当前位置:文档之家› 衍射光强分布测量实验报告.docx1

衍射光强分布测量实验报告.docx1

衍射光强分布测量实验报告.docx1
衍射光强分布测量实验报告.docx1

衍射光强分布的测量

1008406006 物理师范陈开玉

摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。

关键词:衍射自动光强记录仪单缝多缝

一、引言

光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。

二、实验原理

1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离u,衍射体至观察屏之间的距离v都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长.

3,单缝、单丝衍射原理:

如上图所示,a为单缝宽度,缝和屏之间的距离为v,为衍射角,其在观察屏上的位置为x,x离屏幕中心o的距离为OX=,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为:

式中是中心处的光强,与缝宽的平方成正比。

若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下

除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为:

对应的值为

当角度很小时,满足,则OX可以近似为

因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a 4,多缝衍射和干涉原理

多缝衍射的示意图如上图,每条缝的宽度为a,两条缝的中心距离为d,其中的每个单缝的衍射光强强度都和之前的单缝衍射光强公式一致。

多缝衍射与单缝的最大区别在于缝之间存在着干涉,如上图所示,对相同的衍射角,相邻两缝之间的光程差为,如果缝的数目为N,则干涉引起的强度分布因子为:

其中

干涉因子的函数曲线为

干涉因子曲线的特点是:

1,主极强的位置与缝的数目N无关,只要即满足

就能出现主极强。此时,但

2,次级强的数目为N-2,当时,,即出现强度为0的点,也就满足:

式中

在同一k之内共有N-1个零点,即有N-2个次级大。同时上式也说明N越大,主极强的角宽度越小,峰越锐。多缝衍射的强度受单缝衍射和多缝干涉共同影响,其强度公式为

其中

其函数图象就是单缝衍射函数图象和干涉因子的函数图象的合成,如下图

三、实验仪器

He-Ne激光器、衍射光强分布记录仪、衍射片(单缝,多缝,圆孔,圆屏),支柱若干

主要实验仪器如下图

摆放仪器的时候沿一条直线,要求激光的光点正好打在记录仪的横狭缝的正中心,再在中间放上和交换各种衍射片进行实验。

四、实验步骤

1.在光导轨(1.2m)上正确安置好各实验装置,如上图5所示;打开激光器,用小孔屏(白屏,有5mm小孔)调整光路,使激光束与导轨平行。

2.开启检流计,预热5分钟;仔细检查激光器、单缝和一维光强测量装置(千分尺)的底座是否放稳,要求在测量过程中不能有任何晃动;使用一维光强测量装置时注意鼓轮单方向旋转的特性(避免回程误差)。

3.确保激光器的激光垂直照射单缝,将单缝调节到一合适的宽度;由于实验所用激光光束很细,故所得衍射图样是衍射光斑[light spot](依据条件可配一准直系统,如倒置的望远镜,使物镜作为光入射口,将激光扩束成为宽径平行光

束,即可产生衍射条纹)。

4.在硅光电池处,先用小孔屏进行观察,调节单缝倾斜度及左右位置,使衍射光斑水平,两边对称。然后改变缝宽和间距,观察衍射光斑的变化规律。

五、实验数据及计算

实验数据表格:

探头位置探头坐标=量程=光强读数I相对值I/I0

70.6480.0980.01~19.99*E-7A 3.810.9921875

70.60.050.01~19.99*E-7A 3.80.989583333

70.5500.01~19.99*E-7A 3.841

70.501-0.0490.01~19.99*E-7A 3.770.981770833

70.452-0.0980.01~19.99*E-7A 3.70.963541667

70.401-0.1490.01~19.99*E-7A 3.640.947916667

70.351-0.1990.01~19.99*E-7A 3.630.9453125

70.3-0.250.01~19.99*E-7A 3.570.9296875

70.251-0.2990.01~19.99*E-7A 3.540.921875

70.2-0.350.01~19.99*E-7A 3.520.916666667

70.15-0.40.01~19.99*E-7A 3.450.8984375

70.1-0.450.01~19.99*E-7A 3.360.875

70.05-0.50.01~19.99*E-7A 3.310.861979167

70-0.550.01~19.99*E-7A 3.210.8359375

69.952-0.5980.01~19.99*E-7A 3.120.8125

69.851-0.6990.01~19.99*E-7A 2.980.776041667

69.801-0.7490.01~19.99*E-7A 2.880.75

69.75-0.80.01~19.99*E-7A 2.840.739583333

69.703-0.8470.01~19.99*E-7A 2.720.708333333

69.651-0.8990.01~19.99*E-7A 2.650.690104167

69.602-0.9480.01~19.99*E-7A 2.590.674479167

69.439-1.1110.01~19.99*E-7A 2.280.59375

69.361-1.1890.01~19.99*E-7A 2.160.5625

69.289-1.2610.01~19.99*E-7A 2.010.5234375

69.185-1.3650.01~19.99*E-7A 1.840.479166667

69.083-1.4670.01~19.99*E-7A 1.680.4375

68.94-1.610.01~19.99*E-7A 1.390.361979167

68.435-2.1150.001~1.999*E-7A0.7730.201302083

68.335-2.2150.001~1.999*E-7A0.6780.1765625

67.91-2.640.001~1.999*E-7A0.4120.107291667

67.772-2.7780.001~1.999*E-7A0.3680.095833333

67.606-2.9440.001~1.999*E-7A0.3480.090625

67.422-3.1280.001~1.999*E-7A0.360.09375

67.368-3.1820.001~1.999*E-7A0.3840.1

67.191-3.3590.001~1.999*E-7A0.4080.10625

66.806-3.7440.001~1.999*E-7A0.5370.13984375

66.62-3.930.001~1.999*E-7A0.6110.159114583

66.482-4.0680.001~1.999*E-7A0.6710.174739583

66.042-4.5080.001~1.999*E-7A0.8320.216666667

65.138-5.4120.001~1.999*E-7A 1.0560.275

64.178-6.3720.001~1.999*E-7A 1.1510.299739583

63.685-6.8650.001~1.999*E-7A0.9310.242447917

63.309-7.2410.001~1.999*E-7A0.7350.19140625

62.903-7.6470.001~1.999*E-7A0.6040.157291667

62.474-8.0760.001~1.999*E-7A0.4710.12265625

61.925-8.6250.001~1.999*E-7A0.310.080729167

60.728-9.8220.001~1.999*E-7A0.1940.050520833

60.022-10.5280.001~1.999*E-7A0.230.059895833

59.838-10.7120.001~1.999*E-7A0.250.065104167

59.573-10.9770.001~1.999*E-7A0.270.0703125

59.088-11.4620.001~1.999*E-7A0.280.072916667

58.748-11.8020.001~1.999*E-7A0.2580.0671875

58.066-12.4840.001~1.999*E-7A0.2130.05546875

57.302-13.2480.001~1.999*E-7A0.1960.051041667作图如下:

由于衍射光强分布的对称性,我们只是测量了右半部分数据,做出如上图形,课根据对称性得出完全的衍射分布曲线。

七,实验参考文献

物理实验报告测量单缝衍射的光强分布

实验名称:测量单缝衍射的光强分布 实验目的: a .观察单缝衍射现象及其特点; b .测量单缝衍射的光强分布; c .应用单缝衍射的规律计算单缝缝宽; 实验仪器: 导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH 型数字式检流计。 实验原理和方法: 光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射光路图如下图所示。 a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域: L a 82>>λ或8 2 a L >>λ 式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。 可以对L 的取值范围进行估算:实验时,若取m a 4 101-?≤,入射光是Ne He -激光,其波长为632.80nm ,cm cm a 26.12 ≈=λ,所以只要取cm L 20≥,就可满足夫琅和费衍射的 远场条件。但实验证明,取cm L 50≈,结果较为理想。 b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律:

20 )/(sin u u I I = 式中: λ?π/)sin (a u = 暗纹条件:由上式知,暗条纹即0=I 出现在 λ?π/)sin (a u =π±=,π2±=,… 即暗纹条件为 λ?k a =sin ,1±=k ,2±=k ,… 明纹条件:求I 为极值的各处,即可得出明纹条件。令 0)/(sin 22=u u du d 推得 u u tan = 此为超越函数,同图解法求得: 0=u ,π43.1±,π46.2±,π47.3±,… 即 0sin =?a ,π43.1±,π46.2±,π47.3±,… 可见,用菲涅耳波带法求出的明纹条件 2/)12(sin λ?+±k a ,1=k ,2,3,… 只是近似准确的。 单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下: ?sin 0 a /43.1π± a /46.2π± a /47.3π± I 0I 0047.0I 0017.0I 0018.0.I

光强分布的测量

图1 单缝衍射相对光强分布曲线图 9087848178757269666360575451484542 由图1可知: 1,当x=69时I=I0 ,出现主极大。此时,衍射图样光强最强,表现为中央亮纹。 2,夫琅禾费光强呈对称分布,主极大两侧次极大是等间距对称分

布。 3,光强分布只有一个主极大,而在其两侧分布有多个次极大,且两极间必有一极小,在衍射图样中表现为暗纹。 4,在主极大两侧的次极大相对光强比主极大小得多,中央明纹最宽最亮。 3.计算单缝宽度: D=82.0cm 第一级暗条纹: X=(76-62)/2=7cm b1=kλD/X=1×650×10∧﹣9×0.82/(7×10∧﹣3)=0.076mm 第二级暗条纹: X=(82-55)/2=13.5 cm b2=kλD/X=2×650×10∧﹣9×0.82/(13.5×10∧﹣3)=0.079mm 第三级暗条纹: X=(90-48)/2=21cm b3=kλD/X=3×650×10∧﹣9×0.82/(21×10∧﹣3)=0.076mm k=(b1+b1+b1)/3=(0.76+0.79+0.76)/3=0.077mm 分析误差:实验误差有可能来自于环境附加光强的影响以及转动螺旋侧位装置的过程中由于转动一周又向回转的原因以及其他操作所引起的误差等。

2.双缝衍射数据的处理:

图2双缝衍射相对光强分布曲线图 4.衍射现象的规律和特征: 以上图样依次为GS1,GS2 ,SK1/2/3, JK ,双缝衍射示意图。 由图可知: GS1衍射呈矩形分布,亮纹为点型,且以中央处最亮,向外亮度依 次递减。 GS2衍射呈线型分布,亮纹为点型,且以中央处最亮,向两侧亮 度依次递减。 SK1/2/3 衍射呈同心圆分布,以中央处为最亮,向外侧亮度依次 递减。

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

单缝衍射光强分布实验报告

单缝衍射光强分布实验 报告 标准化管理部编码-[99968T-6889628-J68568-1689N]

单缝衍射光强分布 【实验目的】 1.定性观察单缝衍射现象和其特点。 2.学会用光电元件测量单缝衍射光强分布,并且绘制曲线。 【实验仪器】 【实验原理】 光波遇到障碍时,波前受到限制 而进入障碍后方的阴影区,称为衍 射。衍射分为两类:一类是中场衍 射,指光源与观察屏据衍射物为有限远时产生的衍射,称菲涅尔衍射;一类是远场衍射,指光源与接收屏距衍射物相当于无限远时所产生的衍射,叫夫琅禾费衍射,它就是平行光通过障碍的衍射。 夫琅禾费单缝衍射光强I =I 0 (sin β)2β2;其中β=πa sin θλ;a 为缝宽,θ 为衍射角,λ为入射光波长。 上图中θ为衍射角,a 为缝宽。 【实验内容】 (一) 定性观察衍射现象 1.按激光器、衍射板、接收器(屏)的顺序在光节学导轨上放置仪 器,调节光路,保证等高共轴。衍射板与接收器的间距不小于1m 。 2.观察不同形状衍射物的衍射图样,记录其特点。 (二)测量单缝衍射光强分布曲线 仪器名称 光学导轨 激光器 接收器 数字式检流计 衍射板 型号

1.选择一个单缝,记录缝宽,测量-2到+2级条纹的光强分布。要求至少测30个数据点。 2.测量缝到屏的距离L。 3.以sinθ为横坐标,I/I0为纵坐标绘制曲线,在同一张图中绘出理论曲线,做比较。 【实验步骤】 1.摆好实验仪器,布置光路如下图 顺序为激光器—狭缝—接收器—数字检流计,其中狭缝与出光口的距离不大于10cm,狭缝与接收器的距离不小于1m。 2.调节激光器水平,即可拿一张纸片,对准接收器的中心,记下位置,然后打开激光器,沿导轨移动纸片,使激光器的光点一直打纸片所记位置,即光线打过来的高度要一致。 3.再调节各光学元件等高共轴,先粗调,即用眼睛观察,使得各个元件等高;再细调,用尺子量取它们的高度(狭缝的高度,激光器出光口的高度,接收器的中心),调节升降旋钮使其等高,随后用一纸片,接到光源发出的光,以其上的光斑位置作为参照,依次移动到各个元件前,调节他们的左右(即调节接收器底座的平移螺杆,狭缝底座的平移螺杆)高低,使光线恰好垂直照到元件的中心。 4.调节狭缝宽度,使光束穿过,可见衍射条纹,调节宽度,使条纹中心亮纹的宽度约为5mm,且使得条纹最亮,而数字检流计的读数最大,经过上述调节后,上述任何一个旋钮的改变都会使读数变小。

光强分布的测量

光强分布的测量实验 一、实验目的 1.观察单缝衍射现象,加深对衍射理论的理解。 2.会用光电元件测量单缝衍射的相对光强分布,掌握其分布规律。 3.学会用衍射法测量微小量。 4. 验证马吕斯定律。 二、实验原理 如图1所示, 图1 夫琅禾费单缝衍射光路图 与狭缝E 垂直的衍射光束会聚于屏上P 0处,是中央明纹的中心,光强最大,设为I 0,与光轴方向成Ф角的衍射光束会聚于屏上P A 处,P A 的光强由计算可得: 式中,b 为狭缝的宽度,λ为单色光的波长,当0=β时,光强最大,称为主极大,主极大的强度决定于光强的强度和缝的宽度。 当πβk =,即: 2 20 sin ββ I I A =)sin (λ φ πβb = b K λφ=sin ) ,,,???±±±=321(K

时,出现暗条纹。 除了主极大之外,两相邻暗纹之间都有一个次极大,由数学计算可得出现这些次极大的位置在β=±1.43π,±2.46π,±3.47π,…,这些次极大的相对光强I/I 0依次为0.047,0.017,0.008,… 图2 夫琅禾费衍射的光强分布 夫琅禾费衍射的光强分布如图2所示。 图3 夫琅禾费单缝衍射的简化装置 用氦氖激光器作光源,则由于激光束的方向性好,能量集中,且缝的宽度b 一般很小,这样就可以不用透镜L 1,若观察屏(接受器)距离狭缝也较远(即D 远大于b )则透镜L 2也可以不用,这样夫琅禾费单缝衍射装置就简化为图3,这时, 由上二式可得 三、实验装置 激光器座、半导体激光器、导轨、二维调节架、一维光强测试装置、分划板 、可调狭缝、平行光管、起偏检偏装置、光电探头 、小孔屏、 数字式检流计、专用测量线等。 D x /tan sin =≈φφx D K b /λ=

单缝衍射与光强分布(大物实验)

实验单缝衍射及光强分布测试 光的干涉和衍射现象揭示了光的波动特性。 光的衍射是指光作为电磁波在其传播路径上如果遇到障碍物,它能绕过障碍物的边缘而进入几何阴影区内传播的现象。光在衍射后产生的明暗相间的条纹或光环叫衍射图样,包括:单缝衍射、圆孔衍射、圆板衍射及泊松亮斑等。 根据观察方式的不同,通常把光的衍射现象分为两种类型。一种是光源和观察屏(或二者之一)距离衍射孔(或缝、丝)的长度有限,或者说入射波和衍射波都是球面波,这种衍射称为菲涅耳衍射,或近场衍射。另一种是光源和观察屏距离衍射孔(或缝、丝)均为无限远或相当于无限远,这时入射波和衍射波都可看作是平面波,这种衍射称为夫琅禾费衍射,或远场衍射。实际上,夫琅禾费衍射是菲涅耳衍射的极限情形。 观察和研究光的衍射不仅有助于进一步加深对光的波动理论和惠更斯—菲涅耳原理的理解,同时还有助于进一步学习近代光学实验技术,如光谱分析、晶体结构分析、全息照相、光信息处理等。衍射使光强在空间重新分布,本实验利用硅光电池等光电器件测量光强的相对分布,是一种常用的光强分布测量方法。【实验目的】 1. 观察单缝衍射现象,加深对波的衍射理论的理解。 2. 测量单缝衍射的相对光强分布,掌握其分布规律。 3. 学会利用衍射法测量微小量的思想和方法。 4. 加深对光的波动理论和惠更斯—菲涅耳原理的理解。 【实验原理】 1. 单缝衍射的光强分布 光线在传播过程中遇到障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。如果障碍物的尺寸与波长

相近,那么,这样的衍射现象就比较容易观察到。 散射角极小的激光器产生激光束,通过一条很细的狭缝(0.1~0.3mm 宽),在狭缝后大于0.5m 的地方放上观察屏,就可看到衍射条纹。由于激光束的方向性很强,可视为平行光束,因此观察到衍射条纹实际上就是夫琅禾费衍射条纹,如图1所示。 光照射在单缝上时,根据惠更斯—菲涅耳原理:把波阵面上的各点都看成子波波源,衍射时波场中各点的强度由各子波在该点相干叠加决定。即就是说单缝上每一点都可看成是向各个方向发射球面子波的新波源,由于子波迭加的结果,在屏上可以得到一组平行于单缝的明暗相间的条纹。 图1中宽度为d 的单缝产生的夫琅禾费衍射图样,其衍射光路图满足近似条件: d D >> D x ≈ ≈θθsin 产生暗条纹的条件是: λθk d =sin (k=±1,±2,±3,…) (1) 暗条纹的中心位置为: d D K x λ = (2) 两相邻暗纹之间的中心是明纹中心; 由理论计算可得,垂直入射于单缝平面的平行光经单缝衍射后光强分布的规律为 22 s i n ββ I I = (3) d 是狭缝宽,λ是波长,D 是单缝位置到光电池位置的距离,x 是从衍射条纹的中心位置到测量点之间的距离,其光强分布如图2所示。 d θ D x 屏 亮 暗 图1

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

物理实验报告5_测量单缝衍射的光强分布(完整资料).doc

此文档下载后即可编辑 实验名称:测量单缝衍射的光强分布 实验目的: a.观察单缝衍射现象及其特点; b.测量单缝衍射的光强分布; c.应用单缝衍射的规律计算单缝缝宽; 实验仪器: 导轨、激光电源、激光器、单缝二维调节架、小孔屏、一维光强测量装置、WJH型数字式检流计。 实验原理和方法: 光在传播过程中遇到障碍物时将绕过障碍物,改变光的直线传播,称为光的衍射。当障碍物的大小与光的波长大得不多时,如狭缝、小孔、小圆屏、毛发、细针、金属丝等,就能观察到明显的光的衍射现象,亦即光线偏离直线路程的现象。光的衍射分为夫琅和费衍射与费涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射光路图如下图所示。 a. 理论上可以证明只要满足以下条件,单缝衍射就处于夫琅和费衍射区域:

L a 82 >>λ或82a L >>λ 式中:a 为狭缝宽度;L 为狭缝与屏之间的距离;λ为入射光的波长。 可以对L 的取值范围进行估算:实验时,若取m a 4101-?≤,入射光是Ne He -激光,其波长为632.80nm ,cm cm a 26.12 ≈=λ,所以只 要取cm L 20≥,就可满足夫琅和费衍射的远场条件。但实验证明,取cm L 50≈,结果较为理想。 b. 根据惠更斯-费涅耳原理,可导出单缝衍射的相对光强分布规律: 20 )/(sin u u I I = 式中: λ?π/)sin (a u = 暗纹条件:由上式知,暗条纹即0=I 出现在 λ?π/)sin (a u =π±=,π2±=,… 即暗纹条件为 λ?k a =sin ,1±=k ,2±=k ,… 明纹条件:求I 为极值的各处,即可得出明纹条件。令 0)/(sin 22=u u du d 推得 u u tan = 此为超越函数,同图解法求得: 0=u ,π43.1±,π46.2±,π47.3±,… 即 0sin =?a ,π43.1±,π46.2±,π47.3±,… 可见,用菲涅耳波带法求出的明纹条件 2/)12(sin λ?+±k a ,1=k ,2,3,… 只是近似准确的。 单缝衍射的相对光强分布曲线如下图所示,图中各级极大的位置和相应的光强如下: ?sin 0 a /43.1π± a /46.2π± a /47.3π±

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) s i n () s i n ( s i n λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线

单缝衍射光强分布的测定

单缝衍射光强分布的测定 光的衍射现象是光的波动性又一重要特征。单缝衍射是衍射现象中最简单的也是最典型的例子。在近代光学技术中,如光谱分析、晶体分析、光信息处理等到领域,光的衍射已成为一种重要的研究手段和方法。所以,研究衍射现象及其规律,在理论和实践上都有重要意义。 实验目的 1. 观察单缝衍射现象及特点。 2. 测定单缝衍射时的相对光强分布 3. 应用单缝衍射的光强分布规律计算缝的宽度α。 实验仪器 光具导轨座,He-Ne 激光管及电源,二维调节架,光强分布测定仪,可调狭缝,狭缝A 、B 。扩束镜与起偏听偏器,分划板,光电探头,小孔屏,数字式检流计(全套)等。 实验原理 光在传播过程中遇到障碍时将绕过障碍物,改变光的直线传播,称为光的衍射。光的衍射分为夫琅和费衍射与菲涅耳衍射,亦称为远场衍射与近场衍射。本实验只研究夫琅和费衍 射。理想的夫琅和费衍射,其入射光束和衍射光束均是平行光。单缝的夫琅和费衍射如图二 所示。 当处于夫琅和费衍射区域,式中α是狭缝宽度,L 是狭缝与屏之间的距离,λ是入射光的波长。 实验时,若取α≤10-4m, L ≥1.00m ,入射光是 He-Ne 激光,其波长是632.8nm,就可满足上述条件。所以,实验时就可以采用如图一装置。 λ<

根据惠更斯-菲涅耳原理,可导出单缝衍射的光强分布规律为 当衍射角?等于或趋于零时,即?=0(或?→0),按式,有 故I=I 0,衍射花样中心点P 0的光强达到最大值(亮条纹),称为主极大。 当衍射角?满足 时,u=k π 则I=0,对应点的光强为极小(暗条纹), k 称为极小值级次。若用X k 表示光强极小值点到中心点P 0的距离,因衍射角ψ甚小,则 故X k =L ?=k λL/α,当λ、L 固定时,X k 与α成反比。缝宽α变大,衍射条纹变密;缝宽α变小,衍射条纹变疏。同时可推导出中央主极大的角度(即±1级暗纹的间距)??=2λ/α,两相邻暗纹的衍射角之差为??= λ/α。两相邻暗纹间的亮纹称为次极大。 sin ? 0 ±1.43λ/α ±2.46λ/α ±3.47λ/α … I I 0 0.47 I 0 0.017 I 0 0.008 I 0 … 各极极大的位置和相应的光强如下图三所示: 实验内容和步骤 实验装置如图一所示,按图搭好实验仪器。实验采用发散度甚小的He-Ne 激光作为光源,满足入射光为平行光的条件。为满足夫琅和费衍射条件,应尽量将显示衍射图像的屏远 ? ?? ? ?=?? ? ??=λ?πsin sin 2 0αu u u I I 1sin lim =u u () ±±±==,2,1sin k k α λ ?α λ ??k ≈≈sin 图三 单缝衍射的相对光强分布曲线

单缝衍射实验实验报告

单缝衍射实验 一、实验目的 1.观察单缝衍射现象,了解其特点。 2.测量单缝衍射时的相对光强分布。 3.利用光强分布图形计算单缝宽度。 二、实验仪器 He-Ne激光器、衍射狭缝、光具座、白屏、光电探头、光功率计。 三、实验原理 波长为λ的单色平行光垂直照射到单缝上,在接收屏上,将得到单缝衍射图样,即一组平行于狭缝的明暗相间条纹。单缝衍射图样的暗纹中心满足条件: (1) 式中,x为暗纹中心在接收屏上的x轴坐标,f为单缝到接收屏的距离;a为单缝的宽度,k为暗纹级数。在±1级暗纹间为中央明条纹。中间明条纹最亮,其宽度约为其他明纹宽度的两倍。 实验装置示意图如图1所示。 图1 实验装置示意图 光电探头(即硅光电池探测器)是光电转换元件。当光照射到光电探头表面时在光电探头的上下两表面产生电势差ΔU,ΔU的大小与入射光强成线性关系。光电探头与光电流放大器连接形成回路,回路中电流的大小与ΔU成正比。因此,通过电流的大小就可以反映出入射到光电探头的光强大小。 四、实验内容 1.观察单缝衍射的衍射图形;

2.测定单缝衍射的光强分布; 3.利用光强分布图形计算单缝宽度。 五、数据处理 ★(1)原始测量数据 将光电探头接收口移动到超过衍射图样一侧的第3级暗纹处,记录此处的位置读数X(此处的位置读数定义为0.000)及光功率计的读数P。转动鼓轮,每转半圈(即光电探头每移动0.5mm),记录光功率测试仪读数,直到光电探头移动到超过另一侧第3级衍射暗纹处为止。实验数据记录如下: 将表格数据由matlab拟合曲线如下:

★ (2)根据记录的数据,计算单缝的宽度。 衍射狭缝在光具座上的位置 L1=21.20cm. 光电探测头测量底架座 L2=92.00cm. 千分尺测得狭缝宽度 d’=0.091mm. 光电探头接收口到测量座底座的距离△f=6.00cm. 则单缝到光电探头接收口距离为f= L2 - L1+△f=92.00cm21.20cm+6.00cm=76.80cm. 由拟合曲线可读得下表各级暗纹距离: 各级暗纹±1级暗纹±2级暗纹±3级暗纹 距离/mm 10.500 21.500 31.200 单缝宽度/mm 0.093 0.090 0.093 单缝宽度计算过程: 因为λ=632.8nm.由d =2kfλ/△Xi,得 d1=(2*1*768*632.8*10^-6)/10.500 mm=0.093mm. d2=(2*2*768*632.8*10^-6)/21.500 mm=0.090mm.

实验七 CCD多道光强分布测量

实验七 CCD 多道光强分布测量 随着科技进步,当今先进的光谱实验室已不再使用照相干版法获得光谱图形,先进的光学实验室不再用测量望远镜或丝杠带动光电池来测量干涉、衍射花样的光强分布,所使用的 都是以CCD 器件为核 心构成的各种光学测量仪器。 LM99MP 单缝衍射仪/多道光强分布测量系统用线阵CCD 器件接收光谱图形和光强分布,经过微处理系统的分析处理,在监视器上显示出光强曲线,并以之为对象进行测量而展开实验。LM99MP 具有分辨率高(微米级),实时采集、实时处理和实时观测,物理现象显著,物理内涵丰富等明显的优点。 一、 实验目的 CCD 单缝衍射仪用于光学实验项目中作单缝、单丝、双缝、多缝、双光束等的干涉、衍射实验。通过采集系统实时获得曲线,测量其相对光强分布和衍射角,进而测量单缝的缝宽、单丝的直径、光源的波长、双缝的缝宽和缝间距、光栅常数、激光束发散角测量等。 二、 实验原理 光的衍射现象是光的波动性的一种表现,可分为菲涅耳衍射击与夫琅禾费衍射两类。菲涅耳衍射是近场衍射,夫琅禾费衍射是远场衍射,又称平行光衍射。见图8。将单色点光源放置在透镜L1的前焦面,经透镜后的光束成为平行光垂直照射在单缝AB 上,按惠更斯--菲涅耳原理,位于狭缝的波阵面上的每一点都可以看成一个新的子波源,他们向各个方向发射球面子波,这些子波相叠加经透镜L2会聚后,在L2的后焦面上形成明暗相间的衍射条纹,其光强分布规律为: 2 20sin ?? θI I =(1) 其中 ?π λ θ= a sin ,a 是单缝宽度,θ是衍射角,λ为入射光波长。 图1 单缝衍射 参见图2,由(1)式可见: 1、 当θ=0时,I I θ=0,为中央主极大的强度,光强最强,绝大部分的光能都落在中央明

单缝衍射光强分布的测定

实验名称: 单缝衍射光强分布的测定 实验时间: 实验者: 院系: 学号: 指导教师签字: 实验目的: 1.测定单缝衍射的相对光强分布; 2.测定半导体激光器激光的波长。 实验仪器设备: 光具座 半导体激光器 可调单缝 硅光电池 光电检流器 移测显微镜 光屏 实验原理: 1. 夫琅禾费衍射 当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。 衍射通常分为两类:一类是满足衍射屏离光源或接收屏的距离为有限远的衍射,称为菲涅耳衍射;另一类是满足衍射屏与光源和接收屏的距离都是无限远的衍射,也就是照射到衍射屏上的入射光和离开衍射屏的衍射光都是平行光的衍射,称为夫琅禾费衍射。 以波长为λ的单色平行光(实验用散射角极小的 激光器产生激光束)垂直通过单缝,经衍射后,在屏 上可以得到一组平行于单缝的明暗相间的条纹(夫琅禾费衍射条纹)。如图所示。根据惠更斯——菲涅耳原 理,可知 2 20 sin ββ θI I = 由θλ π βsin a = 得 220 ) sin () sin ( sin λ θπλθ πθa a I I = 0I I θ叫做相对光强 暗纹条件 ) 0,,2,1(a sin =±±==θλ θI k k (θ很小,故θθθ≈≈tan sin ,) 中央明纹两侧暗条纹之间的角宽 a 2λ θ= ? 相邻两暗条纹之间角宽a λθ=?’ 0=θ时,0I I =θ,此时光强最大,为主最大。 其两侧相邻两暗条纹间都有一个次最大,角位置分别为 。,、、 a 47.3a 46.2a 43.1sin λ λλθ±±±= 相应的 008.0017.0047.00、、 =I I θ 得到单缝衍射相对光强分布曲线 2.测入射光波波长 d θD x 亮 暗

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

衍射光强分布测量实验报告

衍射光强分布测量 査凡物理系 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 The Experiment Of Light Distribution Of Diffraction Fan Zha Department of Physics Abstract: In order to observe and validate the rule of light distribution of single slit diffraction and multiple slits diffraction, the automatic grapher of light intensity is used in this experiment in a horizontal light path. We have verified that the diffraction stripes become dim and far away from each other since the slit(s) become narrow, and calculated the width of slit by using the formulas of light intensity. The experimental instrument is simple and convenient to adjust, and the moving interference fringes are clear. Key Words: diffraction automatic grapher of light intensity single slit multiple slits

单缝衍射光强的分布测量实验报告

竭诚为您提供优质文档/双击可除单缝衍射光强的分布测量实验报告 篇一:衍射光强分布测量 衍射光强分布测量 ***,物理学系 摘要: 本实验利用激光为光源研究激光经过单缝与单丝时的衍射光强度分布情况。激光的高准直性符合夫琅和费远场条件,且高单色性保证测量时没有不同波长光的叠加影响。光感应器方面使用光栅尺与电脑连接做0.02毫米/点的高精度自动扫描。通过巴比涅原理迂回得到了没有直射光时单丝的衍射光强分布,完整验证了运用衍射光强分布来测量小微物体的长度的方法和可行性,并实际运用此法测量了铜丝和头发丝的直径。 关键词:衍射分布巴比涅原理单缝直径测量 ThemeasurementoftheDistributionofLightDiffraction YixiongKeYiLin,Departmentofphysics

Abstarct: Thisexperimentmadeuseoflaserasthelightsourcetoverif yaseriesofdiffractionpatternsof633nmlaserviadiffere ntsingleslitsandmonofilaments.Thecollimationfeature ofthelasermeetstheconditionofFraunhoferdiffraction, themonochromicfeatureoflaserprovideabetterexperimen talenvironmentthatthediffractionpatternwon`tbeinter ferebythelightofotherwavelength.weuselinearencorder connectedtopcviauLI(universalLaboratoryInterface)as thesensortoautomaticallyscanthediffractionpatternwi ththeratioof0.02mmperdot.weusebabinet’sprincipletogetthediffractionpatternofamonofilament https://www.doczj.com/doc/2814129545.html,p letelyverifiedthemethodandfeasibilityofmeasuringati nyobjectwithitsdiffractionpattern.Inaddition,wetryt omeasurethediameterofacopperwireandpeople’shairinthisway Keywords:Diffractiondistributionbabinet`sprinciples ingleslitsmeasureDiameterofthewire 1

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

衍射光强分布测量实验报告.docx1

衍射光强分布的测量 1008406006 物理师范陈开玉 摘要:为了观察并验证单缝衍射和多缝衍射的图样以及它们的规律,本实验设计了基于水平光路的测量方法。运用自动光强记录仪来对衍射现象进行比较函数化的观察。实验观察到衍射条纹随着缝宽变窄而模糊和间距扩大,并且通过仪器对光强图样的位置定位和夫琅禾费光强的公式来计算单缝的缝宽。该实验装置结构简单、调节方便、条纹移动清晰。 关键词:衍射自动光强记录仪单缝多缝 一、引言 光的衍射现象是光的波动性的重要表现,并在实际生活中有较多应用,如运用单缝衍射测量物体之间的微小间隔和位移,或者用于测量细微物体的尺寸等。本实验要求通过观察、测量夫琅禾费衍射光强分布,加深对光的衍射现象的理解和掌握。 二、实验原理 1,衍射的定义: 波遇到障碍物或小孔后通过散射继续传播的现象。衍射现象是波的特有现象,一切波都会发生衍射现象,而光也是波的一种, 光在传播路径中,遇到不透明或透明的障碍物或者小孔(窄缝),绕过障碍物,产生偏离直线传播的现象称为光的衍射。衍射时产生的明暗条纹或光环,叫衍射图样2,光的衍射分为夫琅禾费衍射和菲涅尔衍射, 夫琅禾费衍射是指光源和观察点距障碍物为无限远,即平行光的衍射;而菲涅尔衍射是指光源和观察点距障碍物为有限远的衍射.本实验研究的只是夫琅禾费衍射.实际实验中只要满足光源与衍射体之间的距离u,衍射体至观察屏之间的距离v都远大于就满足了夫琅禾费衍射的条件,其中a为衍射物的孔径,λ为光源的波长. 3,单缝、单丝衍射原理:

如上图所示,a为单缝宽度,缝和屏之间的距离为v,为衍射角,其在观察屏上的位置为x,x离屏幕中心o的距离为OX=,设光源波长为λ,则有单缝夫琅禾费衍射的光强公式为: 式中是中心处的光强,与缝宽的平方成正比。 若将所成衍射图样的光强画成函数图象在坐标系中,则所成函数图象大致如下 除主极强外,次极强出现在的位置,它们是超越方程的根,其数值为: 对应的值为 当角度很小时,满足,则OX可以近似为 因而我们可以通过得出函数中次级强的峰值的横坐标只差来确定狭缝的宽度a 4,多缝衍射和干涉原理

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

相关主题
文本预览
相关文档 最新文档