当前位置:文档之家› 精密测量原理与技术-1

精密测量原理与技术-1

光学测距原理

光学测距原理 1.利用红外线测距或激光测距的原理是什么? 测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c = 299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,典型的是WILD的DI-3000 需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。 建筑行业有一种手持式的测距仪,用于房屋测量,其工作原理与此相同。 2.被测物体平面必须与光线垂直么? 通常精密测距需要全反射棱镜配合,而房屋量测用的测距仪,直接以光滑的墙面反射测量,主要是因为距离比较近,光反射回来的信号强度够大。与此可以知道,一定要垂直,否则返回信号过于微弱将无法得到精确距离。 3.若被测物体平面为漫反射是否可以? 通常也是可以的,实际工程中会采用薄塑料板作为反射面以解决漫反射严重的问题。 4.若以超声波测距代替是否可以让物体延一墙壁运动并测出与对面墙的距离? 此问题搞不懂你的意图,超声波测距精度比较低,现在很少使用。 激光测距(即电磁波,其速度为30万公里/秒),是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。相位测距技术的测距精度高,但作用距离有限,主要用于高精度大地测量。众所周知,光在给定介质的传播速度是一定的,因此,通过测量光在参考点和被测点之间的往返传播时间,即可给出目标和参考点之间的距离。 相位测距法是通过强度调制的连续光波在往返传播过程中的相位变化来测量光束的往返传播时间,其计算公式如下: t=Φ/2πf 式中,t为光波往返传播时间(s);Φ为调制光波的相位变化量(rad); f为调制频率(Hz)。 光的往返传播时间得到后,目标至参考点的距离可由下式求得 R=(c/2)×(Φ/2πf)=(λ/2)×(Φ/2π) 式中,R为目标至参考点距离(m);c为光波传播速度(m/s);λ为调制光波波长(m)。 相位位移是以2π为周期变化的,因此有 Φ=(N+△n).2π 式中,N为相位变化整周期数;△n为相位变化非整周期数。

工程测量原理与方法

第二讲工程测量学的原理、方法和技术Theory,way,technology of engineering surveying 主要内容:观测量和测量定位原理、地面测量方法和技术、专用测量方法与技术、空间测量方法与技术。 难点:专用测量方法与技术、空间测量方法与技术 2. 1概述 工程测量学与大地测量学、摄影测量与遥感学、地图制图学海洋测绘和 测绘仪器学一样,是现代测绘学的分支学科。它即遵循测绘学的基本原理、方法和技术,又为了解决工程和工程建设中的测绘技术问题,工程测量学也形成了具有自身特点的原理、方法和技术,以及各种专用和通用的测量仪器。 2. 2 观测量和测量定位原理 2. 2. 1工程测量中的观测量 工程测量的实质是: 1>通过各种观测量确定客观物体上的特征点在某一坐标系下的三维坐标(平面位置与高程即X,丫,H)及其随时间的变化。 2>根据设计坐标(X,丫,Z)通过各种观测量将设计实体放样到实地。 观测量: 1>角度(方向)观测量 角度观测量又分水平角和垂直角(高度角)或天顶距(观测方向线与铅垂线间的夹角) 所用仪器:经纬仪、全站仪 2>距离观测量 两点间的平距、斜距,一点到直线的距离,一点到平面的距离。 所用仪器:钢尺、皮尺、铟瓦线尺(叫丈量法或机械法) 经纬仪、视距仪(叫视距法或视差法) 测距仪、全站仪(叫物理测距法) GPS全球定位系统(伪距法) 3>高差观测量 两点正常高程之差 所用仪器:钢尺、水准仪、测距仪、全站仪、液体静力水准测量(用于工程变形测量) 4>方位角观测量 地面上某一方向线与真北方向的夹角(真方位角) 所用仪器:陀螺仪(用于矿山、铁路与公路隧道及城市地铁隧道中) 2. 2. 2工程测量中测量定位原理 工程测量的任务:测量、测设或放样 工程测量中所采用的坐标系统: 1>平面一高斯一克吕格平面直角坐标系或独立平面直角坐标系 2>高程一正常高系统 测量定位原理: 1>高差与高程的测定 不论进行水准测量还是利用水准仪进行高程放样,均是利用水平视线测定两

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

光学测量复习题

1.光学测量:对光学材料、零件及系统的参数和性能的测量。 2.直接测量:无需对被测的量与其他的实测的量进行函数关系的辅助计算,而直接得到被测值的测量。 3.间接测量:直接测量的量与被测的量之间有已知的函数关系,从而得到该被测量的测量。 4.测量误差原因:(测量装置误差)(环境误差)(方法误差)(人员误差)。 5.测量误差按其特点和性质,可分为(系统误差)、(偶然误差)和(粗大误差)。 6.精度:反应测量结果与真实值接近程度的量。 7.精度分为:①正确度:由系统误差引起的测量值与真值的偏离程度②由偶然误差引起......③由系统误差和偶然误差引起的...... 8.偶然误差的评价:(标准偏差)(极限误差)。 9.正态分布特征:(单峰性)(对称性)(有界性)(抵偿性)。 10.确定权的大小的方法:(根据测量次数确定)(由标准偏差确定)。 11.对准(横向对准)是指在垂直于瞄准轴方向上,使目标和比较标记重合或置中的过程,又称横向对准。 12.调焦(纵向对准)指目标和比较标记瞄准轴方向重合或置中的过程。 13..对准误差:对准残留的误差。 14.调焦误差:调焦残留的误差。 15.常用调焦方式:(清晰度法)、(消视差法)。 16.清晰度法:以目标象和比较标志同样清晰为准,其调焦误差由几何景深和物理景深决定。 17.消视差法:以眼睛垂直于瞄准轴摆动时看不出目标象和比较标志有相对错动为准,调焦误差受对准误差影响。 18.平行光管:是光学测量中最常用的部件,发出平行光,用来模拟无限远目标,主要由(望远物镜)和(安置在物镜焦平面上的分划板)构成。 19.调校平行光管的目的:是使分划板的分划面位于物镜焦平面上。调校方法:(远物法)、(可调前置镜法)、(自准直法)、(五棱镜法)和(三管法)。 20.自准直仪:(自准直望远镜)(自准直显微镜)。 21.自准直目镜是一种带分划板和分划板照明装置的目镜。一般不能单独使用,应与望远镜物镜配合构成自准直望远镜;与显微镜物镜配合构成自准直显微镜。它们统称自准直仪。 22.常用自准直目镜:(高斯目镜)、(阿贝目镜)、(双分划板式自准直目镜)。 23.剪切干涉法常见的平板式横向剪切干涉仪,它是以干涉条纹成无限宽,即干涉场中呈均匀一片作为判别光束准直性基准的。 24.双楔板剪切干涉法的原理? 解:假设楔板的棱边平行于x轴(棱边呈水平状态),并倾斜至于光路中。一离焦板的光波Kd(x2+y2)经楔板前,后面反射,则反射波沿x方向被横波向剪切。干涉条纹是一组与x轴倾斜的直线簇,在重叠区域形成的条纹可表示为(nkβ)y+(KDs)x=mπ 25.V棱镜法的检测原理:当单色平行光垂直的入射到V棱镜的ED面时,若被检玻璃折射率n与V棱镜折射率n0完全相同,则出射光不发生任何偏折的射出;若n与n0不等,则出射光相对入射光有一偏折角θ,若测出θ,就可计算出折射率。 26.V棱镜折光仪:主要用于平行光管、对准望远系统、读数显微镜系统和标准V块组成。 27.V棱镜折光仪的使用方法:平行光管分划板的刻线是在水平透光宽缝中间刻一细长线。由平行光管射出的单色平行光束经V棱镜和待检试样后,产生偏折角θ,转动望远镜对准平行光管的刻线象。当望远镜对准时,带动度盘转动。有读数显微镜读得角θ,其整数部分由度盘读出,小数部分由测微目镜读出。 28.最小偏向角法的测量原理:单色平行光沿MP方向射出,入射光与出射光的夹角δ为偏

工程测量原理与方法

第二讲工程测量学的原理、方法和技术 Theory,way,technology of engineering surveying 主要内容:观测量和测量定位原理、地面测量方法和技术、专用测量方法与技术、空间测量方法与技术。 难点:专用测量方法与技术、空间测量方法与技术2.1 概述 工程测量学与大地测量学、摄影测量与遥感学、地图制图学海洋测绘和测绘仪器学一样,是现代测绘学的分支学科。它即遵循测绘学的基本原理、方法和技术,又为了解决工程和工程建设中的测绘技术问题,工程测量学也形成了具有自身特点的原理、方法和技术,以及各种专用和通用的测量仪器。2.2 观测量和测量定位原理2.2.1 工程测量中的观测量工程测量的实质是: 1> 通过各种观测量确定客观物体上的特征点在某一坐标系下的三维坐标(平面位置 与高程即X, 丫,H)及其随时间的变化。 2>根据设计坐标(X, Y, Z)通过各种观测量将设计实体放样到实地。观测量: 1> 角度(方向)观测量角度观测量又分水平角和垂直角(高度角)或天顶距(观 测方向线与铅垂线间的夹角) 所用仪器:经纬仪、全站仪2> 距离观测量 两点间的平距、斜距,一点到直线的距离,一点到平面的距离。所用仪器:钢尺、皮尺、铟瓦线尺(叫丈量法或机械法)经纬仪、视距仪(叫视距法或视差法)测距仪、全站仪(叫物理测距法)GPS 全球定位系统(伪距法) 3> 高差观测量两点正常高程之差所用仪器:钢尺、水准仪、测距仪、全站仪、液体静力水准测量(用于工程变形测量) 4> 方位角观测量地面上某一方向线与真北方向的夹角(真方位角)所用仪器:陀螺 仪(用于矿山、铁路与公路隧道及城市地铁隧道中) 2.2.2 工程测量中测量定位原理工程测量的任务:测量、测设或放样工程测量中所采用的坐标系统:1> 平面—高斯—克吕格平面直角坐标系或独立平面直角坐标系2> 高程—正常高系统 测量定位原理: 1> 高差与高程的测定不论进行水准测量还是利用水准仪进行高程放样,均是利用水平视线测定两

光学测量应用举例

1、激光三角法测距。 利用激光良好的方向性,以及几何光学成像的比例特性,将一束激光照射到物体上,在与激光光束成一定角度的位置用光学成像系统检测照射到物体的光斑,这样镜头-光斑、镜头平面到激光光束的连线、光斑到镜头平面与激光光束交点构成一三角形,而镜头-光斑的像、镜头平面以及过光斑的像的激光光束平行线与镜头平面的交点成一个与前面所描述的三角形相似的三角形。用光电传感器阵列检测到光斑的像的位置,则可以根据三角形性质计算出光斑位置。这种测量方法适合距离较短的情况。 目前的激光三坐标测量机(抄数机)一般都采用激光三角法测距。 2、光速法测距。 利用光速不变原理,检测激光发射与反射光反射回来的时间差,从而计算出距离。为了提高精度,可以将激光调制上一个低频信号,利用测量反射光的相位差来测得反射时间差。这种方法一般用于远距离测量。 目前各种激光测距仪一般用这种方法测量。 3、激光干涉法测距。 这是一种相对测量,它无法测得一个物体离仪器的绝对距离,但可以测得两被测物体的相对距离。它的原理是一台迈克尔逊干涉仪,利用反射镜距离变化时干涉条纹的变化来测量,反射镜从物体A运动到物体B,干涉条纹变化的数量反映了其距离。这种测量要求条件较高,但是可以精确测量,它也是目前所有测量手段中最精确的一种。 4、光学图象识别技术测量位移。 其所用原理与三角法相似,但是可以不用激光,而是直接对移动物体拍照,利用前后两幅图片中物体在图片中的位移来计算物体真实的位移。、 这种技术在光电鼠标中大量使用。 5、光栅测量位移。 利用光栅形成的莫尔条纹,计算莫尔条纹变化量即可计算出位移量。 这是目前应用最多的技术,光栅尺大量应用于工业上的行程测量。 6、激光衍射法测量细丝、小孔直径和狭缝宽度。 测量衍射斑的大小就可以计算出孔或缝的尺寸。

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

AOI光学检测仪的原理

由于对AOI光学检测仪的原理不是很理解,有哪位高手帮忙翻译一下以下的原理与简介?在这里先说声谢谢了! 悬赏分:20 |提问时间:2008-12-2 10:42 |提问者:hamigua200708 人认识物体是通过光线反射回来的量进行判断,反射量多为亮,反射量少为暗。AOI与人判断原理相同。AOI通过人工光源LED灯光代替自然光,光学透镜和CCD代替人眼,把从光源反射回来的量与已经编好程的标准进行比较、分析和判断。目前最常用的图像识别算法为灰度相关算法,通过计算归一化的灰度相关(normalized greyscale correlation)来量化检测图像和标准图像之间的相似程度。灰度相关的取值介于“0”和“1000”之间,“1000”代表图像完全相同,“0”代表图像完全不同,一般通过设定一个临界相关值(如650)来判断检测图像是否发生变化。相关值大于或等于临界相关值的为正常图像(元件或焊点正常),而小于临界相关值的为异常图像(元件或焊点异常)本社导入的AOI设备采用归一化的彩色相关算法(normalized color correlation),以RGB三基色的阶调度进行计算相似度。 AOI简介 ( 1)强大的检测功能 Otek 自动光学检测仪采用自主开发的归一化的彩色相关算法(normalized color correlation) 来代替一般使用的灰度相关算法。由于彩色相关算法充分利用彩色图像中的红绿兰(RGB)三基色的全部信息,所以比灰度相关算法具有更高的识别准确性和稳定性。彩色相关算法所利用的信息量比灰度相关算法多2倍,所以彩色相关的运算速度也减慢2倍,但是通过采用专门为多媒体应用所开发的专门运算指令集(MMX)技术使得Otek自动光学检测仪可以在同样或者更短的时间内搜索更多的图像信息。该设备依靠特殊的光源设置,可以使焊点在少锡和多锡时的图像与正常情况时图像的明暗程度发生明显变化,从而可以检测出焊锡错误。Otek的焊锡检测算法具有检测准确度高、误检低的特点。 推荐答案 1 引言 在激烈的市场竞争中,电子产品制造厂商必须确保产品的质量,为了保证产品的质量,在产品制造过程中对各个生产环节半成品或成品进行质量监测尤为重要,随着表面组装技术(SMT)中使用的印制电路板线路图形精细化、SMD元件微型化及SMT组件高密度组装、快速组装的发展趋势,采用目检或人工光学检测的方式检测已不能适应,自动光学检测(AOI)技术作为质量检测的技术手段已是大势所趋。 2 AOI工作原理 SMT中应用AOI技术的形式多种多样,但其基本原理是相同的(如图1所示),即用光学手段获取被测物图形,一般通过一传感器(摄像机)获得检测物的照明图像并数字化,然后以某种方法进行比较、分析、检验和判断,相当于将人工目视检测自动化、智能化。 2.1 分析算法

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

1测量技术讲解

1H412010测量技术 前言 本节的重点是:机电工程项目工程测量技术、起重技术、焊接技术,也是机电工程一级建造师必备的基本专业技术知识。 工程测量是指遵照施工图纸的要求,使用精密的测量仪器和工具,将工程项目的建(构)筑物、机电工程工艺生产线上的设备、系统管线等的坐标位置、几何形状、相关数据等准确地测量、放样到实地,并在施工全过程中进行测量控制。 本目重点是: 机电工程测量的方法; 测量的要求; 测量仪器的应用。 1H412011测量的方法 工程测量是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 本条主要知识点是: 工程测量的目的和内容;工程测量的特点、工程测量的原则和要求;工程测量的基本原理及方法;工程测量的程序;竣工图的绘制;常见的机电工程中的测量。 一、工程测量的目的和内容 1.工程测量的目的 (1)工程测量的首要工作也是要做好控制点布测。工程测量包括对建(构)筑物施工放样、建(构)筑物变形监测、工程竣工测量等,以保证将设计的建(构)筑物位置正确地测设到地面上,作为施工的依据。 (2)工程测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工、建筑物构件安装等,都需要进行工程测量,以使建筑物、构筑物各部分的尺寸、位置符合设计要求。 2.主要内容 (1)建立施工控制网。 (2)建筑物、构筑物的详细测设。 (3)检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。 (4)变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、工程测量的特点 与测图工作相比,具有如下特点: 1.目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而工程测量是将图纸上设计的建筑物或构筑物测设到实地。 2.精度要求不同。工程测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。 一般高层建筑物的工程测量精度要求高于低层建筑物的工程测量精度,钢结构工程测量精度要求高于钢筋混凝土结构的工程测量精度,装配式建筑物的工程测量精度要求高于非装配式建筑物的工程测量精度。 此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程

光学测量与光学工艺知识点答案

目录 第一章基本光学测试技术 (2) 第二章光学准直与自准直 (5) 第三章光学测角技术 (9) 第四章:光学干涉测试技术 (12) 第六章:光学系统成像性能评测 (15)

第一章 基本光学测试技术 ? 对准、调焦的定义、目的; 对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。例:打靶、长度度量 人眼的对准与未对准: 对准的目的:1.瞄准目标(打靶); 2.精确定位、测量某些物理量(长度、角度度量)。 调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。 人眼调焦: 调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位 于同一空间深度; 2.使物体(目标)成像清晰; 3.确定物面或其共轭像面的位置——定焦。 12 1'2' 1'P 2' 2' '

?人眼调焦的方法及其误差构成; 常见的调焦方法有清晰度法和消视差法。 清晰度法是以目标与比较标志同样清晰为准。调焦误差是由于存在几何焦深和物理焦深所造成的。 消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。误差来源于人眼的对准误差。 (消视差法特点: 可将纵向调焦转变为横向对准; 可通过选择误差小的对准方式来提高调焦精确度; 不受焦深影响) ?对准误差、调焦误差的表示方法; 对准误差的表示法:人眼、望远系统用张角表示; 显微系统用物方垂轴偏离量表示; 调焦误差的表示法:人眼、望远系统用视度表示; 显微系统用目标与标志轴向间距表示; ?常用的对准方式; 常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。 ?光学系统在对准、调焦中的作用; 提高对准、调焦精度,减小对准、调焦误差。 ?提高对准精度、调焦精度的途径; 使用光学系统进行对准,调焦;光电自动对准、光电自动调焦; ?光具座的主要构造; 平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座 ?平行光管的用途、简图; 作用是提供无限远的目标或给出一束平行光。 简图如下:

高精度光学测量微位移技术综述

word格式文档 高精度光学测量微位移技术综述 *** (******大学光电**学院,重庆400065) 摘要 微位移测量技术在科学与工业技术领域应用广泛。光学测量微位移技术与传统测量方法相比,具有灵敏度高、抗电磁干扰能力强、耐腐蚀、防爆、结构简单、体积小、重量轻等优点。本文介绍了几种高精度光学测量微位移的方法,从激光三角法、激光干涉法、光栅尺法、光纤光栅法、X射线干涉法和F-P干涉法几个类别对各种微位移测量原理和仪器进行了系统的分析和比较,并对各种方法的特点进行了归纳,对光学微位移测量方法的发展趋势进行了概括。 关键词:微位移测量,高精度,光学测量,发展趋势 1 引言 随着科学技术的发展,微小位移的检测手段已发展到多种,测量准确度也不断提高。目前,高分辨力微位移测量技术主要分为包含电学、显微镜等测量方法的非光学测量技术和以激光干涉测量为代表的光学测量技术两大类。电学测量技术又包括电阻法、电容和电感法以及电涡流法等,其中,电容和电感法发展迅速,较为常用。目前,三端电容传感器可测出5×10-5μm的微位移,最大稳定性为每天漂移几个皮米[1]。而显微镜测量技术种类较多,主要有高性能透射电子显微镜、扫描电子显微镜、扫描探针显微镜(包括扫描隧道显微镜和原子力显微镜)等二十多个品种[2]。按光学原理不同,光学测量技术可分为激光三角测量[3]、光杠杆法[1,4]、光栅尺测量法[5]、光纤位移测量法[5]和激光干涉法等,测量分辨力在 专业资料整理

几十皮米到几纳米之间。此外,利用X射线衍射效应进行位移测量的X射线干涉技术近年来备受关注,其最大特点是以晶格结构中的原子间距作为溯源标准,可实现皮米量级的高分辨力,避免了光学干涉仪的各种非线性误差[6]。现将主要的具有纳米量级及以上分辨力的微位移测量技术概括如表1所示。 纵观位移测量技术的发展历程,如果说扫描探针技术为高分辨力位移测量领域带来了革命性变革,那么近几十年来激光技术的发展则将该领域带入了一个崭新的时代。由表1可见,目前电容传感器和SPM的测量分辨力也很高,但它们的共同缺陷是当溯源至国际标准长度单位时,必须借助激光干涉仪等方法进行标定和校准。根据1983年第17次度量大会对“米”的新定义,激光干涉法对几何量值溯源有着天然优越性,同时具有非接触测量、分辨力高、测量速度快等优势。本文将对目前主要的光学微位移测量技术介绍和比较分析。 表1 常用微位移测量技术 仪器种类分辨力/nm 测量范围 电容传感器0.05-2 10nm-300μm 电感传感器 5 10μm SPM 0.05 1-10μm 激光三角测头 2.5 100-500μm 光纤位移传感器 2.5 30-100μm 双频激光干涉仪0.1 >10m 光栅尺0.1-10 70-200mm X射线干涉仪0.005 200μm F-P干涉仪0.001 5nm-300μm 2 光学微位移测量技术概述 2.1 激光三角法微位移测量技术 随着工业测量领域的不断扩展以及对测量精度和测量速度的不断提高,传统的接触式测量已经无法满足工业界的需求。而非接触测量由于其良好的精确性和

光学测试技术复习资料

光学检测原理复习提纲 第一章 基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1 对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 2、常见的五种对准方式。 P2 压线对准,游标对准。。。。 3、常见的调焦方法 最简便的调焦方法是:清晰度法和消视差法。p2 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。P14 作用:提供无限远的目标或给出一束平行光。 组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。 2、什么是自准直目镜(P15)(可否单独使用?),自准直法? 一种带有分划板及分划板照明装置的目镜。Zz 自准直:利用光学成像原理使物和像都在同一平面上。 3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17(概念,填空或判断) 1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。 2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。 主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面 (a )"+"字或"+"字 刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

生物组织光学性质的测量原理与技术

第16卷第4期 1997年12月 中 国 生 物 医 学 工 程 学 报 CH I N ESE JOU RNAL O F B I OM ED I CAL EN G I N EER I N G V o l.16N o.4 D ecem ber1997 生物组织光学性质的测量原理与技术3 谢树森 李 晖 (福建师范大学物理学系,福州350007) Ch ia T eck Chee (Schoo l of Science,N anyang T echno logical U niversity,Singapo re1025)本文讨论了组织光学性质参数的测量原理和技术,提出了一种新的测量和计算方法,采用联合测定组织体表面漫反射率和体内光能流率分布,并利用漫射理论和M onte Carlo模型的部分结论,可求出组织的光穿透深度,吸收系数和有效散射系数,以4种猪组织为例,研究了哺乳动物组织的光学性质,这一原理和技术可适用于人体组织光学性质的测量。 关键词: 组织光学;吸收;散射;漫射;M onte Carlo;漫反射率;光能流率 分类号: R197.39;R318.6 0 前 言 激光医学的进展,尤其是光动力学疗法(PD T)在临床上的深入应用,需要精确了解在一定光照条件下人体组织内的光能分布,以便安排最佳的光治疗方案。其中最关键的问题可归结为如何确定组织体的光学性质基本参数,即吸收系数Λa,散射系数Λs和散射位相函数S(Η)或平均散射余弦g。一旦已知这些光与组织的相互作用参数,在给定的光照方式和边界条件下,光能流率5(r)或其它参量如全反射率R,全透过率T等分布可由有关的数学模型唯一地确定[1,2]。 本文所提出的新方法系采用联合测定组织体表面漫反射率和组织体内部的光能流率分布,并利用漫射理论和M on te Carlo模型的部分结论,可求出组织的光学性质基本参数。 1 组织光学性质参数测量的理论基础 作为电磁波的光在组织中传播行为属于光与组织相互作用问题,在不考虑吸收的情况下,理论上由麦克斯韦方程组及组织体的电磁性质Ε,Λ或折射率,加上边界条件唯一地确定:即在所给定的条件下求解麦克斯韦方程,以得到电矢量在空间中和时间上的分布。其中必然出现一般光学中所有的各种现象,诸如干涉、衍射、反射和偏振等纯粹的物理光学问题。当组织存在光吸收时,应当考虑组织中原子分子的能级结构性质。换言之,此时应采用半经典理论,最严格的处理应使用全量子理论,不难想到,仅由于生物组织折射率的不均匀性,我们就无望获得麦氏方程的数值解,更不用说解析解了。 其实,可以把光在组织体中的传播进而有光能分布的物理实在,用一种粒子的传输过程来 国家自然科学基金和国家教委回国留学人员资助项目 1995年11月27日收稿,1996年4月29日修回

1测量技术讲解

1H412010 测量技术 前言 本节的重点是:机电工程项目工程测量技术、起重技术、焊接技术,也是机电工程一级建造师必备的基本专业技术知识。 工程测量是指遵照施工图纸的要求,使用精密的测量仪器和工具,将工程项目的建(构)筑物、机电工程工艺生产线上的设备、系统管线等的坐标位置、几何形状、相关数据等准确地测量、放样到实地,并在施工全过程中进行测量控制。 本目重点是: 机电工程测量的方法; 测量的要求; 测量仪器的应用。 1H412011测量的方法 工程测量是按照设计和施工的要求将设计的建筑物、构筑物的平面位置和高程在地面上标定出来,作为施工的依据,并在施工过程中进行一系列的测量工作,以衔接和指导各工序之间的施工。 本条主要知识点是: 工程测量的目的和内容;工程测量的特点、工程测量的原则和要求;工程测量的基本原理及方法;工程测量的程序;竣工图的绘制;常见的机电工程中的测量。 一、工程测量的目的和内容 1. 工程测量的目的 (1) 工程测量的首要工作也是要做好控制点布测。工程测量包括对建(构)筑 物施工放样、建(构)筑物变形监测、工程竣工测量等,以保证将设计的建(构)筑物位置正确地测设到地面上,作为施工的依据。 (2) 工程测量贯穿于整个施工过程中。从场地平整、建筑物定位、基础施工、建筑物构件安装等,都需要进行工程测量,以使建筑物、构筑物各部分的尺寸、位置符合设计要求。 2.主要内容 (1) 建立施工控制网。 (2) 建筑物、构筑物的详细测设。 (3) 检查、验收。每道施工工序完工之后,都要通过测量检查工程各部位的实际位置及高程是否与设计要求相符合。 (4) 变形观测。随着施工的进展,测定建筑物在平面和高程方面产生的位移和沉降,收集整理各种变形资料,作为鉴定工程质量和验证工程设计、施工是否合理的依据。 二、工程测量的特点 与测图工作相比,具有如下特点:1.目的不同。测图工作是将地面上的地物、地貌测绘到图纸上,而工程测量是将图纸上设计的建筑物或构筑物测设到实地。 2.精度要求不同。工程测量的精度要求取决于工程的性质、规模、材料、施工方法等因素。 一般高层建筑物的工程测量精度要求高于低层建筑物的工程测量精度,钢结构工程测量精度要求高于钢筋混凝土结构的工程测量精度,装配式建筑物的工程测量精度要求高于非装配式建筑物的工程测量精度。 此外,由于建筑物、构筑物的各部位相对位置关系的精度要求较高,因而工程的细 部放样精度要求往往高于整体放样精度。 3 .工程测量工序与工程施工工序密切相关。 三、工程测量的原则和要求

光学测量原理和技术

第一章、 对准、调焦 ? 对准、调焦的定义、目的; 1. 对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横 移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl 后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ,所选对准扩展不确定度为δe , ? 对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ? 常用的对准方式; φ'==12111e e l l D αφ'=-= 2 2 21118e l l KD λ φ'=-= e b δφ'=

09光信光学检测原理复习资料

光学检测原理复习提纲 第一章基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念;眼睛通过光学仪器对准或调焦的目的。P1 补充:对准误差、调焦误差?P1 2、常见的五种对准方式。P2 3、望远镜的对准误差计算,例一。p4 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(bcd)。P14 2、什么是自准直目镜(P15);高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17 三、光学测量误差 1、误差的来源归结为4个方面……;误差的分类……。P20—P21 2、如何减少与消除系统误差。P27—P28 四、焦距和顶焦距的测量 1、焦距的定义:平行于光学系统光轴的平行光束经过光学系统后的会聚点(焦点)到光学系统的像方主点的距离。 2、目视放大率法测量透镜或光学系统的正负焦距的原理。P32—P33 灵活应用公式进行焦距计算 3、数字图像法测量焦距和顶焦距的原理及实验装置。P35—36 4、思考题:要测量一镜片的焦距,已知玻罗板上某刻线对的间距为30mm,测量显微物镜放大倍率10x,平行光管物镜的焦距1200mm,通过测量显微镜的目镜测得玻罗板上刻线像的间距为4mm,试求出该镜片的焦距。 第二章光学准直与自准直技术 一、激光准直与自准直技术 激光束有很高的亮度和相当好的方向性。可利用倒装望远镜对激光束再进行细化和准直。 二、自准直法测量平面光学零件光学平行度 1、测量光学平行度的一般原理P 47—48 2、第一光学平行度θⅠ、第二光学平行度θⅡ定义。P48 3、测量直角棱镜DⅠ-90°原理。P48

测量原理

一、工程测量的原理 (一)水准测量原理 ——水准测量原理:是利用水准仪和水准标尺,根据水平视线原理测定两点高差的测量方法。 ——利用水准仪和水准标尺测定待测点高程的方法:高差法和仪高法 1.高差法——采用水准仪和水准尺测定待测点与已知点之间的高差,通过计算得到待定点的高程的方法; 2.仪高法——采用水准仪和水准尺,只需计算一次水准仪的高程,就可以简便地测算几个前视点的高程。 请注意两种方法的应用选择: 当安置一次仪器,同时需要测出数个前视点的高程时,使用仪高法。(二)基准线测量方法 ——基准线测量原理:是利用经纬仪和检定钢尺,根据两点成一直线原理测定基准线。 ——测定待定位点的方法有: 水平角测量和竖直角测量,这是确定地面点位的基本方法。每两个点位都可连成一条直线(或基准线)。 切记: 1.保证量距精度的方法 返测丈量,当全段距离量完之后,尺端要调头,读数员互换,按同法进行返测,往返丈量一次为一测回,一般应测量两测回以上。 ——量距精度以两测回的差数与距离之比表示。 2.安装基准线的设置 安装基准线一般都是直线,只要定出两个基准中心点,就构成一条基准线。

——平面安装基准线不少于纵横两条 3.安装标高基准点的设置 根据设备基础附近水准点,用水准仪测出的标志具体数值。 ——相邻安装基准点高差应在0.3 mm以内 (一)工程测量的程序 建筑安装或工业安装的测量,其基本程序是: (二)平面控制测量 1.平面控制测量的要求 (1)平面控制网建立的测量方法 ——三角测量法、导线测量法、三边测量法等。 (2)平面控制网的坐标系统,应满足测区内投影长度变形值不大于2.5cm/Km。 (3)三角测量的网(锁)布设,应符合下列要求: 各等级的首级控制网,宜布设为近似等边三角形的网(锁)。 其三角形的内角不应小于30°;当受地形限制时,个别角可放宽,但不应 小于25°。 2.平面控制网布设的方法 ——导线测量法和三边测量法 2)三边测量法的技术要求 各等级三边网的起始边至最远边之间的三角形个数不宜多于10个; 其三角形的内角不应小于30°;当受地形限制时,个别角可放宽,但不应 小于25°。 3) 平面控制网的基本精度 应使四等以下的各级平面控制网的最弱边边长中误差不大于0.1mm。

光学测量仪器

https://www.doczj.com/doc/113532387.html, 光学测量仪器 光学影像测量仪是集光学、机械、电子、计算机图像处理技术于一体的高精度、效率高、高可靠性的测量仪器。由光学放大系统对被测物体进行放大,经过CCD摄像系统采集影像特征并送入计算机后,可以效率高地检测各种复杂零部件的轮廓和表面形状尺寸、角度及位置,进行微观检测与质量控制。 在实际应用中,尽管光学计量仪器多种多样,但它们的光学原理却都基于四种基本原理,它们是:望远光学原理、显微光学原理、投影光学原理、干涉光学原理。基于应用不同的光学原理,光学计量仪器可分为:自准直类光学计量仪器、显微镜类光学计量仪器、投影类光学计量仪器、光干涉类光学计量仪器四大类。 光电探测技术是现代信息获取的主要手段之一,光电探测技术的发展是随着其他关键技术的发展而发展的,由于激光技术、光波导技术、光电子技术、光纤技术、计算机技术的发展,以及新材料、新器件、新工艺的不断涌现,光精密量仪测量工具传感器游标卡尺

https://www.doczj.com/doc/113532387.html, 电探测技术取得了巨大发展。近年来,光电探测技术引起了业内人士的普遍关注,在军事和民用领域占有越来越重要的地位。近年来涌现出的各种新型光电探测技术,包括微光探测、偏振探测、量子探测、单光子探测技术。 光学测量仪器选择首先要做到符合要求。比如,一台高精度的研发级别的光谱仪,并不一定适合日常对显示设备的校正,由于其精度高导致速度慢;由于光谱仪一般为非接触式的仪器,那么对环境要求就比较高。一个正确的流程应该是用低级的能保证测量速度和稳定性的色度计采集数据校正,用一台精度高符合标准的光谱仪来对色度计做一组校正数据(Offset),这样可以保证色度计在大部分亮度校正时的准确测量。 马尔测量始于1861年。19世纪的工业革命不仅促进了制造业快速发展, 同时唤起了对机械零件加工的精度要求。我们的工作就是确保测量结果的准确性。作为世界测量仪器的顶级生产商之一,多年以来,马尔的产品已涉及许多领域,并成为专业的测量应用专家。 精密量仪测量工具传感器游标卡尺

相关主题
文本预览
相关文档 最新文档