当前位置:文档之家› 变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施
变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施

摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法.

关键词:变频器谐波危害抑制

前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。

一、变频器原理及其谐波的产生

变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构

众所周知,电机的转速和电源的频率是线性关系。

变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。

从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。

在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。

变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

按傅氏级数可分解为基波和各次谐波,通常含有6m±1(m=1,2,…)次谐波,其中高次谐波干扰电网。单个基波与几个高次谐波组合一起被称为畸波(如图二)。

(图二)基波与高次谐波畸波

(图三)PWM控制的基本原理示意图

在采样控制中有一个重要结论:冲量相等而形状不同窄脉冲加在具有惯性环节上时,其效果基本相同。冲量即指窄脉冲的面积。此结论是PWM控制的重要理论基础。把图三a的正弦半波分成N个

彼此相连的脉冲所组成的波形。这些脉宽相等,都等于,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(冲量)相等,就得到了图三b所示脉冲序

列,这就是PWM波形。对于正弦波负半周用同样办法也可以得到PWM波形。像这种把正弦波等效的PWM波形也称为SPWM波形。

变频器输出侧产生谐波机理:在逆变输出回路中,输出电压和输出电流均有谐波。由于变频器是通过CPU产生6组脉宽可调的SPWM 波控制三相的6组功率元件导通/关断,从而形成电压、频率可调的三相输出电压。其输出电压和输出电流是由SPWM波和三角载波的交点产生的,不是标准的正弦波,如电压型变频器,其输出电压波形为方形波,用傅氏级数分解电压方波和电流正弦锯齿波可分析出包含较强的高次谐波成分,高次谐波对设备产生很强的干扰,甚至造成设备不能使用,周围仪器信号失真。谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

二、谐波的危害

一般来讲,变频器对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。谐波污染对电力系统的危害严重性主要表现在:

(1)谐波对供电线路产生了附加谐波损耗。由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波电流流过中性线时,会使导线过热、绝缘老化、寿命缩短、损坏甚至发生火灾。

(2)谐波影响各种电气设备的正常工作。对发电机的影响除产生附加功率损耗、发热、机械振动和噪声和过电压;对断路器,当电流波形过零点时,由于谐波的存在可能造成高的di/dt,这将使开断困难,并且延长故障电流的切除时间。

(3)谐波使电网中的电容器产生谐振。工频下,系统装设的各种用途的电容器其电路比系统中的感抗要大得多,不会产生谐振,但谐波频率时,感抗值成倍增加而容抗值成倍减少,这就有可能出现谐振,谐振将放大谐波电流,导致电容器等设备被烧毁。

(4)谐波引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述危害大大增加,甚至引起严重事故。

(5)谐波将使继电保护和自动装置出现误动作,并使仪表和电能计量出现较大误差;谐波对其他系统及电力用户危害也很大:如对附近的通信系统产生干扰,轻者出现噪声,降低通信质量,重者丢失信息,使通信系统无法正常工作;影响电子设备工作精度,使精密机械加工的产品质量降低;设备寿命缩短,家用电器工况变坏等。

三、谐波的抑制

变频器给人们带来极大的方便、高效率和巨大的经济效益的同时,对电网注入了大量的谐波和无用功,使供电质量不断恶化。另一方面,随着以计算机为代表的大量敏感设备的普及应用,人们对公用电网的供电质量要求越来越高,许多国家和地区已经制定了各自的谐波标准,以限制供电系统及用电设备的谐波污染。

抑制谐波的总体思路有三个:其一是装置谐波补偿装置来补偿谐

波;其二是对电力系统装置本身进行改造,使其不产生谐波,且功率因数可控为1;其三是在电网系统中采用适当的措施来抑制谐波。具体方法有以下几种:

1.选用适当的电抗器。

(1)输入电抗器。在电源与变频器输入侧之间串联交流电抗器(图四),这样可使整流阻抗增大来有效抑制高次谐波电流,减少电源浪涌对变频器的冲击,改善三相电源的不平衡性,提高输入电源的功率因数(提高到0.75-0.85),这样进线电流的波形畸变大约降低30%~50%,是不加电抗器谐波电流的一半左右。

(图四)串联交流电抗器

建议在下列情况下使用输入交流电抗器:

a) 变频器所用之处的电源容量与变频器容量之比为10:1以上;

b) 同一电源上接有晶闸管设备或带有开关控制的功率因数补偿装置;

c) 三相电源的电压不平衡度较大(≥3%);

由于交流电抗器体积较大,成本较高,变频器功率>30kW时才考虑配置交流电抗器。

(2)在直流环节串联直流电抗器。直流电抗器串联在直流中间

环节母线中(端子+,-之间)。主要是减小输入电流的高次谐波成分,提高输入电源的功率因数(提高到0.95)。此电抗器可与交流电抗器同时使用,变频器功率>30kW时才考虑配置。

(3)输出电抗器(电机电抗器)。由于电机与变频器之间的电缆存在分布电容,尤其是在电缆距离较长,且电缆较粗时,变频器经逆变输出后调制方波会在电路上产生一定的过电压,使电机无法正常工作,可以通过在变频器和电机间连接输出电抗器来进行限制(图五)。

图五串联输出电抗器

2.选用适当滤波器。

在变频器输入、输出电路中,有许多高频谐波电流,滤波器用于抑制变频器产生的电磁干扰噪声的传导,也可抑制外界无线电干扰以及瞬时冲击、浪涌对变频器的干扰。根据使用位置的不同可以分为输入滤波器和输出滤波器。输入滤波器有2种,线路滤波器和辐射滤波器:

(1)线路滤波器串联在变频器输入侧,由电感线圈组成,通过增大电路的阻抗减小频率较高的谐波电流;在需要使用外控端子控制变频器时,如果控制回路电缆较长,外部环境的干扰有可能从控制回路电缆侵入,造成变频器误动作,此时将线路滤波器串联在控制回路电缆上,可以消除干扰。

(2)辐射滤波器并联在电源与变频器输入侧,由高频电容器组成,可以吸收频率较高具有辐射能量的谐波成分,用于降低无线电噪声。线路滤波器和辐射滤波器同时使用效果更好。

输出滤波器串联在变频器输出侧,由电感线圈组成,可以减小输出电流中的高次谐波成分,抑制变频器输出侧的浪涌电压,同时可以减小电动机由高频谐波电流引起的附加转矩。注意输出滤波器到变频器和电机的接线尽量缩短,滤波器亦应尽量靠近变频器。输出滤波器从结构上分LR滤波器单元和LC滤波器单元两种类型(图六)。

(图六)LR滤波器单元LC 滤波器单元除传统的LR,LC滤波器还在应用以外,当前抑制谐波的重要趋势是采用有源电力滤波器,它串联或并联于主电路中,实时对电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿谐波电流目的,从而使电网电流只含基波电流。它与无源滤波器相比,具有高度可控性和快速响应性,且可消除与系统阻抗发生谐振危险,但存在容量大,价格高的特点。

对于工作性质是节能性的(同时有调节作用)大容量的电动机,为了改善电机的运行工况,降低发热量,应考虑单独串联加装电抗器。

对于工作电流较大(基本运行在额定容量下)的电动机,为了减少电机的发热量、降低运行电流,使电气元件的运行可靠度提高(空

开、断路器),应单独串联加装电抗器和滤波器。

对于小容量、多台安装的变频装置,单独增加滤波设备显然投入太大,且现有空间有限,则应考虑在低压母线上直接安装有源滤波器。

3.采用多相脉冲整流。

在条件允许或是要求谐波限制在比较小的情况下,可采用多相整流的方法。12相脉冲整流的畸变大约为10%~15%,18相的为3%~8%,完全满足国际标准的要求。其缺点是需要专用变压器,不利于设备的改造,成本费用较高;

4.减少或削弱变频器谐波的方法还有:

(1)当电机电缆长度大于50米或80米(非屏蔽)时,为了防止电机启动时的瞬时过0电压,在变频器与电动机之间安装交流电抗器;

(2)当设备附近环境有电磁干扰时,加装抗射频干扰滤波器

(3)使用具有隔离的变压器,可以将电源侧绝大部分的传导干扰隔离在变压器之前;

(4)合理布线,屏蔽辐射,在电动机与变频器之间的电缆应穿钢管敷设或用铠装电缆,并和其他弱电信号线分走不同的电缆沟敷设,降低线路干扰,变频器使用专用接地线;

(5)选用具有开关电源的仪表等低压电器;

(6)在使用单片机、PLC等为核心的控制系统中,在编制软件的时候适当增加对检测信号和输出控制部分的信号滤波,以增加系统自身的抗干扰能力。

四.结论

变频调速的应用使交流传动上了一个新台阶,但变频器谐波干扰的严重性也给设备稳定可靠运行带来潜在威胁,如何才能最大限度的抑制变频器谐波产生仍是摆在现今电气技术工作者面前有待解决的最大课题。本文从谐波的概念入手,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法,将变频器产生的谐波控制在最小范围内,达到科学合理用电,抑制电网污染,提高电源质量。

变频器高次谐波干扰的五大危害

1)变压器电流谐波将增加铜损,谐波电压将增加铁损,其综合结果就是使得变压器的温度上升。谐波还可能引起变压器绕组及线间电容之间的共振,从而产生噪声污染。 2)变频器当变频器输入电压发生畸变,输入电流峰值增大,就使得变频器整流二极管及电解电容负担加重,容易产生过电压或者过电流,导致变频器的运行不正常。由于变频器属于电力电子装置,很容易感受谐波失真而误动作,从而影响变频器的工作性能和使用寿命。 3)电动机电机绕组存在杂散电容,谐波主要引起电动机的附加发热,导致电动机的额外温升,使得电动机的机械效率下降。谐波的产生还会引起绕组不均匀处过热导致的绝缘层损坏、电机转矩脉冲及噪声的增加。 4)供电线路高频谐波电流使线路阻抗随着频率的增加而提高,对供电线路产生了附加谐波损耗,造成电能的浪费,并且导体对高频谐波电流的集肤效应使线路的等效阻抗增加,导致线路压降增大,输出电缆的截面要相应增大。 5)电力电容器工频状态下,电力系统装设的电容器比系统中的感抗要大得多。但在谐波频率较高时,感抗值成倍增加而容抗值大幅减少,这就可能出现谐振,谐振造成异常电流进入电容器,导致电容器过热,绝缘破坏直至烧毁。 此外,谐波可能导致开关设备、保护电器的误动作,影响计量仪表测量精度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/1211659340.html,。

变频器谐波干扰及抑制

变频器谐波干扰及抑制 0 引言 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其他许多优点而被国内外公认为最有发展前途的调速方式。但是由于变频器中普遍有晶闸管、整流二极管及大功率IGBT开关等非线性元器件,在使用中会产生大量谐波,从而干扰周围电器正常运行。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作,因此有必要对变频器应用系统中的干扰问题进行探讨。 1 变频调速系统谐波的产生 变频器的主电路一般由交-直-交组成,外部输入的380 V/50 Hz 的工频电源经三相桥路晶闸管整流成直流电压信号后,经滤波电容滤波及大功率晶体管开关器件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅里叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR 大功率逆变器件,其PWM的载波频率为2耀3 kHz,而IGBT大功率逆变器件的PWM最高载频可达15 kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 用于电机调速的交-直-交型通用变频器一般是6脉动装置,其谐波电流含有率如表1所列。此外,交-交型变频器通过一套可关断晶闸管和斩波技术,不经过整流这个环节,把电网工频直接变成交流调速电机所需要的交流频率。交-交型变频器除了向电网系统注入高次谐波外,还注入谐间波(即频率不是工频倍数)电流。谐波电流的频率和含量随电机的工况变化而变化。 2 谐波的传播途径 变频器能产生功率较大的谐波,对系统其他设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射,这是频率很高的谐波分量的主要传播方式;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其他设备,这是变频器输入电流干扰信号的主要传播方式;最后变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流,感应的方式又有两种:即电磁感应方式,这是电流干扰信号的主要方式;静电感应方式,这是电压干扰信号的主要方式。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 3 谐波的危害 1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2)谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4)谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

变频器谐波的影响及控制作用分析

龙源期刊网 https://www.doczj.com/doc/1211659340.html, 变频器谐波的影响及控制作用分析 作者:孟涛曹美乐 来源:《城市建设理论研究》2013年第09期 摘要:随着电子技术的迅速发展,开关电源的应用日益普及,给电网造成污染,干扰其它设备的正常工作。针对变频器广泛应用的现状,本文简单地探讨了变频器谐波的影响及控制作用。 关键词:变频器;谐波影响;控制作用 中图分类号:F407.63 文献标识码:A 文章编号: 引言:变频器的使用给人们带来了方便和巨大的利益,它必将更为普遍的使用。但是由于它所特有的工作方式,给公用电网带来了一定的破坏,成为电网谐波污染源之一,所以,分析和研究抑制谐波的方法将成为一个非常重要的课题。 1谐波的危害我们知道,变频器对电容量大的电网和大型的电力系统所造成的影响几乎没有,对于那些容量小的电力系统,变频器谐波产生的危害是巨大的,谐波电压和电流对于公共电网的干扰是明显的,使用电设备的环境改变,给他周围的通信系统和其他设备都能带来一定的危害。那么,谐波对电力系统及其周围环境带来的危害都有哪些呢?供电线路的电能损失 严重。供电线路的肌肤效应和临近效应,使其本身的电阻会随着频率的提高而增大,这就造成了电能的浪费。中性线平时的电流过流量极小,因此导线较细,可是刚线路存在大量的三次谐波通过中线是,会因电阻突然增大产生大量的热,以至于导线绝缘皮层老化、损坏、使用寿命缩短,极有可能造成火灾。最近发生的好多商业大厦火灾,专家分析极有可能是导线的电流过大造成的。谐波影响其共同工作环境中其他设备正常使用。谐波对发电机的影响主要有功率 损耗过大、发热、震动、噪音、过电压。对短路器的影响主要是延长其故障时的断开电源的时间。这也是工业电机使用发生伤亡事故的主要原因。供电系统电网产生谐振。共同频率下, 用于供电系统的装备电容器有着不同的用途,他们的抗干扰能力要比其他电路强的多,不可能有谐振产生。但谐波频率时,抗敢能力大幅下降而感抗值是成倍增长的,这样就极有可能出现谐振,谐波电流增大,导致电容器及其他设备即刻被烧毁。谐波能引起公用电网其连接的局 部电网的并联、串联谐振,使谐波放大,造成极大的危害。谐波使安全保护设备失灵。谐波 的产生会使电磁继电器和自动保护装置发出错误的指令,使工业仪表和电能计量表产生的误差加大。谐波的产生的危害进一步扩大到了对电力用户的危害,对通信系统的通信信号产生干扰,严重的能使通信系统处于瘫痪。影响电子仪表的工作精密度,设备的使用寿命缩短,家用电器使用工况下降等。 2谐波危害的解决措施变电器的使用极大的方便了人们的生活,可它的危害也是并存的。电脑和一些电子敏感产品的普遍使用,使人们对供电的质量要求也越来越高,全球许多国家和地区都制定了各自谐波的标准,用来减少谐波造成的污染。总体来说,谐波危害的解决措施有

金发科技谐波治理方案

金发科技谐波治理方案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

金发科技有限公司供电系统 谐波治理方案 目录

1、谐波简介 1.1、谐波的基础了解 1.谐波:是对周期性交流量进行付立叶级数分解,得到的基波频率大于1的整数倍的频率分量,由于谐波的频率是基波频率的整数倍,也常称它为高次谐波。 2.谐波源:向公网中注入谐波电流或在公网中产生谐波电压的电气设备(分为电流、电压谐波源) 3.产生电流谐波源的主要设备:非线性用电设备、变压器、发电机、直流调速装置、中频/高频感应电炉、电流型变频器。 4.产生电压谐波源的设备:交流变频器、UPS/EPS设备 谐波电压的产生电压与电流畸变的关系 对于每个电流谐波In, 对应该频率的电源阻抗Zsn 两端存在谐波电压Un Un= 各次谐波畸变 Hn= Un /u1(U1: 基波值) THD (%) = 在各次谐波频率下的电源阻抗为电压出现畸变的基本,如果电源阻抗低, 电压畸变就低 综上所述:产生电流谐波畸变依赖于负载、产生电压谐波畸变依赖于电源,低的电源阻抗利于谐波电流流向电源, 但同时电压畸变往往也较低。高电源阻抗阻止谐波电流流向电源, 但电压总畸变往往也较高电源阻抗与总谐波畸变之间的变化是非线性的。

1.2、谐波来源 电力系统本身包含的能产生谐波电流的非线性元件主要是变压器的空载电流,交直流换流站的可控硅控制元件,可控硅控制的电容器、电抗器组等。但是,电力系统谐波更主要来源是各种非线性负荷用户,如各种整流设备、调节设备、电弧炉、轧钢机以及电气拖动设备。 1.3、谐波的危害 谐波的危害主要表现为: 1、加大线路损耗,使电缆过热,绝缘老化,降低电源效率。 2、使电容器过载发热,加速电容器老化甚至击穿。 3、保护装置的勿动或拒动,导致区域性停电事故。 4、造成电网谐振。 5、影响电动机效率和正常运行,产生震动和噪音,缩短电动机寿命。 6、损坏电网中敏感设备。 7、使电力系统各种测量仪表产生误差。 8、对通讯、电子类设备产生干扰;引起系统故障或失灵。 9、零序谐波导致中性线电流过大,造成中性线发热甚至火灾。

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施 摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法. 关键词:变频器谐波危害抑制 前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。 一、变频器原理及其谐波的产生 变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构 众所周知,电机的转速和电源的频率是线性关系。 变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。 从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。 在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

变频器谐波抑制方法

变频器谐波抑制方法 对小容量的通用变频器,高次谐波很少成为问题,但当使用的变频器容量大或数量多时,往往就会产生高次谐波电流和高次谐波干扰问题,因此对于高次谐波先采取适当的对策和预防措施是非常重要的。 1. 改善变频器结构 可以从变频器自身硬件结构或者整个变频系统的构建方式和设备选择等方面考虑,从根本上减少变频系统注入电网的谐波、无功等污染。 (1) 变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器; (2) 在整流环节采用多重化技术,提高脉波数,可以有效地提高特征谐波次数,降低特征谐波幅值。对于大容量晶闸管变频器可以采取这种方法,利用多重化抑制流向电源侧的高次谐波; (3) 采用高频整流电路,改善整流波形,提高功率因数,直流电压可调节; (4) 逆变环节采用高开关频率高的电力电子器件,如MOSFET,IGBT等,可以提高载波频率比,抑制变频器输出端的高频谐波。 (5) 在逆变环节采用多重化技术,提高脉波数,使输出的电流电压波形更加接近正弦波。但重数越多电路越复杂,可靠性会随之降低,三重化电路可以兼顾输出波形质量和设备可靠性,较理想。 2. 采用合适的控制策略 从变频器控制器这一点出发,可采用更合适的控制策略或者在原来的控制策略基础上作点优化和改进,原理上更大限度地减少谐波的产生。以实际应用中常用的正弦脉宽调制法(SPWM)法和特定消谐法(SHE)法为例。 根据SPWM基本理论,当调制波频率为fr,载波频率为fc,载波频率比N=fc/fr,单极性SPWM控制在输出电压中产生N-3次以上的谐波,双极性SPWM控制在输出电压中产生N-2次以上的谐波。比如,N=25,采用单极性SPWM控制,低于22次的谐波全被消除,采用双极性SPWM控制,低于23次的谐波全被消除。 但输出电压频率较高的时候,由于受到元件开关频率的限制,N值不可能大,SPWM 控制的优势就不太明显了,这个时候选择SHE法可以在开关次数相等的情况下输出质量较高的电压、电流,降低了对输入、输出滤波器的要求。

电力谐波治理的几种方法

电力谐波治理的几种方法 目前常用的电力谐波治理的方法无外乎有三种,无源滤波、有源滤波、无功补偿。下面就谈谈这二种方法的优缺点以及市场前景及其经济效益的分析。6.1、无源谐波滤除装置无源滤波器的主要是用电抗器与电容器构成,无源滤波装置的成本较低,经济,简便,因此获得广泛应用。无源滤波器可以分为并联滤波器与串联滤波器。6.1.1、无源并联滤波器现有的谐波滤除装置大都使用无源并联滤波器,对每一种频率的谐波需要使用一组滤波器,通常需要使用多组滤波器用以滤除不同频率的谐波。多组滤波器的使用造成结构复杂,成本增高,并且由于通常的系统中含有无限多种频率的谐波成分,因此无法将谐波全部滤除。不仅如此,由于并联滤波器对谐波的阻抗很低,通常会使谐波源产生更大的谐波电流,谐振在不同频率的滤波器还会互相干扰,例如7次谐波滤波器就可能会放大5次谐波。因此,如果有人将并联滤波器安装前后的谐波情况做过对比,就会发现:虽然滤波器安装以后影响系统的谐波电流减小,但是各滤波器中以及进入系统的谐波电流之和远远超过未安装滤波器之前,谐波源产生的谐波电流也超过未安装滤波器之前。从广义的角度来讲,频率不等于工频频率的成分统统都是谐波。因此,工频是单一频率,而谐波有无限多种频率,可见谐波具有无限的复杂性,使用并联滤波器的方法显然无法对付无限频率成分的谐波。6.1.2、无源串联滤波器由电感与电容串联构成的LC串联滤波器,具有一个阻抗很低的串联谐振点,如果我们构造一个串联谐振点为工频频率的串联滤波器,并将其串联在线路中,就可以滤掉所有的谐波。这就是本文介绍的串联滤波器,串联滤波器由电感和电容串联而成,并且串联连接在电源与负荷之间,因此串联滤波器的“串联”二字具有双重意思:一个意思表示电感与电容串联,另一个意思表示串联在电路中使用。在三相电路中均接入串联滤波器,由于串联带通滤波器对基波电流的阻抗很小,而对谐波电流的阻抗很大,于是只用一组滤波器就可以滤除所有频率的谐波。串联滤波器对于谐振点频率的电流具有极低的阻抗,对于偏离谐振点频率的电流,则阻抗增大,偏离的越多,阻抗越大。对于比谐振点频率高的电流成分,电感的阻抗为主,对于比谐振点频率低的电流成分,电容的阻抗为主。由于谐波成分通常比基波频率高,因此滤除谐波的工作主要由电感完成,电容的作用是抵消电感对工频基波的阻抗。由于滤除谐波的作用主要由电感完成,因此电感量越大滤除谐波的效果越好。但是电感量越大则价格越高,损耗越大,因此从成本及损耗上去考虑问题则希望电感量越小越好。当电感的基波感抗小于负荷等效基波阻抗的50%时,不能实现良好的滤波效果(负荷等效基波阻抗就是负荷相电压有效值与相电流有效值的比值)。因此电感的基波感抗必须大于负荷等效基波阻抗的50%。对于电容器的选择与电感的选择情况不同,电感的匝数可以随意设计,而电容器的耐压只有固定的若干等级,不能随意设计。比如在低压配电系统中,就只有耐压230V与400V的电力电容器可供选择。由于电容器串联在电路中,电容器中的电流即为负荷电流,当电容器的实际工作电压等于其额定电压时,电容器中流过的电流等于电容器的额定电流,电容器得到充分的利用,因此,当

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

谐波标准及变频器谐波干扰的解决方法

谐波标准及变频器谐波干扰的解决方法 谐波标准及变频器谐波干扰的解决方法 一、前言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 二、谐波和电磁辐射对电网及其它系统的危害 1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 三、有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2, EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍: 1.国际标准 IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv.

谐波治理各方案比较分析

谐波治理各方案比较分析 谐波治理的目的包括: 1. 满足电力公司对谐波电流发射的限制要求 2. 释放变压器的有效容量,提高变压器的效率 3. 提高配电系统(包括无功补偿装置、继电保护器、电缆等)的可靠性 4. 为企业内的各类设备提供质量优良的电能,保证制造系统的稳定运行 人们对谐波的危害已经十分熟悉,很多企业也开始重视谐波的治理。谐波治理的目的不同,所采取的方案也是不同的。因此,在确定谐波治理的方案之前,要明确谐波治理的目的。 企业在谐波治理方面投资,要达到的目的如图所示。 满足电力公司的要求是企业进行谐波治理的首要动机。为电力用户提供合格的电能,是电力公司的责任。因此,电力公司要对那些可能污染电网的用户的提出谐波治理的要求。随着越来越多的企业对电能质量的要求提高,电力公司将对电力用户进行更严格的要求。 在目前阶段,出于后面几个目的而进行谐波治理的企业较少。企业仅在出现了故障现象后,才开始考虑谐波治理的问题。其中,谐波导致无功补偿装置烧毁的情况最为常见。 无论谐波治理的最终目的是什么,其本质就是减小负载(可能是一组负载)向电网注入的谐波电流,因为谐波电流是谐波问题的根源。只不过,针对不同的目的,控制谐波电流的位置不同,也就是采用的谐波治理方案不同。 谐波治理的策略 按照谐波治理的位置,可以有三个策略。

第一:在高压母线上治理,采用的设备是SVC、SVG等。 第二:在变压器的下端,低压母线上治理谐波。采用无援滤波器、有源滤波器等。无源滤波器往往会发出额外的容性无功,这在有些场合是不允许的。 第三:在设备的电源入口处治理谐波。这称为就地治理。就地治理是最理想的谐波治理策略。因为,这样相当于将非线性负载转变成了线性负载,谐波导致的一切问题都迎刃而解。 大部分发达国家按照这个策略开展谐波治理。达到这个目的的管理措施就是,要求电气电子设备满足相应的电磁兼容标准(例如,GB17625)要求,电磁兼容标准对谐波电流发射进行了明确的规定。 传统的谐波治理策略 传统的谐波治理项目大多采用策略1和策略2。 这是因为,企业进行谐波治理的初衷仅是满足电力公司的要求,因此,在用策略1和策略2已经足够了。随着企业内部的自动控制设备增加,对电能质量的要求提高,仅采用策略1和策略2就不能满足要求了。 企业要理解谐波治理的深层意义。如果理解了谐波治理是为了获得良好的电能质量,而良好的电能质量正是企业所需要的,就会改变传统的做法。 治理谐波最理想的位置是在谐波源处。也就是将谐波电流封杀在起源处,根本不允许流入电网。这相当于将非线性负载变成了线性负载。设想,如果电网上的负荷全部是线性负荷,那里还有谐波问题。保持内部电网质量的最有效方法就是在谐波源负载的电源入线处安装谐波滤波器。 在谐波源处进行谐波治理,就能够消除谐波带来的各种隐患。因此,在进行系统设计时,要尽量考虑就地谐波治理的方法。

变频器的谐波及常用解决方法

变频器的谐波及常用解决方法 摘要: 随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。 关键词:变频器;谐波;抑制;干扰 由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。 1 谐波的含义 谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整数倍。 2 变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。 输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。 输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。所以,输出回路电流信号也可分解为只含正弦波的基波和其它各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 3 谐波干扰的危害 一般来讲,变频器对容量相对较大的电力系统影响不是很明显,而对容量较小的系统,谐波产生的干扰是不可忽视的,谐波的出现是对电网的一种污染,它使用电设备所处的环境恶化,给周边的通讯带来危害。 4 谐波研究的意义 正因为谐波有如此大的危害,所以我们要研究它。各种谐波源产生谐波给电力系统造成巨大的污染,影响到整个电力系统的运行环境、包括系统中的广大用户,而且其污染影响的范围很广,距离很远。 研究谐波的意义,还在于其对电力电子技术自身发展的影响。谐波是电力电子技术发展的产物,而它的出现已经成为阻碍电子技术发展的重大障碍,它迫使电子领域的人员必须对谐波问题进行更加有效的研究。

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

谐波治理的方法有哪些

谐波治理的方法有哪些 一、谐波的产生原因 近年来,电力网中非线性负载的逐渐增加是全世界共同的趋势,如变频驱动或晶闸管整流直流驱动设备、计算机、重要负载所用的不间断电源(UPS),节能荧光灯系统等,这些非线性负载导致电网污染,电力品质下降,引起供、用电设备故障,甚至引发严重火灾事故等。电力污染及电力品质恶化主要表现在以下方面:电压波动、浪涌冲击、谐波、三相不平衡等。 二、谐波的危害 电源污染会对用电设备造成严重危害,主要有: ?增加输、供和用电设备的额外附加损耗,使设备的温度过热,降低设备的利用率和经济效益; ?谐波电流使输电线路的电能损耗增加,当注入电网的谐波频率位于在网络谐振点附近的谐振区内时,对输电线 路和电力电缆线路会造成绝缘击穿; ?干扰通讯设备、计算机系统等电子设备的正常工作,造成数据丢失或死机;

?影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱; ?引起电气自动装置误动作,甚至发生严重事故; ?使电气设备过热,振动和噪声加大,加速绝缘老化,使用寿命缩短,甚至发生故障或烧毁; ?造成灯光亮度的波动(闪变),影响工作效益; ?导致供电系统功率损耗增加。 谐波与电力系统中基波叠加,造成波形的畸变,畸变的程度取决于谐波电流的频率和幅值。非线性负载产生陡峭的脉冲型电流,而不是平滑的正弦波电流,这种脉冲中的谐波电流引起电网电压畸变,形成谐波分量,进而导致与电网相联的其它负载产生更多的谐波电流。 我们称“谐波”的存在为一种电力“污染”,既然是污染,那就要进行“排污”。“滤波”从某种意义上说,也是一种“环保”工作,滤除谐波对电网的干扰,净化电网,可以提高供电网络的质量,增加有功功率,减少无功损耗,“节能减排”,功德无量。

变频器谐波污染及治理

变频器谐波污染及治理 变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电气设备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。 一、 变频器谐波产生机理 凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成,外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。 二、 高次谐波危害 谐波问题由来已久,近年来这一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以谐振的方式加重了谐波的危害。 非线形负荷产生的谐波电流注入电网,使变压器低压侧谐波电压升高,低压侧负荷由于谐波干扰而影响正常工作,另一方面谐波电压又通过供电变压器传递到高压侧干扰其它用户。 在三相回路中,三的整数倍次谐波电流是零序电流,零序电流在中性线中是相互叠加的。零序谐波电流主要是由三相四线制非线性设备产生的,使供电系统中的中性线电流很大。当中性线上有较大的谐波电流时,中性导线的阻抗在谐波下能产生大的中性线电压降,此中性线电压降以共模干扰形式干扰计算机和各种微电子系统的正常工作,使控制设备和精密仪器工作不可靠,故障率高。 高次谐波的危害具体表现在以下几个方面。 变压器 谐波电流和谐波电压将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 感应电动机

变频器谐波的治理与设备级滤波器的要求

变频器谐波的治理与设备级滤波器的要求 1.1变频器对电网影响 过去,电动机直接连接到电网上,给电网带来的主要问题是无功功率,无功补偿设备已经成为工厂中不可缺少的设备。 随着工业自动化程度提高、节能降耗政策的深入实施,电动机已经很少直接连接到电网上直接使用,通常由变频调速驱动器来驱动,简称变频器。变频器能够灵活的控制电动机的功率和转速,满足功能的要求,并且节能效果显著。 然而,变频器给电网带来了谐波电流的问题,任何供电公司都不允许用户向电网注入过大的谐波电流,用户有责任消除变频器产生的谐波电流。随着变频器的广泛使用,谐波治理设备的重要性将等同于过去的无功补偿设备。 本节介绍变频器产生的谐波电流的相关基本概念。 1什么是电力谐波? 电力谐波是频率为50Hz整倍数的正弦波电压或电流。 发电厂或者发电机发出的电压是频率为50Hz的正弦波波型,称为基波,50Hz称为基波频率。频率为50Hz整倍数的正弦波称为谐波。谐波用基波的倍数表示,例如频率为150Hz 的正弦波称为3次谐波,频率为250Hz的正弦波称为5次谐波,频率为350Hz的正弦波称为7次谐波,以此类推。 谐波频率的正弦波电压或电流称为谐波电压或谐波电流。 当基波和谐波叠加时,形成形状怪异的波形,这称为波形畸变。例如,图1-1是基波与5次、7次谐波叠加的结果,这是工业场合常见的电流波形。 在实际工程中,大多数谐波为奇次谐波,也就是3、5、7、11、13 ??????。 图1-1 含有5次和7次谐波的畸变波形 总结: 正常的交流电压或者电流是正弦波,当电压波形或电流波形发生畸变时,就说明其中包含了谐波成分,畸变的程度越大,包含的谐波成分越多。

变频器谐波的产生与抑制

变频器谐波的产生与抑制 ?时间:07-08-08 09:21:35 来源:进入论坛 ?【字体大小:大中小】 本文从变频器的内部结构入手,分析了变频器谐波产生的原因和危害,在此基础上提出了抑制谐波常用方法。 1:前言 采用变频器驱动的电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多的应用,但它的非线性,冲击性用电的工作方式,带来的干扰问题亦倍受关注。对于一台变频器来讲,它的输入端和输出端都会产生高次谐波,输入端的谐波会通过输入电源线对公用电网产生影响。 什么是谐波 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。 谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次谐波与奇次谐波,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为100Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。谐波定义示意图如图1所示。 一、谐波的产生 从结构来看,变频器可分为间接变频和直接变频两大类。间接变频将工频电流通过整流器变成直流,然后再经过逆变器将直流变换成可控频率的交流。直接变频器则将工频交流变换成可控频率的交流,没有中间的直流环节。它的每相都是一个两组晶闸管整流装置反并联的可逆线路。正反两组按一定周期相互切换,在负荷上就获得了交变输出的电压U0,U0的幅值决定于各整流装置的控制角,频率决定于两组整流装置的切换频率。目前应用较多的还是间接变频器。 间接变频有三种不同的结构形式:(1)用可控整流器变压,用逆变器变频,调压和调频分别是在两个环节上进行,两者要在控制电路上协调配合。(2)用不控整流器整流斩波器变压、逆变器变频,这种变频器整流环节用斩波器,用脉宽调压(3)用不控整流器整流,PWM逆变器同时变频,这种变频器只有采用可控关断的全控式器件(如IGBT等)输出波形才会非常逼真的正弦波。

变频器的谐波干扰与抑制及参数设定

变频器的谐波干扰与抑制 变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。 1.变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 2.抑制谐波干扰常用的方法 谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源或被干扰的线路进行屏蔽。具体常用方法:(1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。(2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。(3)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。(4)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。(5)变频器使用专用接地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。这样能有效抑制电流谐波对邻近设备的辐射干扰。 3.抑制谐波干扰实例 例1,某变频切换控制系统,变频器启动运行正常,而邻近液位计读数偏高,一次表输入4mA时,液位显示不是下限值;液位未到设定上限值时,液位计却显示上限,致使变频器接收停机指令,迫使变频器停止运行。 这显然是变频器的高次谐波干扰液位计,干扰传播途径是液位计的电源回路或信号线。解决办法:将液位计的供电电源取自另一供电变压器,谐波干扰减弱,再将信号线穿入钢管敷设,并与变频器主回路线隔开一定距离,经这样处理后,谐波干扰基本抑制,液位计工作恢复正常。 例2,某变频控制液位显示系统,液位计与变频器在同一个柜体安装,变频器工作正常,而液位计显示不准且不稳,起初我们怀凝一次表、二次表、信号线及流体介质有问题,更换所有这些仪表、信号电缆,并改善流体特性,故障依然存在,而这故障就是变频器的高次谐波电流通过输出回路电缆向外辐射,传递到信号电缆,引起干扰。 解决办法:液位计信号线及其控制线与变频器的控制线及主回路线分开一定距离,且柜体外信号线穿入钢管敷设,外壳良好接地,故障排除。 例3,某变频控制系统,由两台变频器组成,且在同一柜体内,变频器调频方式均为电位器手调方式,运行某一台变频器时,工作正常,两台同时运行时,频率互相干扰,即调节一台变频器的电位器对另一台变频器的频率有影响,反过来也一样。开始我们认为是电位器及控制线故障,排除这种可能后,断定是谐波干扰引起。 解决办法:把其中一只电位器移到其他柜体固定,且引线用屏蔽信号线,结果干扰减弱。为了彻底抑制干扰,重新加工一个电控柜,并与原柜体一定距离放置,把其中的一台变频器移到该电控柜,相应的接

谐波治理的工作原理

谐波治理的工作原理 电网谐波对电气设备的正常运行危害很大,它可导致电容器过流损坏、电动机柜不稳、继电保护装置误动、计算机等敏感电器发生功能错误等。 向电网注入谐波电流的电气设备主要有晶闸管电路和功率变频装置,家用电器如电视机等也产生谐波电流。 当谐波电流超出规程允许值,或者谐波电流虽然不大、但电气设备受到干扰时,通常应采取技术措施加以防治,例如提高谐波源设备的电压等级、对谐波源设备集中供电、改变其工作时间等。但是上述方法并不能保证完全奏效,同时还要付出相应得改造费用。 解决谐波问题的最佳途径有二,一是设置失谐滤波回路,二是设置调谐滤波回路。二种方法各有侧重。失谐滤波回路以无功补偿为主,同时对谐波具有抗拒作用,不使谐波对无功补偿设备产生危害。调谐波回路以滤除谐波为主,同时兼有无功补偿作用。 工作原理 1.1谐波电流 如果用户安装有晶闸管变流器设备,则会产生以下问题: A.变流器需要感性无功功率 B.向电网注入谐波电流 由于变流器的控制角a的作用,使电流和电压发生相位移,形成感性无功功率QL,QL 最大值为变流器的额定功率。 变流器除了需要无功功率外,还向电网注入谐波电流,其频率由变流电路的脉动数P(即一个电网周期内的换向次数)决定。例如最常用的三相桥式电路,其脉动数批P=6。 通过对变流器网侧电流进行傅立叶分解,除了含有基波电流外,还含一系列的谐波电流,。特征谐波电流的次数为 Hc=kp±1 P:变流器脉动数 K:正整数123……… 谐波电流在电网阻抗上产生同频率的电压降,并叠加在基波正弦电压上,使电压发生畸变。 在接有谐波源负载的电网上直接连接电容器,会出现其他方面的问题。 因为电容器容抗和电网阻抗形成一个并联谐振回路,在谐振频率下其阻抗达到很高的数值。如果谐波电流频率与并联谐振频率相同或接近,则导致产生很高的电压降,电网和电容器支路流过很大的谐波电流,其数值甚至达到电网原有谐波电流的数十倍,称为谐波放大。谐波放大可导致电器设备、尤其是电容器的损坏。 2.2谐波治理的方案 2.2.1K型: 为了避免谐振现象,需要在电容器支路中串联电抗器,以形成串联谐振频率回路,谐振频率在电网最低次谐波频率以下。通常电抗器阻抗为电容器容抗的6-7%。这种电容器串联电抗的回路称为失谐滤波回路,主要用于防止谐振,保护电容器,只吸收少部分的谐波电流,以无功补偿为主要目的。 失谐滤波装置的主要特点: A.补偿基波无功功率为主; B.防止谐振,保护电容器; C.吸收少部分谐波电流。 2.2.2 R 型 如果变流器功率大于总功率的30%,或者电网谐波含量超过有关标准规定的极限值,则

相关主题
文本预览
相关文档 最新文档