1) ⅡLED的重要特性及测试 (2) 1电特性测试方法 (2) 2光特性测试 (3) 3光谱参数 (5) 4热学特性 (6) 5可靠性 (6) 总结 (7) 参考文献 (8)

LED专用测试仪器

LED专用测试仪器 LED测试仪主要有LED电性能测试仪、LED光通量测试仪、LED光强仪(也称LED光强分布测试仪)、LED光谱分布系统(LED 光谱分析仪),LED光色电测试仪,LED老化仪,大功率LED测试仪。LED测试仪主要用于测量LED的正反向电性能、光通量、光强、角度、波长、色温、色坐标、显色性(也称显色指数)、光衰等参数。 高性能的LED标准校准源主要用于校准LED光度、色度和辐射度仪器,是LED发光特性准确测量的基础。 LED101 LED标准校准源,采用半导体精密制冷技术,直接测量并控制LED PN 结温度,并精密恒流驱动,因此具有极高的输出稳定性及复现性。 测试精度和测试速度的完美结合。HAAS-2000采用世界最先进的平场衍射光栅和日本HAMAMATSU科学级CCD可同时实现毫秒级的测试速度和实验室级的测试精度。 配合LED300E可编程LED测试电源可实现脉冲式LED光色参数测量。 PMS-80是远方公司十多年单色仪光谱仪研究制造经验与现代技术相结 合的产物,该新型光谱仪在保持与传统单色仪光谱仪相同精度的同时,测量速度大大提高。采用远方专利Sync-Skan快速采扫同步技术,380-800nm间的光谱只需数秒即可完成,远远快于传统机械扫描单单色仪光谱仪几分种测量时间。 PMS-50属单单色仪光谱仪,系统成熟、可靠,灵敏度及精度高,采用分光积分结合于一体的专利,既解决了全光谱法存在的动态范围小、线性差的缺点,又解决了纯积分法存在的异谱误差相对较大的缺点。

STC4000是一个紧凑型多通道CCD光谱仪,测量速度快,性价比高,适用于测试速度要求高的场合;快速测量LED的相对光谱功率分布、色品坐标、相关色温、显色指数、色容差、光谱半宽度、主波长、色纯度、光通量、光辐射功率、光效、正反向电性能等参数。 用于测量红外发光二极管LED的相对光谱功率分布、峰值波长、半宽度、辐射功率、电压电流参数。该系统为国内众多LED科研机构、院校、高端客户的质检及工程分析提供有力的保证。 用于测量紫外发光二极管LED的相对光谱功率分布、峰值波长、半宽度、辐射功率、电压电流参数。该系统为国内众多LED科研机构、院校、高端客户的质检及工程分析提供有力的保证。 用于测量多晶LED的相对光谱功率分布、峰值波长、半宽度、辐射功率、电压电流参数。提供多路LED供电电源,同时测量单晶、双晶、三晶LED 光色测量。 配有多晶LED专用的三路稳流稳压全数控电源。 LED可自动沿水平轴和竖直轴自动转动,自动绘制三维光强分布图、配光曲线、自动测定光束角及正反向电性能,内置恒流源。受光面尺寸1cm2标准级(CIE Class A)光度探测器,完全符合最新ISO/CIE国际标准要求。精密LED机械定位装置,精密一体化设计中心对准系统,测试条件符合CIE pub.No.127条件A或条件B。

单缝衍射光强的分布测量实验报告

竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告 篇一:衍射光强分布测量 衍射光强分布测量 ***,物理学系 摘要: 本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。 关键词:衍射分布巴比涅原理单缝直径测量 ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,Departmentofphysics

Abstarct: Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament https://www.doczj.com/doc/1211704340.html,p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthisway Keywords:Diffractiondistributionbabinet`sprinciples ingleslitsmeasureDiameterofthewire 1

LED灯具配光曲线资料

LED灯具光强配光性能知识 (杭州) 1.配光曲线的测试原理 2.配光曲线的各项图表(光强分布图,光强矩阵图,光束角的分析,等照度曲线的分析) 3.LED灯具角度分类 4.室内照明直接眩光评价方法(亮度限制曲线) 5.如何用IES做照明设计分析灯具配光性能知识

LED优势 w电压:LED使用低压电源,单颗电压在1.9-4V之间,比使用高压 w电源更安全的电源。 w效能:光效高,目前实验室最高光效已达到161 lm/w(cree),是w目前光效最高的照明产品。 w抗震性:LED是固态光源,由于它的特殊性,具有其他光源产品不能w比拟的抗震性。 w稳定性:10万小时,光衰为初始的70% w响应时间:LED灯的响应时间为纳秒级,是目前所有光源中响应时间w最快的产品。 w环保:无金属汞等对身体有害物质。 w颜色:LED的带快相当窄,所发光颜色纯,无杂色光,覆盖整过可w见光的全部波段,且可由R\G\B组合成任何想要可见光。

(一)配光曲线测试原理

(二)配光曲线各项图表参数w1)基础参数 w灯具光通量(luminaire lumens) w有效光通量(effective luminous flux) w灯具效率(luminaire efficiency) w中心光强(central intensity) w最大光强(maximum intensity) w最大光强角度(angle of maximum intensity) w光束宽度(beam angle) w光强分布数据(intensity data distribution) w光谱分布曲线(intensity distribution curve) w平面等照度曲线(iso illumiance)

衍射光强分布测量实验报告.docx1

衍射光强分布的测量 1008406006 物理师范陈开玉 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 一、引言 光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。 二、实验原理 1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离u,衍射体至观察屏之间的距离v都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长. 3,单缝、单丝衍射原理:

如上图所示,a为单缝宽度,缝和屏之间的距离为v,为衍射角,其在观察屏上的位置为x,x离屏幕中心o的距离为OX=,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为: 式中是中心处的光强,与缝宽的平方成正比。 若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下 除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为: 对应的值为 当角度很小时,满足,则OX可以近似为 因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a 4,多缝衍射和干涉原理

LED光源检验标准及方法

LED光源检验标准及方法 文件编号版本生效日期 编写审核批准 1.适用范围:大功率道路灯具用LED光源。 2.材料报检:采购部采购工程师,按采购计划对所采购的led,确认led的名称、型号、规格、数 量等是否与计划相符,确认无误后,按照文件的要求向品质保障部报检。 3.检验周期:质检工程师接到物料报检单之日起1个工作日内完成。 4.检验依据:供应商提供的led的规格书、采购技术文件、特殊要求的指标及封存的同规格样品 5.抽检规则:检测按照5‰进行抽检,每批次不得少于5粒。 6.资料验证:厂家提供的产品规格书或出厂检验报告。 7.检验标准及方法: 检验项目检验标准检验方法及仪器 规格书确认原材料与采购文件中规定的名称、型号、规格相同验证供应商提供的出厂检验报告或产品规格书 外观检验灯珠表面应无磨损,无破损,引脚表面光洁,无锈蚀。目视检测尺寸检验用游标卡尺测量光珠直径,符合采购合同的规格要求。游标卡尺 仪器检验1.使用LED-300积分测试仪对样品灯的正向电流IF(mA)、正向电 压VF(V)、功率(mW)、光通量(lm)、光效(lm/W)、色温(K)、显 色指数和主波长(nm)进行检测; 2.使用光强分布测试仪对光强(mCd)、光束角进行检测; 3.测试数据应符合厂家提供的产品规格书或出厂检验报告。 Xxxx 光强分布测试仪 8.不合格品处理:出现不合格品时,不合格品按《不合格品控制程序》执行。 9.质检工程师将检验结果记录在《LED光源检验报告单》中,并存档保存。 10.附表: 《LED光源检验报告单》

LED光源检验报告单 供应商:检验序号:样件名称规格/代号/标准入库单号交验数量抽检数量检验日期 光电参数检验内容 检验内容 电参数光参数色参数 正向 电流IF (mA) 正向 电压VF (V) 功率 (mW) 光强 (mCd) 光束 角 光通 量(lm) 光效 (lm/W) 色温 (K) 显色 指数 主波 长 (nm) X 坐标 Y 坐标 指标 要求 1 2 3 4 5 6 7 8 9 10 外观及尺寸检验: 不合格描述: 结果判定: 检验员审核

单缝衍射光强分布实验报告.doc

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有 限远时产生的衍射,称菲涅尔衍射; 一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽, θ为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

【实验内容】 (一)定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口

的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。 5.测量光强,先遮住接收器的光探头,选择合适的档位,并对读数进行调零,(若不能调零,则记下该处误差,在得到实验数据后减去),若在测量过程中需要换挡,则换挡需要调零。调节接收器底座的平移螺杆,观察检流计的读数,能够观察到第三暗纹的出现,单方向转动手轮,沿x方向每次转动,从左侧第三级暗条纹一直测到右边第三级暗纹,记录光电流大小和坐标位置。 6.记录缝宽和测量缝到光探头的距离。 【注意事项】

LED发光二极管参数

led发光二极管参数 简介: LED是发光二极管( Light Emitting Diode, LED)的简称,也被称作发光二极管,这种半导体组件一般是作为指示灯、显示板,它不但能够高效率地直三丰光电接将电能转化为光能,而且拥有最长达数万小时~10 万小时的使用寿命,同时具备不若传统灯泡易碎,并能省电等优点。 发光二极管简称为LED。由镓(Ga)与砷(AS)、磷(P)的化合物制成的二极管,当电子与空穴复合时能辐射出可见光,因而可以用来制成发光二极管,在电路及仪器中作为指示灯,或者组成文字或数字显示。磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。 它是半导体二极管的一种,可以把电能转化成光能;常简写为LED。发光二极管与普通二极管一样是由一个PN结组成,也具有单向导电性。当给发光二极管加上正向电压后,从P区注入到N区的空穴和由N区注入到P区的电子,在PN结附近数微米内分别与N区的电子和P区的空穴复合,产生自发辐射的荧光。不同的半导体材料中电子和空穴所处的能量状态不同。当电子和空穴复合时释放出的能量多少不同,释放出的能量越多,则发出的光的波长越短。常用的是发红光、绿光或黄光的二极管。 发光二极管的反向击穿电压约5伏。它的正向伏安特性曲线很陡,使用时必须串联限流电阻以控制通过管子的电流。限流电阻R可用下式计算: R=(E-UF)/IF 式中E为电源电压,UF为LED的正向压降,IF为LED的一般工作电流。发光二极管的两根引线中较长的一根为正极,应按电源正极。有的发光二极管的两根引线一样长,但管壳上有一凸起的小舌,靠近小舌的引线是正极。 与小白炽灯泡和氖灯相比,发光二极管的特点是:工作电压很低(有的仅一点几伏);工作电流很小(有的仅零点几毫安即可发光);抗冲击和抗震性能好,可靠性高,寿命长;通过调制通过的电流强弱可以方便地调制发光的强弱。由于有这些特点,发光二极管在一些光电控制设备中用作光源,在许多电子设备中用作信号显示器。把它的管心做成条状,用7条条状的发光管组成7段式半导体数码管,每个数码管可显示0~9十个数目字。 LED(发光二极管)是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs 为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流IF与外加电压呈指数关系 IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。 V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压

LED灯具配光曲线

L E D灯具配光曲线 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

LED 灯具配光曲线 一.实验目的 1、理解配光曲线测试仪的基本原理。 2、掌握正确运用灯具配光曲线测试仪对LED 灯具进行测试。 3、掌握理解和分析配光曲线的测试报告的方法。 二.仪器用具 GO1900L 灯具配光测试系统,各种灯,夹具,米尺,灯具接头。 三.实验原理 1、测量系统构造和原理 在本系统中,测量是通过转动灯具的垂直转轴并且探头保持不动来实现的。因为垂直转轴通过灯具的光学中心,所以这就相当于探头绕着灯具在离灯具一定距离的球面上作圆周运动。 根据光度学相关知识可以知道,照度和光强的关系可以由下式来表示 2 cos r I E θ= (8-1) 式中:E 为照度,I 为光强,r 为光源到光接收面的距离,θ为光束中心与光接收面法线的夹角。在本系统中,θ始终为0,所以cos θ始终为1,公式简化为: 2r I E = (8-2) 因此, 2r E I ?= (8-3) 照度值E 由仪器测出,光源到探头的距离r 由用户按规定条件设定,那么光强值也就得到了。 本系统测试的另一个参数等效光通量Ф是在假设LED 灯具的发光特性在同一环带上是各向同性的前提下通过光强对立体角的积分来得到的,即将测试平面内(X 平面)两个与光轴夹角相等的测试点光强值作算术平均后得到一条X 平面内的光强分布曲线(关于光轴对称),见图8-2。然后将这条曲线绕光轴旋转180°得到LED 在整个空间的光强分布。计算公式如下式所示: ?Ω?=Φi i d I (8-4) 式中,I i 为两个与光轴夹角相等的测试点光强的算术平均值,Ωi 为同纬度环带立体角。假想一个以灯具光学中心为球心、灯具光轴为极轴、测试距离为半径的球面,把光强分布曲线测试点的光强等效成球面上同纬度环带的平均值。

相关主题
文本预览
相关文档 最新文档