当前位置:文档之家› 灌溉水利用系数

灌溉水利用系数

灌溉水利用系数
灌溉水利用系数

灌溉水利用系数综合测定法

□ 许建中赵竞成高峰黄修桥李英能

摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。

关键词灌溉利用系数综合测定法

灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。

一、典型渠道的选择及要求

1.选择具有代表性的典型渠道

典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。

2.测流断面的选

应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。

3.测量方法的选择

测定时尽量采用流速仪表、量水建筑物测流,采用其他方法时,要用流速仪来率定。

4.测定条件要求

应在实际灌溉运行条件下测定流量及水量。测段内分水口正常分水,测量时段内渠道(渠段)流量应尽可能保持稳定。

5.测量渠道数量的选择

为减少工作量,可采取抽样测量,衬砌与未衬砌渠道分别进行测量,各级渠道按表1确定测渠数量。

对于井灌区,以县域为单位,以井为单元进行抽样测定。每个县域的典型井数为6眼井,其中3眼井为已建节水灌溉工程,3眼井为未建节水灌溉工程。井的选择要有代表性,应接近全县渠道防渗率和工程完好率的平均水平;测定时井的运行状态应为正常灌溉情况下的一般状态。

6.测量典型渠段长度要求

流量小于1m3/s时,渠段长度不小于lkm;流量为1~l0m3/s时,渠段长度不小于3km;流蛆为l0~30m3/s时,渠段长度不小于5km;流量大于30m3/s时,渠段长度不小于l0km。

二、典型渠道单位长度的输水损失率δ典渠道的计算

1.典型渠道(渠段)测量时段内损失水量计算

测量时段内的损失水量W损失为:

W损失=W首-W尾-ΣW i±△W渠(1)

式中:W首为测量时段内典型渠道(渠段)首部测量断面的累计水量;W尾为测量时段内典型渠道(渠段)尾部测晕断面的累汁水量;ΣW i为测量时段内正常运行的下级渠道测量断面的累计水量;△W渠为测量始末典型渠道(渠段)蓄水量的变化,增加的情况取“-”号,减少的情况取“+”号。

要求水位、流量在测量时段内基本恒定,渠段首部、分水口及渠段尾部可同时测量。

2.典型渠段的输水损失δ典段。

典型渠段的输水损失率等于典型渠段测量时段内损失水量与渠段上游断面的累汁水量之比,即:

W典段=W损失/W首(2) 3.典型渠道单位长度的输水损失率δ典渠道

实际渠道不论是按续灌方式运行还是按轮灌方式运行,都是在分水情况下运行,流量自渠首至渠尾逐渐减小,单位长度的损失水量也相应减少,故由典型渠段的输水损失率计算实际渠道单位长度输水损失率时,必须进行换算。典型段选定后,影响渠系水利用系数的因素主要有流量变化情况、沿程分水情况及典型段选择的位置情况。因此,根据灌区实际测量验证,引入k1、k2、k3三个修正系数,典型渠道单位长度的输水损失率可由下式计算:

δ典渠道=[k2+k3(k1-1)(1-k2)]·δ典段/L典渠段(3) 其中:

(4)

式中:L典渠段为典型渠段的长度,若测量段为整条典型渠道时L典渠段为整条典型渠道的长度,km。k1为输水系数,Q o为渠首流量,Q e为渠尾出流流量。k2为分水系数,实际渠道的分水情况是很复杂的,为便于应用,简化为线性分水,即假定换算到单位渠长上的分水量,自渠首至渠尾呈直线变化;如果实际渠道接近均匀分水,即上下游控制面积区别不大,则:k2=0.5;B为渠道控制区的平均宽度;△B为在控制区宽度呈线性变化的假定下,首部与尾部的宽度差。K3为位置修正系数,L1为典型渠段中心点到典型渠道渠首的距离,L为典型渠道的长度。

1.渠道水利用系数η渠道

首先计算渠道单位长度的辅水损失率率σ渠道,渠道单位长度的辅水损失率等于所选该级各典型渠段输水损失率σ典渠道i按渠道长度L典渠道i进行加权平均的计算值,即:

σ渠道=Σσ典渠道i L典渠道i/ΣL典渠道i(5)

则,某级渠道的输水损失率δ渠为:

σ渠=σ渠道L渠(6)

式中:L渠渠为该级渠道的平均长度(km),即该级渠道的总长度除总条数。

因此,某级渠道的渠道水利用系数η渠道为:

η渠道=1-δ渠(7)

2.田间水利用系数η田间

根据《节水灌溉技术规范》(SL207-98),田间水利用系数应按下式进行计算:

η田间=mA/W农净(8)

式中:η田间为田间水利用系数;A为农渠控制的实灌面积,W农净为一次灌溉农渠放出的总水量,m为设计净灌水定额。

充分灌溉为在作物生育期完全按高产需要水量灌溉。充分灌溉时,根据作物主要根系活动层确定不同作物不同生育期的计划湿润层深度,据此校核设计净灌水定额。稻区田间水利用系数可取0.95以上。非充分灌溉为在作物生育期部分地按生长需要实施灌溉。非充分灌溉的判别应根据作物需水量和有效降雨量、土壤水分消耗、灌溉定额等参数确定。即非充分灌溉条件下的设计净灌水定额可取实际亩均毛灌水量的90%~95%,即非充分灌溉条件下的田间水利用系数可取为0.9~0.95,亏缺量大时取上限,亏缺量小时取下限。

也可在灌区中选择有代表性的地块,通过实测灌水前后(2天左右)土壤含水量的变化,计算净灌水定额,算出田间水利用系数。

3.灌溉水利用系数η水

灌溉水利用系数等于渠系水利用系数η渠与田间水利用系数η田间的乘积,即:

η水=η渠η田间(9)

1.渠道越级输水的修正

在灌区中存在越级渠道输水现象时,应进行修正,使计算结果更加符合实际。设根据不同的越级状况,渠系组成类型有m种,对应的灌溉面积为A1、A2…A m;则渠道越级输水修正后的灌溉水利用系数为:

η水=l/(f1/η1+f2/η2+…+f m/ηm) (10)

式中:η1、η2…ηm,为对应于A1、A2…A m的灌溉水利用系数;f1,f2…f m分别为A1、A2…A m占总面积的权重。

2.渠道布置形式的修正

在非等效并联渠道中,同级渠道的渠道水利用系数不相等,流量也不相同。渠系水利用系数不能用各级渠道水利用系数相乘的积来计算。对于i、j上下两级非等效并联渠道,其渠系水利用系数应按下式计算:

ηij=ηiΣ(d kηjk) (k=1,2…m)(11)

式中:ηij为i、j两级渠系的渠系水利用系数;d k为下级第k条渠道的毛流量占下级渠道总毛流量的权重;ηi为上级渠道的渠道水利用系数;ηjk为下级第k条渠道的渠道水利用系数。

对非等效并联渠道的渠系水利用系数修正后,与田间水利用系数相乘即可得到灌溉水利用系数。

五、灌溉水利用系数的校核

1.首尾测定法计算灌溉水利用系数

在灌区中根据自然条件、作物种类的不同,选择典型灌溉地块,测定灌区每次灌水时,渠首引进的水量和作物净灌水定额以及实灌面积,用下式计算灌溉水利用系数η水:

(12)

式中:m i为第i种作物的净灌水定额;A i为第i种作物的实灌面积;W为渠首总引水量;n为灌区作物种植种类。

也可通过实测灌水前后2天左右内土壤含水量的变化,计算净灌水定额,算出灌溉水利用系数:

η水=Σ102(β2i-β1i)γi H i A i/W (13)

式中:β1i、β2i为第i种作物灌水前、后计划湿润层的土壤含水率(以干土重的百分数表示);γi为种植第i种作物的土的干容重,t/m3;H i为种植第i种作物的计划湿润层深度,m。

灌溉水利用系数传统测定方法存在问题及影响因素分析

口许建中赵竞成高峰黄修桥李英能

摘要灌溉水利用系数包括渠系水利用系数和田间水利用系数。由于灌区渠系复杂、级数多,不同地区有不同的地貌、水文及土壤条件,采用传统的动水测定法或静水测定法所获得的灌溉水利用系数均不能反映灌区一段时期甚至当年的实际灌溉水利用情况。加强对灌溉水利用系数测量工作,才能真实了解灌溉水利用程度,科学指导农业灌溉。

关键词灌溉水利用系数测定方法影响因素

灌区的灌溉水利用系数是衡量灌区从水源引水到田间作物吸收利用水的过程,灌溉水利用程度的一个重要指标,也是集中反映灌溉工程质量、灌溉技术水平和灌溉用水管理水平的一项综合指标。目前统计出的灌溉水利用系数差异很大,有的仅有0.2,而有的高达0.78,很多数据明显地存在错误,难以正确制定地区发展规划,也难以有针对性地指导全国节水灌溉的发展。

一、灌溉水利用系数的传统测定方法

灌溉水利用系数是指从水库、河流引来或提取的地表水,或用水泵从井内提取的地下水,通过采用必要的工程技术措施,引水到田间被作物吸收利用的程度。亦指在一次灌水期间被农作物利用的净水量与水源渠首处总引进水量的比值。灌溉水从水源引入到田间作物吸收利用,在这个过程中的水量损失,可分解成渠系输水损失和田间灌水损失两部分。相应地灌溉水利用系数可分解为渠系水利用系数和田间水利用系数两部分。

渠系水利用系数反映了从渠首到末级渠道的各级输、配水渠道的输水损失,表示了整个渠系的水的利用率,其值等于各级渠道水利用系数的乘积。渠道水利用系

数等于该渠道同时期放人下一级渠道的流量(水量)之和与该级渠道首端进入的流量(水量)的比值。可分别用下式计算:

η=W j/W0=ηqηt(1)

ηq=ηgηzηdηn(2)

ηS=ΣQ X/Q S=ΣW X/W S(3)

式中:η为灌区灌溉水利用系数;W j为灌溉时能够被农作物利用的净水量;W0为渠首引入的总水量;ηq为渠系水利用系数;ηt为田间水利用系数;ηg、ηz、ηd、ηn分别为干、支、斗、农渠的加权平均渠道水利用系数;ηS为渠道水利用系数;ΣQ X、ΣW X分别为该级渠道同时期放人下一级渠道的流量、水量;Q S、W S分别为该级渠道首端进入的流量、水量。

对于井渠结合灌区应分别算出井灌水利用系数和渠灌水利用系数,然后根据井灌的地下水利用量与渠灌的渠首引水量进行加权平均:

η=(W1η1+W0ηq)/(W1+W0) (4) 式中:W1为灌溉时井灌的地下水利用量;η1为井灌灌溉水利用系数。

计算某级渠道的加权平均渠道水利用系数时,应用同级各条渠道实测的正常流量值与相应的渠道水利用系数的乘积求得,即:

ηS=Σ(Q iηi)/ΣQ i(i=1,2,…,n) (5)

式中:Q i为某级渠道的第i条渠道实际流量;ηi为某级渠道的第i条渠道的水利用系数。

田间水利用系数为灌溉水贮存到作物计划湿润层中的净水量与从渠系末端进入田间水量的比值。即:

ηt=W j/W t=m j A j/W t(6)

式中:m j为设计净灌水定额(m3/hm2);A j为末级固定渠道控制的实灌面积(hm2);W t为末级固定渠道放出进入田间的总水量(m3)。

渠道损失水量测定方法分为动水测定法及静水测定法。

1.动水测定法

根据渠道沿线的水文地质条件,选择有代表性的渠段,中间无支流,其长度应满足以下要求:流量小于lm3/s时,渠道长不小于lkm;流量为1~l0m3/s时,渠道

长不小于3km;流量为10~30m3/s时,渠道长不小于5km;流量大于30m3/s时,渠道长不小于l0km。观测上、下游两个断面相同时段的流量,其差值即为损失水量。

2.静水测定法

选择一段具有代表性的渠段,长度50~l00m,两端堵死,渠道中间设置水位标志,然后向渠中充水,观测该渠段内水位下降过程,根据水位变化即可计算出损失水量和渠系水利用系数。

渠段的水量损失测出后,换算成单位长度水量损失率σ,即可计算出渠道水利用系数:

ηS=1-σL (7) 式中:L为渠道长度(km)。

田间水利用系数的测定法。在灌区中选择有代表性的灌溉地块,通过实测灌水前后1-3天内土壤含水量的变化,计算净灌水定额,用下式算出田间水利用系数:

ηt=102(β2-β1)γHA j/W t(8)

式中:β1、β2分别为灌水前后作物计划湿润层的土壤含水率(以干土重的百分数表示);γ为土的干容重(t/m3);H为作物计划湿润层深度(m);其余符号意义同前。

水稻如采用旱作栽培,则田间水利用系数的计算和测定方法同上;如采用淹灌,则净灌水定额为灌后达到田面设计水层深度增加的水量与稳定渗漏量之和。

二、传统测定方法存在的问题

1.测定工作量很大

一个灌区的固定渠道一般都有干、支、斗、农4级,大型灌区级数更多,而每一个级别的渠道又有多条,特别是斗、农渠数量更多,计算某级渠道的加权平均渠道水利用系数时,测定工作量很大。灌溉地块自然条件和田间工程情况也存在差异,要取得较准确的田间水利用系数,需要选择众多的典型区进行测定。可见,无论是渠系水利用系数,还是田间水利用系数,测定工作量都很大。如广西壮族自治区为了摸清渠系水利用系数,为农田水利管理与建设提供科学依据,曾在20世纪80年代初期采用传统的动水测试法对全区22个重点灌区进行了渠系水利用系数测试,当时投资了88万元,累计实测灌区各级渠道长5923.2km,实测渠段2640段,参加测试人员达3850人。

2.测试条件要求严格,难以保证

对于灌区来讲,要在面广渠多的灌溉用水情况下停止供水来进行静水测试是难以做到的,一般采用动水测试法进行全面测试。采用动水测试法测定渠道水利用系数时,需要有稳定的流量,测渠段中间无支流,下一级渠首分水点的观测时间必须和水的流程时间相适应,这些必要条件难以做到。

3.要求掌握测试技术的人员较多

大多数灌区不常进行灌溉水利用系数的测算,测流设备较少,掌握测流技术的人员也较少。对于灌区来讲,进行一次全面的灌溉水利用系数测量,需要大量的人员掌握测试技术,这对于许多灌区是难以达到的。如广西壮族自治区在对22个灌区进行灌溉水利用系数测量时,举办了14期测流培训班,参加学习人员达560人次。

4.灌溉水利用系数的代表性较差

灌区不同的水文年或不同时期的来水和用水情况不同,渠首引进的流量或水量亦不相同,灌区的实灌面积也不相同,因此灌溉水利用系数每次灌水都不相同。目前灌区只用某次测定计算得出的灌溉水利用系数来代替所有的情况,不能反映灌区一段时期、甚至当年的实际灌溉水利用情况。目前我国灌区正在实施以节水为目标的技术改造,渠道防渗、田间节水灌溉技术的应用使灌区的灌溉水利用系数也随之改变,以往测定的灌溉水利用系数就更缺乏代表性,而随着不断改造的渠道状况的变化,利用传统测定方法,进行一次次地测定又难以做到。

三、灌溉水利用系数的影响因素

灌溉水的水量损失主要有:①渗水损失。包括各级输水渠道通过渠底、边坡土壤空隙渗漏的水量和田间深层渗漏的水量。②漏水损失。包括由于地质条件、生物作用或施工不良而形成漏缝或裂隙损失的水量,或因管理不善引起的田面流失及泄水损失,工程失修引起的建筑物漏水等原因造成的水量损失,这是应该在施工、管理中加以避免的。③蒸发损失。沿渠道水面蒸发的水量,可根据水面蒸发资料及渠道总水面积近似求得,其量很小,可以忽略不计。在这三种输水损失中,渗水损失最大,漏水损失次之,水面蒸发损失最小。据河南省人民胜利渠的试验资料,三者分别占总输水损失的81%、17%和2%。

灌溉水的水量损失,直接影响着灌溉水的利用程度,因此,灌溉水利用系数的影响因素从灌溉水量损失方面来考虑主要有防渗措施、土壤质地及地下水埋深、灌区类型、灌区地理位置、灌区规模、渠道级别及灌溉技术等。

1.灌区规模的影响 灌区规模也就是灌区各级渠道的数量、长度以及渠道的输水流量。一般来讲,

大,各级渠道的数量和长度必然增多,用系数就大。表1 南方某地区实测不同规模

灌区渠系水利用系数情况

水利用系数情况见表1。

2.渠道级别的影响

灌区的干、支、斗等各级渠道由于断面大小、长度、斗闸门完好率、土壤、地形、水文地质、防渗衬砌长度以及管理养护水平的不同,直接影响到渗漏损失的大小,渠道有效利用系数也就不同。从表1中可以看出,南方某地区斗渠的渠道水利用系数较高。其原因是该地区绝大部分的斗渠比干、支渠都短,有的出水口直接灌水到田间,输水损失较小,其有效利用系数就高。而该地区干、支渠都是盘桓于山丘坡地间,未进入田间,渠道渗漏损失较大,而干渠防渗率较支渠高,多数支渠未作防渗衬砌,渗漏损失比干渠大,同时在管理工作上也往往比较重视干渠的管理养护及用水管理,这就造成了该地区支渠的渠道水利用系数比干渠和斗渠低的情况。

3.不同地区的影响

不同地区的地形地貌不同、水文地质条件不同,对灌溉水利用系数的影响也不同。土层瘠薄、砂质土壤多、透水性强、不易蓄水的地区,渠道渗漏损失较大,灌溉水利用系数就较低。而土层覆盖较厚、黏性土壤多、地下水位比较浅、地势较平坦的地区,渠道渗漏损失较小,灌溉水的利用系数也就较高。同时,不同地区或同一地区不同年份的水文气象条件不同,其对灌溉水利用系数的影响也不同。因此,较大范围地区的灌溉水利用系数应由该范围内不同灌区、不同代表年的灌溉水利用系数进行加权平均求得,否则,其代表性就较差。

4.不同防渗措施的影响

渠道不同的防渗标准直接影响着渠系水利用系数。南方某地区两个灌区对不同防渗措施进行了渠道水利用系数的测定,结果表明,在同一渠段,渠道的水文地质及管理水平等都相同的情况下,防渗前后每公里渠道水利用率具有明显的变化,而且,不同防渗措施的渠道水利用系数相差也较大,见表2。表2 南方某地区两个灌区不同防渗措施

渠道水利用系数

5.不同灌区类型的影响

灌溉工程一般有蓄水工程、引水工程以及提水工程等类型。一般情况下,引水工程的管理条件比蓄水工程差,工程质量也较差,而提水工程渠道防渗衬砌较好,用水管理制度也较健全,管理也比蓄水及引水灌区好,所以提水工程的渠系水利用系数普遍比蓄水工程及引水工程灌区高。另外,输水渠道中填方渠道比挖方渠道的渠道水利用系数要小,这是因为填方渠道比原地面高,土壤颗粒松散,向渠外自然形成较大的水力坡降,渗漏排水快,造成输水损失大。灌区面积越集中,灌溉水利用系数越大;灌区面积分散,成长条状的,输水渠道必然较长,沿途输水损失也就加大,渠系水利用系数相应就小。

灌溉水利用系数的计算方法

灌溉水利用系数的计算方法 灌溉水利用系数在水土平衡与渠道设计流量分析中使用。 一、用模式分析法计算渠道灌的灌溉水利用系数 1计算公式 (1)灌溉水利用系数:η= 式中:——渠系水利用系数,可用各级渠道水利用系数连乘 求得。 ——田间水利用系数。 (2)渠道水利用系数 在无实测资料时按下式计算: =1- 土渠: = 衬砌渠:= 式中:——渠道单位长度水量损失率(%、km) L——渠道长度(km) K——土壤透水性系数,可从表3、1、9-1查得 m——土壤透水性指数,可从表3、1、9-1查得 ——衬砌渠道渗水修正系数,可从表3、1、9-3查得2 参数选择 (1)设计净流量: 1)干渠:Q净=q s A干=0、3682、46=0、972m3/s

2)支渠:Q净==m3/s 3)斗渠:Q净=n Q农净=20、091=0、182 m3/s 4)农渠:Q净= ==0、091 m3/s (2)渠道长度: 1)干渠:1条,长12、6km砼板防渗结构,灌溉面积2、64万亩。标准条田规格:长宽=700250=262、5亩拆合标准条田100块 2)支渠:4条,总长7、6km,平均长1、9km,平均灌溉面积0、66万亩,拆与标准条田25块 3)斗渠:14条,总长21km,平均长1、5km,平均灌溉面积0、1886亩,拆与标准条田7块 4)农渠:100条,总长0、65km,平均长度0、65km (3)m、k、的选择 查表3、1、9-1沙壤土:K=3、4,m=0、5 查表3、1、9-3干渠砼板衬砌:=0、15-0、05,取=0、10 支渠浆砌石衬砌:=0、20-0、10取=0、15 3、渠道水利用系数计算 利用渠道净流量、渠道长度及选择的参数计算各渠道水利用系数,考虑到蒸发损失,管理损失及衬砌渠道在使用期防渗性能降低等因素,并结合现场调查,对计算值作适当调整作为采用值。 渠道水利用系数 渠道Q L

灌溉水利用系数

灌溉水利用系数综合测定法 □ 许建中赵竞成高峰黄修桥李英能 摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。 关键词灌溉利用系数综合测定法 灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。 一、典型渠道的选择及要求 1.选择具有代表性的典型渠道 典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。 2.测流断面的选 应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。 3.测量方法的选择

【精品】灌溉用水有效利用系数分析指南

《全国灌溉用水有效利用系数测算分析技术指南》及调查表 全国灌溉用水有效利用系数测算分析技术指南 1目的及意义 我国水资源不足,供需矛盾突出,已成为经济社会可持续发展的关键制约因素.加快建设资源节约型、环境友好型社会,实现经济发展与人口、资源、环境相协调,是今后一项长期而紧迫的任务.目前,全国灌溉用水量约占总用水量的60%以上,灌溉面积的98%为地面灌溉,灌溉方式粗放,灌溉水的利用率和利用效益较低,因此,灌溉节水是建设节水型社会的首要内容。《中华人民共和国国民经济和社会发展第十一个五年规划纲要》明确要求,到“十一五"末全国农业灌溉用水有效利用系数提高到0。5(预期性指标)。《全国水利发展“十一五”规划》确定,到2010年全国农业灌溉用水有效利用系数提高到0.50左右。 灌溉用水有效利用系数指灌入田间可被作物利用的水量与灌溉系统取用的灌溉总水量的比值,其与灌区自然条件、工程状况、用水管理、灌水技术等因素有关,是评价灌溉用水效率的重要指标。跟踪分析灌溉用水有效利用系数变化情况,合理评价节水潜力与节水灌溉发展成效,对于促进灌溉节水健康发展具有重要意义。根据水利部关于开展“十一五”期间全国灌溉用水有效利用系数测算分析的有关要求和部署(水农[2006]617号),为了统一和规范全国灌溉用水有效利用系数测算分析方法和步骤,促进该项工作有序开展,特制定本技术指南。

2技术路线 全国灌溉用水有效利用系数采用点与面相结合、调查统计与观测分析相结合、微观研究与宏观分析评价相结合的方法进行测算分析。 各省(区、市)在对灌区综合调研的基础上,选择代表不同规模与类型(大、中、小型灌区和纯井灌区,下同)的典型灌区作为样点灌区,搜集整理样点灌区有关资料,并开展必要的田间观测,通过综合分析,得出样点灌区灌溉用水有效利用系数;以此为基础,得到不同规模与类型灌区的灌溉用水有效利用系数平均值;分析计算出各省(区、市)平均值;最后,由省(区、市)数据推算全国的

2003年黄河水资源公报

2003年黄河水资源公报 水利部黄河水利委员会 前言 《黄河水资源公报》(以下简称《公报》)的发布,旨在定期向各级领导、有关部门和社会团体发布黄河流域水资源情势,以不断提高公众的节水、惜水意识,促进黄河水资源的合理开发、利用与保护。 本《公报》是按年度反映黄河水资源情势的综合性年报,内容主要包括水情概况、蓄水动态、水资源开发利用、水资源量分析、水质调查评价、泥沙状况及重要水事等。 《公报》的资料来源以黄河水利委员会和沿黄各省(区)的实测数据和水利统计资料为主,并收集了气象、城建、环保、统计等部门的有关资料。《公报》中有关资料的多年平均值分为21年(1980~2000年均值)和45年(1956~2000年均值)两种。 《公报》编制过程中,得到了青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东等省(区)水利厅的大力支持。水利部水资源司、《中国水资源公报》编辑部给予了热情指导和支持,在此一并表示感谢。 一、综述 黄河流域(包括黄河内流区,下同)总面积79.5万km2,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东等九省(区)。全河划分为龙羊峡以上、龙羊峡至兰州、兰州至头道拐、头道拐至龙门、龙门至三门峡、三门峡至花园口、花园口以下、黄河内流区(分别简称为龙以上、龙~兰、兰~头、头~龙、龙~三、三~花、花以下和内流区,下同)等流域分区。黄河流域行政和流域分区面积示意图分别见图1和图2。

2003年黄河流域降水明显偏多,平均降水量为555.6mm,折合降水总量4417.0亿m3。从降水量的地区分布看,三门峡至花园口区间最大。汛期降水量增加尤为明显,全流域汛期降水在持续6年(1997~2002年)偏少后,转为多雨年。汛期流域总降水量全部为正距平。除兰州以上偏多1.3成外,其余地区偏多都在3成以上。其中泾渭洛河和三花区间汛期降水总量超过了1958年,为历史同期第一位。从汛期各月降水变化来看,月降水量偏多的程度(指距平值)呈递增的趋势,以8、9月份偏多最为突出,流域各分区月降水量偏多均在4成到1.5倍。 2003年黄河花园口站以上地区水资源总量为684.06亿m3,其中地表水资源量575.42亿m3,与地表水不重复的地下水资源量108.64亿m3。分别比上年水资源总量和与地表水不重复的地下水资源量增大69.7%和5.7%,比1980~2000年均值偏多14.9%和23.3%,比1956~2000年均值偏多10.2%和23.2%。 2003年黄河流域共有大、中型水库148座,其中大型水库22座。大、中型水库年蓄水变量为144.13亿m3,其中大型水库年蓄水变量为139.87亿m3。 2003年黄河流域各平原(盆地)区浅层地下水位上升者居多,仅有宁夏的银川(包括银南、银北)平原、内蒙古巴盟河套平原、三门峡河谷平原地下水位略有下降,其他平原(盆地)区地下水位均有不同程度的上升。 2003年黄河总取水量为429.12亿m3(含跨流域调出的地表水量),其中地表水取水量296.04亿m3,地下水取水量133.08亿m3。黄河总耗水量为336.45亿m3,其中地表水耗水量243.57亿m3,,地下水耗水量92.88亿m3。 2003年黄河流域废污水排放量为41.46亿t,其中城镇居民生活废污水排放量为9.46亿t,第二产业为29.33 亿t,第三产业为2.67亿t,火电厂直流式冷却水排放量和矿坑排水量为2.18亿t。

渠系水利用系数、灌溉水利用系数计算方法

渠系水利用系数、灌溉水利用系数 近十几年来,随着水文业务范围的不断拓宽,区域水资源评价和水资源论证工作已成为水文部门的主要业务工作之一。而在水资源评价和论证工作中,往往要用到渠道、渠系和灌溉水利用系数,为使有关技术人员正确理解和掌握这一知识,现根据有关书籍及有关水资源评价细则中的规定,对渠道、渠系和灌溉水利用系数简介如下: 1、渠系的组成 完整的输配水灌溉渠道包括干渠、支渠、斗渠、农渠和毛渠。其中,农渠以上输配水量称为渠系水,农渠以下输配水量称为田间水。 2、渠道水利用系数 某渠道的出口流量(净流量)与入口流量(毛流量)的比值,称为渠道水利用系数。换言之,某渠道下断面的流量与上断面流量的比值,称为该段渠道的渠道水利用系数。也就是说,渠道水利用系数反映的是单一的某级渠道的输水损失,公式表示如下: η渠道=Q净/Q毛=Q下/Q上

3、渠系水利用系数 渠系水利用系数反映了从渠道到农渠的各级输配水渠道的输水损失,表示了整个渠系的水的利用率,其值等于同时工作的各级渠道的渠道水利用系数的乘积,公式表示如下: η渠系=η干渠×η支渠×η斗渠×η农渠 4、田间水利用系数 是指农渠以下(包括临时毛渠直至田间)的水的利用系数η田间。若在田间工程配套齐全,质量良好,灌水技术合理的情况下,田间水利用系数可达到0.90,而水田可达到0.90~0.95。 5、灌溉水利用系数 全灌区的灌溉水利用系数(η灌溉水)为田间所需的净水量与渠首引入水量之比,或等于渠系水利用系数与田间水利用系数的乘积。公式表示如下: η灌溉水=Q田间净/Q渠首引=η渠系水×η田间水

灌溉水有效利用系数(effective coefficient of irrigative water utilization) 灌溉期内,灌溉面积上不包括深层渗漏与田间流失的实际有效利用水量与渠道头进水总量之比,以η水表示。它由渠系水利用系数与田间水利用系数两部分组成。从末级固定渠道(一般为农渠)的渠尾进入毛渠的水量总和与渠首同期进入总量的比值,通常以η渠系表示,具有下列关系:η渠系=η干·η支·η斗·η农 式中:η干、η支...分别表示干渠、支渠...的渠道水利用系数。 计划湿润层内实际灌入的水量与进入毛渠的水量的比值称为田间水利用系数,通常以η田表示。灌溉水有效利用系数应等于渠系利用系数与田间水利用系数的乘积,即η水=η渠系·η田。 灌溉水利用系数(又称灌溉水利用率),是指灌入田间的有效水量与灌溉水源引进的总水量的比值。渠系水利用系数是指各级固定渠道水利用系数的乘积或末级固定渠道放出的总水量与渠首引进的总水量的比值。“十五”时期灌溉水利用系数从0.43提高到0.45。 灌溉水利用系数

2000年水资源公报

年水资源公报 一、概述 年全区年平均降水量为214mm,折合降水总量为亿,比上年减少,较多年平均值少。属枯水年。 当地水资源亿,比年减少,比多年平均减少。 全区总取用水量亿,比年亿减少,用水量减少主要是年农业灌溉用水水价调整和加强了灌溉管理与节水力度,农业取用水减少。工业取用水由于石嘴山电厂由年的亿的黄河水减少到年的亿,虽然其它工业用水有所增加,但工业取用水总量较年减少亿。城镇生活和农村生活取用水量均有所增加。全区耗水总量亿,比年减少亿,其中农业耗水减少亿,其它耗水量均有所增加。 年黄河干流宁夏段入境水量为亿,出境水量为亿,进出境水量差亿。农业取用黄河水量亿,较年减少亿;灌区排水量亿,减少亿;耗水量(黄河水量)亿,减少亿。 二、水资源 (一)降水量 年宁夏全区年平均降水量214mm,折合降水总量为亿, 比上年减少,较多年均值减少,属枯水年。年降水量的地区分布极不均匀,由南向北递减,固原地区平均降水量最大339mm,银

川市次之为172mm,吴忠市、石嘴山市相对接近,分别为154mm、140mm。各流域分布:葫芦河最大为380mm,泾河次之366mm,黄河灌区仅146mm。六盘山、南华山、云雾山、罗山、贺兰山为相对高值区,中心雨量分别为500mm、400mm、400mm、200mm、200mm,较往年明显偏小。年全区降水量的地区分布状况见附图。 按流域分区和行政分区统计:与多年均值相比,各河、各流域减少,各行政分区降水量减少。与去年比,各河减少,各行政分区减少。(见表、表) (二)地表水资源 年全区天然地表水资源量为亿,折合径流深11.3mm,比多年平均地表水资源量偏少,比年减少(见表)。 地区分布:年径流深分布不均匀,全区年径流深变化在之间,分布趋势与降水量相对应。高值区主要有两个,贺兰山中心径流深,与去年接近;六盘山中心径流深,较去年明显偏少。总的趋势由南部减至黄河以南不足。北部黄河灌区径流深为,较去年明显偏少。各流域分区地表水资源量见表,年径流深分布情况见附图。 分区地表水资源量:从流域分区看:清水河最大为亿,泾河亿,葫芦河亿,比多年均值分别减少、、;黄河左岸区间亿,折合

2009年天津市水资源公报

2009年天津市水资源公报 天津市水务局

综述 2009年全市平均降水量604.3毫米,比上年度偏少5.68%,比多年平均值偏多5.11%,属于平水年份。 2009年全市水资源总量15.24亿立方米,其中地表水资源量10.59亿立方米,比上年偏少22.19%;地下水资源量5.60亿立方米,比上年偏少5.2%。地表水与地下水资源重复计算量0.95亿立方米。 2009年全市入境水量18.32亿立方米,出境、入海水量12.78亿立方米。 2009年全市十四座大、中型水库年末蓄水量5.72亿立方米,比上年增加0.39亿立方米。平原淡水区浅层地下水年末存储量比年初减少0.14亿立方米。 2009年全市总供用水量23.37亿立方米,比上年偏多1.04亿立方米。其中地表水源供水量17.21亿立方米,包含引滦水量5.76亿立方米,引黄水量1.38亿立方米;地下水源供水量6.01亿立方米;深度处理的再生水回用量0.12亿立方米;海水淡化量0.03亿立方米。按用水项目划分,生产用水量18.94亿立方米,生活用水量3.34亿立方米,生态用水量1.09亿立方米。 2009年全市人均用水量190立方米,万元GDP用水量31立方米。 2009年全市自来水供水量6.28亿立方米,售水量5.21亿立方米,管网漏失率15.7%。 2009年全市用水消耗量15.65亿立方米,耗水率67%。 2009年全市废污水排放量 5.57亿吨。2009年全市地表水水质监测河长1652.8公里,其中Ⅱ类水河长69.3公里,占评价河长的4%,Ⅲ类水32.2公里,占评价河长的2%,Ⅳ类河长68.5公里,占评价河长的4%,V类河长92.1公里,占评价河长的6%,劣V类河长1390.7公里,占评价河长的84%,全市河流污染比较严重。 主要饮用水源地于桥水库、尔王庄水库符合Ⅲ类水标准,水质良好,处于轻度富营养化。

灌溉水利用系数

灌溉水利用系数( water efficiency of irrigation ) 一、定义灌溉水利用系数是指在一次灌水期间被农作物利用的净水量与水源渠首处总引进水量的比值。它是衡量灌区从水源引水到田间作用吸收利用水的过程中水利用程度的一个重要指标,也是集中反映灌溉工程质量、灌溉技术水平和灌溉用水管理的一项综合指标,是评价农业水资源利用、指导节水灌溉和大中型灌区续建配套及节水改造健康发展的重要参考。 二、影响因素灌区灌溉用水除一部分被农作物吸收利用外,其余部分在输水、配水和灌水过程中损失掉。主要有:1. 渗水损失,包括各级输水渠道通过渠底、边坡土壤空隙渗漏的水量,以及田间深层渗漏的水量;2.漏水损失,含由于地质条件、生物作用或施工不良而导致裂缝所漏出灌区的水量;3.蒸发损失。三者分别占总输水损失的81%、17%、2%。 三、利用现状据有关部门统计分析,我国目前灌区平均水利用系数仅为0.45,节水仍有较大空间。另外,灌溉水利用系数的测定方法还有待进一步研究。 四、测定方法1、首尾测定法首尾测定法指不必测定灌溉水、配水和灌水过程中的损失,而直接测定灌区渠首引进的水量和最终储存到作物计划湿润层的水量(即净灌水定额),从而求得灌溉水利用系数。这样,可绕开测定渠系水利用系数这个难点,减少了许多测定工作量。首尾测定法,是建立在灌区进行灌溉试验的基础上,因此,也可称灌溉试验法或净灌水定额法。该方法克服了传统测定方法工作量大等缺点,适用于各种布置形式的渠系,但只是单纯为了确定灌区的灌溉水利用系数,不能分别反映渠系输水损失和田间水利用的情况。如在任何一级渠道上防渗,降低渠道透水性,提高渠道水利用系数,都会收到同样的效果。2、典型渠段测量法典型渠段测量法,首先选择具有代表性的典型渠道及测流断面,测流段应基本具有稳定规则的断面;其次选择测量方法,测定时尽量采用流速仪表、量水建筑物测流,采用其他方法时,要用流速仪来率定。 3、综合测定方法综合测定法就是将首尾测定法、典型渠道测量法及对灌溉水利用系数的修正等综合考虑的一种方法,它克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足。 五、中央文件提到的灌溉水利用系数的目标 1、2010年,我国灌溉水有效利用系数为0.5左右;(十一五规划纲要) 2、2015年我国农业灌溉用水有效利用系数达到0.53,累计增加0.03;(十二五规划纲要) 3、到2020年,农田灌溉水有效利用系数提高到0.55以上。(2011年中央一号文件) 4、到2030年,农田灌溉水有效利用系数提高到0.6以上。《全国水资源综合规划》

2005年黄河水资源公报

2005年黄河水资源公报 水利部黄河水利委员会 前言 《黄河水资源公报》(以下简称《公报》)的发布,旨在定期向各级领导、有关部门和社会团体发布黄河流域水资源情势,以不断提高公众的节水、惜水意识,促进黄河水资源的合理开发、利用、配置、节约与保护。 本《公报》是按年度反映黄河水资源情势的综合性年报,内容主要包括降水径流、蓄水动态、水资源利用、水资源量分析、水质调查评价、输沙量及重要水事等。水资源量分析以反映黄河干流水文断面成果为主。 《公报》的资料来源以黄河水利委员会和沿黄各省(区)的实测数据和水利统计资料为主,并收集了气象、城建、环保、统计等部门的有关资料。《公报》中有关资料的多年平均值分为14年(1987~2000年均值)和45年(1956~2000年均值)两种。 《公报》编制过程中,得到了青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东等省(区)水利厅的大力支持。水利部水资源管理司、《中国水资源公报》编辑部给予了热情指导和支持,在此一并表示感谢。 一、综述 黄河流域总面积79.5万km2(包括黄河内流区4.2万km2,下同),流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东等九省(区)。全河划分为龙羊峡以上、龙羊峡至兰州、兰州至头道拐、头道拐至龙门、龙门至三门峡、三门峡至花园口、花园口以下、黄河内流区(分别简称为龙库以上、龙库~兰、兰~头、头~龙、龙~三、三~花、花以下和内流区,下同)等二级流域分区。黄河流域行政和流域分区面积示意图分别见图1和图2。

图1 黄河流域行政分区面积柱状图

龙库以上16.5% 龙库~兰11.5% 兰~头 19.2% 龙~三24.0% 头~龙15.4% 三~花5.2% 内流区5.3% 花以下2.9% 图2 黄河流域分区面积比例图 2005年黄河流域平均降水量为431.0mm ,折合降水总量3426.70亿m 3,比上年降水量增大2.2%;与1987~2000年均值比较,全流域平均偏多1.0%;与1956~2000年均值比较,全流域平均偏少3.6%,总体上属平水年。 2005年黄河干流主要水文站实测年径流量与上年度比较,全部增大;与1987~2000年均值比较,唐乃亥、兰州、下河沿、高村和利津站偏大,其余各站偏小;与1956~2000年均值比较,除唐乃亥站偏大外,其余各站均偏小。 2005年黄河主要支流控制水文站实测年径流量与上年度比较,汾河河津、大汶河陈山口、沁河武陟和北洛河氵状 头站分别减小,其余各站不同程度增大;与1987~2000年均值比较,汾河河津、泾河张家山和北洛河氵状 头站分别偏少,大汶河陈山口、洮河红旗、沁河武陟、伊洛河黑石关、大夏河折桥、渭河华县和湟水民和站偏大,大通河享堂站基本持平;与1956~2000年均值比较,大汶河陈山口、大夏河折桥和洮河红旗站分别偏大,汾河河津、泾河张家山、北洛河氵状 头、沁河武陟和伊洛河黑石关站偏小,其余各站基本持平。 2005年黄河利津站实测径流量206.80亿m 3,扣除利津以下河段引黄水量2.72亿m 3,黄河全年入海水量204.08亿m 3。

灌溉水利用系数

灌溉水利用系数

————————————————————————————————作者:————————————————————————————————日期:

灌溉水利用系数综合测定法 □ 许建中赵竞成高峰黄修桥李英能 摘要对任何一种节水措施进行分析、评价都离不开灌溉水利用系数。目前,各地、各灌区给出的灌溉水利用系数不具备可比性,难以作为比较和衡量节水措施的标准。灌溉水利用系数综合测定法选择具有代表性的典型渠道,而不是只测量典型渠段,并在测流断面、测量方法、测定条件、渠道数量、典型渠段长度等方面提出具体要求,既使得测量的灌溉水利用系数比较符合实际,又使得不同灌区的灌溉水利用系数具有可比性。综合测定法测定的灌溉水利用系数需要根据渠道越级输水、渠道布置形式等情况进行修正,并用首尾测定法校核。 关键词灌溉利用系数综合测定法 灌溉水利用系数是衡量农业节水效果的关键指标。对任何一种节水技术措施进行分析、比较和评价时都不能离开灌溉水利用系数。但是,我国目前各地和各灌区所给出的灌溉水利用系数却难以作为比较与衡量的标准。从各地区来讲,目前统计出的灌溉水利用系数差异极大,很多数据明显地存在错误,影响灌溉水利用系数正常测定的主要原因是传统测定方法存在测定工作量巨大、测定条件难以保证等,急需对灌溉水利用系数进行分析研究。综合测定计算方法是在分析研究的基础上提出的,既克服了传统测量方法中工作量大,需要大量人力、物力才能完成的缺点,又弥补了只测量典型渠段而引起较大误差的不足,而且能反映出灌区渠系用水情况、灌溉工程质量及灌溉用水管理水平等。为灌区今后经常性地测量符合实际的灌溉水利用系数及指导灌区节水工程改造等提供了一种切实可行的汁算方法。 一、典型渠道的选择及要求 1.选择具有代表性的典型渠道 典型渠道应包括衬砌渠道和未衬砌渠道,其工程完好率分别接近全灌区该级衬砌和未衬砌渠道的工程完好率,过水流量接近该级渠道的平均值。典型渠段的了程完好率和过水流量应接近典型渠道的平均值。 2.测流断面的选 应选择在渠段平直、水流均匀、无旋涡或回流的地方,断面应与水流方向垂直。测流段应基本具有稳定规则的断面。全面、认真地检查拟测渠道,清除测水断面处及附近淤积物和石块等,保持测流断面的完整和通畅。

2010年四川省农业灌溉用水有效利用系数测算分析

2010年四川省农业灌溉用水有效利用系数测算分析 调查表 表1:2010年四川省(市、州)灌区统计信息调查表 表2:2010年灌区(样点)基本信息调查表 表3:2010年灌区(样点)作物与田间灌溉情况调查表表4:2010年灌区(样点)净灌溉用水量分析汇总表

附表1: 2010年四川省(市、州)灌区统计信息调查表 填表人:联系电话: 注:本表由地市州统计填写上报。 2

附表2: 2010 年灌区(样点)基本信息调查表 填表人:联系电话:

填表说明: 1、经纬度填写大致范围,如东经A°B′—C°D′,北纬E°F′—G°H′。也可以填写样点灌区大 致中心处或灌区管理单位所在地(必须在灌区范围内)的经纬度。 2、地下水埋深范围填写灌溉期间灌区平均最高、最低地下水埋深。 3、完成节水工程投资包括当年灌区骨干工程改造、田间工程建设等已完成工程投资。 4、灌区主要土质类型,根据分布面积大小按其所占百分比依次填写1-3种,格式如:粘土30%,沙 壤土30%,粉壤土20%。 5、由于灌区情况差别较大,渠系级别多样,各地根据典型样点灌区情况可以对样表进行补充,如 干渠级可以分为总干、分干等,以灌区实际情况分别填写; 6、当年实灌面积是与有效灌溉面积对应的实灌面积,不考虑复种指数; 7、如果灌区综合净灌溉定额有观测或统计结果则填写,如无可不填写此项; 8、防渗率是指某一级渠道设计超高水位下的已防渗断面面积与土渠断面总面积之比,该值根据灌 区渠系资料计算分析后直接填入。 9、毛灌溉用水量根据各自的实际情况分项进行填写。其中渠首取水量和塘堰坝取水量等均应为考 虑弃水、退水和工业与城市、农村生活等非灌溉用水后的水量数值;其它水源取水量包括当地降雨产生的地表径流进入渠道的用于农业灌溉的水量等。具体计算参见指南4.2。 10、如样点灌区的塘堰坝灌溉供水量有统计资料,则直接填写统计值,有关参数均不用填写; 如无统计资料,可在径流系数法参数和复蓄次数法参数中选择其一填写相关信息。 11、末级渠道灌溉供水总量是指在具有量水设施的末级固定渠道计量得到的实际灌溉供水量, 末级固定渠道量水点可以是斗口、农口或其它级别渠道量水点等。如果灌区只在支渠有量水设施,可以填支渠口测量值。在括号中应注明量水口级别。 12、洗碱净定额可根据灌区试验资料和生产经验科学合理确定。

2010中国水资源公报

2010年中国水资源公报 2012-04-26 中华人民共和国水利部 2010年,我国西南五省区发生历史罕见的特大干旱,长江上游、鄱阳湖水系、松花江等流域发生特大洪水,甘肃舟曲发生特大滑坡泥石流灾害,海南、四川两省遭遇历史罕见的强降雨过程,全国有30个省(自治区、直辖市)遭遇不同程度的洪涝灾害。在党中央、国务院的高度重视和正确领导下,国家防汛抗旱总指挥部和水利部超前部署、科学防控,有关部门密切配合、通力协作,广大军民顽强拼搏、团结奋战,成功抗御了西南地区特大干旱,有效应对了严重的洪涝灾害,最大程度地保障了人民群众生命安全,减轻了灾害损失。 党中央、国务院高度重视水利工作,明确提出要下决心加快推进水利建设,进一步明确了新形势下水利的战略地位,以及水利改革发展的指导思想、基本原则、目标任务、工作重点和政策措施。广大水利干部职工迎难而上,顽强拼搏,为水利科学发展注入了新的活力。继续推进农村饮水安全建设,解决了大量农村人口的饮水安全问题,如期完成专项规划内的大中型和重点小型病险水库除险加固任务,加快实施大型灌区续建配套与节水改造,水利发展成果惠及亿万人民群众。着力推进最严格的水资源管理制度,节水型社

会建设试点工作取得成效,水资源调度工作得到进一步强化。《全国水资源综合规划》、《太湖流域水功能区划》获得国务院批复,修订后的《中华人民共和国水土保持法》公布,水利事业快速发展。 一、水资源量 降水量 2010年,全国平均年降水量695.4mm,折合降水总量为65849.6亿m3,比常年值(多年平均值,下同)偏多8.2%。从水资源分区看,松花江、辽河、海河、黄河、淮河、西北诸河6个水资源一级区(简称北方6区,下同)面平均降水量为365.8mm,比常年值偏多11.5%;长江(含太湖)、东南诸河、珠江、西南诸河4个水资源一级区(简称南方4区,下同)面平均降水量为1280.2mm,比常年值偏多6.7%。在31个省级行政区中,降水量比常年值偏多的有20个省(自治区、直辖市),其中新疆、辽宁和吉林等3省(自治区)偏多程度大于30%;降水量比常年值偏少的有11个省(自治区),其中天津、北京和重庆分别偏少18.2%、12.6%和10.6%。 地表水资源量 2010年全国地表水资源量29797.6亿m3,折合年径流深314.7mm,比常年值偏多11.6%。从水资源分区看,北方6区地表水资源量比常年值偏多16.1%;南方4区比常年值偏多10.7%。在31个省级行政区中,地表水资源量比常年值偏多的有19个省(自治区、直辖市),其中辽宁和吉林偏多程度大于80%,海南、浙江、江西、福建、河南、安徽和新疆偏多程度在30%~60%之间;比常年值偏少的有12个省(自治区、直辖市),其中北京、河北、天津、山西和内蒙古偏少程度在30%~60%之间。

全国农田灌溉水有效利用系数测算分析技术指导细则

全国农田灌溉水有效利用系数测算分析 技术指导细则 全国农田灌溉水有效利用系数测算分析专题组 2013年12月

目录

前言 发展节水灌溉的目的就是要不断提高灌溉用水效率和效益。一直以来,国内外有许多表征灌溉用水效率的指标,说法也不统一。鉴于目前国内有关资料已广泛使用“灌溉水有效利用系数”表征灌溉用水效率,为与实际管理工作相衔接,本细则采用“灌溉水有效利用系数”作为灌溉用水效率的表征指标。灌溉水有效利用系数是在某次或某一时间内被农作物利用的净灌溉水量与水源渠首处总灌溉引水量的比值,它与灌区自然条件、工程状况、用水管理水平、灌水技术等因素有关。 为跟踪测算分析灌溉水有效利用系数变化情况,科学评价节水灌溉发展成效与节水潜力,根据水利部的要求,自2006年起,在各省(区、市)和新疆生产建设兵团的大力支持下,连续多年在全国范围内开展了灌溉水有效利用系数测算分析工作,取得的成果为有关部门研究制定相关政策和规划提供了依据。 为统一测算分析方法,水利部农村水利司于2007年8月下发了《全国现状灌溉水有效利用系数测算技术方案》,2008年1月下发了《全国灌溉水有效利用系数测算分析技术指南》,规范了各地灌溉水有效利用系数测算分析工作。 为进一步做好灌溉水有效利用系数测算分析工作,适应节水灌溉发展新形势与国家有关部门新要求,专题组在总结各地测算分析工作实践经验的基础上,对《全国灌溉水有效利用系数测算分析技术指南》进行了修订,重点细化完善了典型田块选取、样点灌区选择及净灌溉用水量测算等内容,同时对附表数量和内容也作了调整和补充,形成《全国农田灌溉水有效利用系数测算分析技术指导细则》。 本《全国农田灌溉水有效利用系数测算分析技术指导细则》的内容包括:前言、测算分析工作总体框架与流程、灌溉水有效利用系数测算分析方法、样点灌区选择、样点灌区灌溉水有效利用系数测算、省级区域灌溉水有效利用系数计算分析、全国灌溉水有效利用系数计算和附录等8部分。

物价局关于水资源情况与水价调研报告(完整版)

报告编号:YT-FS-5812-47 物价局关于水资源情况与水价调研报告(完整版) After Completing The T ask According To The Original Plan, A Report Will Be Formed T o Reflect The Basic Situation Encountered, Reveal The Existing Problems And Put Forward Future Ideas. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

物价局关于水资源情况与水价调研 报告(完整版) 备注:该报告书文本主要按照原定计划完成任务后形成报告,并反映遇到的基本情况、实际取得的成功和过程中取得的经验教训、揭露存在的问题以及提出今后设想。文档可根据实际情况进行修改和使用。 据国家统计局统计,进入以来的近十年,我国可供利用的淡水资源总量约为2.8万亿立方米,占全球水资源的6%,仅次于巴西、俄罗斯和加拿大,居世界第四位。扣除难以利用的洪水径流和散布在偏远地区的地下水资源后,我国实际可供利用的淡水资源仅为1.1万亿立方米。在水资源相对丰富的总体情况下,存在以下突出的矛盾和问题: 一、中国水资源总量和水污染情况 一是人均占有量低,缺水现象越来越严重。—平均,我国人均淡水资源为2160立方米,扣除不能利用的淡水资源,可供利用的人均淡水资源仅为900立方米,已成为世界严重缺水国家之一。现在全国每年缺

水约400亿立方米,其中全国城市年缺水量为60亿立方米。655个城市中,已有400多个存在不同程度地缺水,其中又有110个城市严重缺水。农业平均每年因旱成灾面积约2.3亿亩左右。而随着工业化、城市化的快速推进,人口的不断增加,城市的缺水问题将越来越严重。目前,我国已有16个省(区、市)人均水资源量低于严重缺水线。其中宁夏、河北、山东、河南、山西、江苏6省区人均水资源量低于500立方米,为极度缺水地区。 二是水资源地区之间分布不均衡,水资源与国土面积不匹配。长江流域及其以南地区国土面积只占全国的36.5%,水资源量约占81%;淮河流域及其以北、西北地区的国土面积占全国的63.5%,而水资源量仅占全国的19%。由于资源分布不均,北方地区河流取水量已经远远超出水资源的承载能力。更为严重的是,我国地下水年均超采228亿立方米。超采区面积达19万平方公里,已经开始引发河流断流、湖泊萎缩、湿地退化、地面沉降和海水入侵等一系列生态环境问题。

天津滨海新区湿地水质与底质质量特征

天津滨海新区湿地水质与底质质量特征* 张发阔1,谢华生2,刘红磊3,邵晓龙3,孙贻超3,檀翠玲3, 江文渊3,袁敏3,李莉3,刘琼琼3,于丹3,郁滨赫4 (1.天津工业大学,天津300387;2.天津市环境保护局,天津300191; 3.天津市环境保护科学研究院,天津300191;4.天津师范大学,天津300074) 摘要:通过取样分析对天津滨海湿地水体质量与底质特征进行考察,结果表明:以氮磷为代表的水体富营养化问题严重,除北大港水库和大港苏家园湿地水质较好,属Ⅳ类外,其它均属(劣)Ⅴ类;滨海湿地底质盐碱化严重,湿地pH范围为7.79 8.22,均为弱碱性;全盐量(TDS)除北大港水库为中度盐碱化(3724mg/kg)外,其它湿地TDS为4792 22980mg/kg,均为重度盐碱化;相比前人研究结果,天津滨海湿地水体TN和TP有不同程度的改善,底质变化则不明显,均存在严重的氮磷污染。 关键词:滨海湿地;环境质量;水质;沉积物;天津 中图分类号:X171文献标识码:A文章编号:(K)13088(原1002-1264)(2013)01-0041-03 Sediment and Water Quality Characteristics of Wetlands in Tianjin Binhai New Area ZHANG Fa-kuo1,XIE Hua-sheng2,LIU Hong-lei3,SHAO Xiao-long3,SUN Yi-chao3,TAN Cui-ling3,JIANG Wen-yuan3,YUAN Min3,LI Li3,LIU Qiong-qiong3,YU Dan3,YU Bin-he4 (1.Tianjin Polytechnic University,Tianjin300387,China;2.Tianjin Environmental Protection Bureau,Tianjin300191,China;3.Tianjin Academy of Environmental Sciences,Tianjin300191,China; 4.Tianjin Normal University,Tianjin300074,China) Abstract:In this study,both the sediment and above water were investigated by means of sampling in several represen-tative wetlands in Tianjin Binhai New Area.Result revealed a certain degree of eutrophication for these bodies.Water quality of Beidagang Reservoir and Sujiayuan wetland could be classified as IV water quality standards,better than the others.Sediment pH value ranged from7.79to8.22,indicating a certain degree of salinization.Sediment TDS content of Beidagang Reservoir was about3724mg/kg,less than those of the others(4792 22980mg/kg).Compared with previous studies,amelioration can be found for water quality,with sediment essentially unchanged. Key words:coastal wetland;environment quality;water quality;sediment;Tianjin 天津地处海河下游,湿地资源丰富,占天津国土总面积的20.87%[1],但随着区域城市化进程的加快,天津滨海新区水资源短缺以及水体富营养化问题日趋严重[2,3];同时,由于蒸发量远高于补水量,浅层地下水盐度逐渐加重,土壤盐渍化加剧,导致滨海湿地严重退化[4],区域水生态承载力进一步降低。湿地的急剧萎缩,严重影响了滨海湿地对水资源调控和水环境的净化作用,使得区域水系统自我修复能力迅速降低,水生态环境呈现以污染型、富营养型为标志的退化现象[5]。 针对滨海湿地及其生态系统退化加速等问题,选择海河流域下游具有代表性的典型滨海湿地,以水质、底质采样分析为基础,分析滨海湿地水质和底质历史演变及现状特征,以期为天津滨海湿地生态环境修复提供理论依据。 1材料和方法 1.1采样点设置 采样点为海河流域下游选择具有代表性的滨海湿地:北塘水库、营城水库、北大港水库、永定新河口、独流减河口、青静黄河口、大港湿地和开发区泰达再生水景观河道。具体的采样区域和采样点分布见图1。 采样日期为2011年7—8月,采样时每块采样区域设置5个采样点,分别采集水质和底质样品。 14 第26卷1期2013年2月 城市环境与城市生态 URBAN ENVIRONMENT&URBAN ECOLOGY Vol.26No.1 Feb.2013 *基金项目:水利部公益性行业科研专项“咸化水体水生植物生态修复关键技术研究”(201001076)收稿日期:2012-11-30;修订日期:2012-12-28

2001年黄河水资源公报

2001年黄河水资源公报 黄河流域(包括黄河内流区,下同)总面积79.5万km2,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东等九省(区)。全河划分为兰州以上、兰州至头道拐、头道拐至龙门、龙门至三门峡、三门峡至花园口、花园口以下、黄河内流区等流域分区。 2001年黄河流域平均降水量为404.0mm,折合降水总量3210.46亿m3,较常年偏少9.4%。花园口站以上地区水资源总量为416.46亿m3,其中地表水资源量323.33亿m3,地下水资源量316.90亿m3,地表水与地下水资源量之间的重复计算量223.77亿m3。 2001年黄河总取水量为474.55亿m3,其中地表水取水量为336.79亿m3。黄河总耗水量为361.79亿m3,其中地表水耗水量为265.15亿m3。 2001年黄河流域废污水排放总量为41.35亿t,其中工业废水29.56亿t。2001年黄河流域水质评价河长7497km,其中:Ⅱ、Ⅲ类水河长为2380km,Ⅳ类水河长为1976km,Ⅴ类、劣Ⅴ类水河长为3141km。 2001年重要水事:(1)黄河在特大干旱年再次实现全年不断流。(2)黄委启动“数字黄河”工程。(3)水利部召开黄河、黑河、塔里木河调水和引黄济津总结表彰大会。(4)汪恕诚部长提出“四不”治黄目标。(5)洛河发生氰化物污染事故。(6)水利部领导考察南水北调西线工程。(7)第16届中日水资源交流会在郑州召开。(8)黄河东平湖出现历史最高水位。(9)小浪底水利枢纽主体工程完工,拉西瓦水电站动工兴建。

一、水情概况

1.1降水 2001年黄河流域平均降水量为404.0mm,折合降水总量3210.46亿m3。与上年降水量相比,全流域平均偏多5.8%;与常年降水量相比,全流域平均偏少9.4%。流域内各分区降水量以花园口以下的525.8 mm 为最大,其次为三门峡至花园口的521.6mm;兰州至头道拐的238.3mm为最小,其次为黄河内流区的293.0mm。2001年黄河流域各分区降水量与上年及常年比较见图1 。 1.2实测河川径流量 2001年黄河干流主要水文站实测年径流量与常年相比均偏少。总体趋势是:自上游至下游,偏少幅度逐渐增大。兰州站偏少25.7%,花园口站偏少59.5%,利津站偏少86.2%。2001年黄河干支流主要水文站实测河川径流量见表1。 2001年黄河利津站实测年径流量46.53亿m3,扣除利津以下河段引黄水量5.64亿m3,黄河全年入海水量为40.89亿m3。2001年黄河干流主要水文站实测年径流量与上年及常年比较见图2。

天津水资源公报

天津水资源公报

————————————————————————————————作者:————————————————————————————————日期:

2003年天津市水资源公报 综述 为了满足流域规划和水资源管理的需要,按国家颁定的水资源分区进行水资源计算。本市分属北三河山区,面积727平方公里;北四河下游平原,面积6059.2平方公里;大清河淀东平原5133.5平方公里,全市总面积11919.7平方公里。 2003年我市降水为平水年,年平均降水量586.0毫米,比上年度增加61.80%,比多年平均值增加1.93%。 2003年全市水资源总量10.60亿立方米,其中地表水资源量6.15亿立方米,比上年增加232.43%;地下水资源量4.82亿立方米,比上年增加130.62%;地下水资源与地表水资源不重复量4.45亿立方米。 2003年全市大中型水库年末蓄水量8.50亿立方米,比上年增加4.18亿立方米。全市平原区浅层地下水位与上年末相比,普遍上升。 2003年全市总供用水量20.53亿立方米,比上年增加0.57亿立方米。其中地表水源供水量13.37亿立方米,包含引滦水量4.50亿立方米,引黄水量1.59亿立方米;地下水源供水量7.14亿立方米;海水淡化量0.02亿立方米。按用水项目划分,生产用水量17.37亿立方米,生活用水量2.86亿立方米,生态用水量0.30亿立方米。 全市用水消耗量10.94亿立方米,耗水率53%。

2003年全市废污水排放量5.49亿吨。2003年对我市供水河道引滦沿线、引黄济津、海河,以及蓟运河、潮白河、北运河、北京排污河、子牙河、独流减河、南运河等进行水质监测,其各河道监测结果:为城市供水达III类国家地表水环境质量标准,其他河道污染严重均劣V类国家地表水环境质量标准。 2003年为解决天津市用水危机进行了第八次引黄济津。为加强节约用水管理,科学合理利用水资源,保障社会经济可持续发展,全面提高水的利用率,建设节水型城市,实施了《天津市节约用水条例》。按照张立昌同志提出的装扮美化海河、让海河旧貌换新颜的指示,启动了海河两岸综合开发改造工程。一.来水分析 1.降水 2003年天津市平均降水量586.0毫米,折合水量69.85亿立方米,比上年偏多61.8%,比多年平均值68.53亿立方米(1956—2000年)偏多1.93%,属于平水年份。 北三河山区、北四河下游平原、大清淀东平原降水量分别为608.7毫米、557.6毫米、616.2毫米。与上年比较分别偏多62.27%、56.51%、67.80%;与多年平均比较,北三河山区少15.13%,北四河下游平原少3.51%,大清淀东平原多11.81%。图12003年天津市流域分区降水量与上年及多年平均值比较

相关主题
文本预览
相关文档 最新文档