当前位置:文档之家› 数学选修2-3-涂色问题

数学选修2-3-涂色问题

数学选修2-3-涂色问题
数学选修2-3-涂色问题

涂色问题解题通法

定理1(直线型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的直线型结构图涂色,则总的不同涂法有

()

1

1n m n L m m -=-种.

证明:由分步计数原理按序号逐个涂色即可。

定理2(星型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的星型结构图涂色,则总的不同涂法有()

1

1n m

n S m m -=-种.

证明:由分步计数原理按序号逐个涂色即可。

定理3(环形结构):用(2)m m ≥种颜色给如图所示的由(3)n n ≥个

区域组成的环形结构图涂色,则总的不同涂法有

()()()111n

n

m

n R m m =-+--种.

证明:1m m m n n n R R L -+=(m n L 中头尾不同的涂法数为m

n R ,头尾相同时,

头尾看作一个区域,涂法数为1m n R -),即()111n m m

n n R R m m --+=-,

∴()()

1

111n n m

m

n n R m R m --??--=---?

?

,求通项即可 或()()1221m

m

m

n n n R m R m R --=-+-

定理4(全连通型结构):用()m m n ≥种颜色给由n 个区域组成的全连通型结构图(任何两

个区域都连通,如图)涂色,则总的不同涂法有m n

n m T A =种.

证明:任何两个区域都连通,所以颜色各不相同。

方法应用

例1.将三种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植一种作物,不同的种植方法有 种.(以数字作答)

答:结构抽象如右图,涂法数为:()

()

51

51

3

2

255333122148642L L C ---=?--??-=-=

例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有

种.(以数字作答)

答:结构抽象如右图,涂法数为:()()()553

54431311120R ???=?-+--=??

(先涂中间)

例3.用n 种不同的颜色为下列两块广告牌着色,要求在1,2,3,4四个区域中相邻(有公共边界)的区域用不同的颜色,

(Ⅰ)若6n =,为左图着色时共有多少种不同的方法? (Ⅱ)若为右图着色时,共有120种不同的方法,求n 的值. 答

抽象如右图,

(Ⅰ)涂法数为:()3

36624480n T A ?-=?=,(先涂三角形结构) (Ⅱ)涂法数为:()()()4

4123120n

n T A n n n n ==---=,∴5n =

例4. 用6种不同的颜色为下图中的5个区域着色,要求相邻(有公共边界)的区域用不同的颜色,共有多少种不同的方法? 答

先涂124,,A A A 的三角形,再涂3A ,最后涂5A ,共有3

645A ??多少种不同的方法

例5.用6种不同的颜色为下列两块广告牌着色,要求相邻(有公共边界)的区域用不同的颜色,共有多少种不同的方法?

答:结构抽象如右图,()()4

12m m m --(先涂1A ,再涂线型结构23456A A A A A ----). 例6.(2008重庆)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点111,,,,,A B C A B C 上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答). 答:3

43(221)A ???-

引申:若有(3)n n ≥种颜色的灯泡,则不同的安装方法共有 种。

若下、上层对应点灯泡颜色允许相同,则共33

n n A A ?有种涂法;

1

3 6

2 4

5

下、上层有且只有一组对应点颜色相同,则可以把同色的两点看成一点,则几何体为四棱锥,抽象图如下左,不同的涂法有()()

()4

4

111n n n ???-+--?

?

种; 下、上层有且只有两组对应点颜色相同,则可以把同色的两点看成一点,则几何体为四面体,抽象图如下右,不同的涂法有4

n A 种;

下、上层三组对应点颜色都相同,则可以把同色的两点看成一点,则几何体退化为三角形,不同的涂法有3

n A 种。

由容斥原理知,不同的涂法有()()

()4

4

3

3

1

243

33111n n n n A A C n n n C A A ???-??-+--+?-?

?

简单的组合结构练习

1.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种

答:结构抽象如右图,涂法数为:()()()44

4443131172R ???=?-+--=??

(先涂中间)

2.

用M 种颜色去涂上图所示的各个结构图,共有多少种不同的涂法? 答:(1)3

(1)m m A -?(先涂三角形123A A A );

(2)3(2)m m A -?(先涂三角形123A A A );

(3)33

(1)m m A -?(先涂三角形123A A A ); (4)33

(2)m m A -?(先涂中间三角形123A A A );

(5)()()3

12m m m --(先涂1A ,再涂线型结构2345A A A A ---).

高中数学选修2-3知识点汇编 (2)

高二数学选修2-1知识点 第一章常用逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p,则q”,它的逆命题为“若q,则p”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p,则q”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p,则q”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p是q的充分条件,q是p的必要条件. 若p q ?,则p是q的充要条件(充分必要条件). 8、用联结词“且”把命题p和命题q联结起来,得到一个新命题,记作p q ∧. 当p、q都是真命题时,p q ∧是真命题;当p、q两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p和命题q联结起来,得到一个新命题,记作p q ∨.当p、q两个命题中有一个命题是真命题时,p q ∨是真命题;当p、q两个命题都是假命题时,p q ∨是假命题. 对一个命题p全盘否定,得到一个新命题,记作p ?. 若p是真命题,则p ?必是假命题;若p是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示.含有全称量词的命题称为全称命题. 全称命题“对M中任意一个x,有() p x成立”,记作“x ?∈M,() p x”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示.含有存在量词的命题称为特称命题. 特称命题“存在M中的一个x,使() p x成立”,记作“x?∈M,() p x”. 10、全称命题p:x ?∈M,() p x,它的否定p ?:x?∈M,() p x ?.全称命题的否定是特称命题. 第二章圆锥曲线与方程 11、平面内与两个定点 1 F, 2 F的距离之和等于常数(大于 12 F F)的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质: 焦点的位置焦点在x轴上焦点在y轴上图形 标准方程() 22 22 10 x y a b a b +=>>() 22 22 10 y x a b a b +=>>范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点 () 1 ,0 a A-、() 2 ,0 a A () 1 0,b B-、() 2 0,b B () 1 0,a A-、() 2 0,a A () 1 ,0 b B-、() 2 ,0 b B 轴长短轴的长2b =长轴的长2a = 焦点() 1 ,0 F c-、() 2 ,0 F c() 1 0, F c-、() 2 0, F c 焦距() 222 12 2 F F c c a b ==- 对称性关于x轴、y轴、原点对称 原命题逆命题否命题逆否命题真真真真 真假假真 假真真真 假假假假

数学选修2-3-涂色问题

涂色问题解题通法 定理1(直线型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的直线型结构图涂色,则总的不同涂法有 () 1 1n m n L m m -=-种. 证明:由分步计数原理按序号逐个涂色即可。 定理2(星型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的星型结构图涂色,则总的不同涂法有() 1 1n m n S m m -=-种. 证明:由分步计数原理按序号逐个涂色即可。 定理3(环形结构):用(2)m m ≥种颜色给如图所示的由(3)n n ≥个 区域组成的环形结构图涂色,则总的不同涂法有 ()()()111n n m n R m m =-+--种. 证明:1m m m n n n R R L -+=(m n L 中头尾不同的涂法数为m n R ,头尾相同时, 头尾看作一个区域,涂法数为1m n R -),即()111n m m n n R R m m --+=-, ∴()() 1 111n n m m n n R m R m --??--=---? ? ,求通项即可 或()()1221m m m n n n R m R m R --=-+- 定理4(全连通型结构):用()m m n ≥种颜色给由n 个区域组成的全连通型结构图(任何两 个区域都连通,如图)涂色,则总的不同涂法有m n n m T A =种. 证明:任何两个区域都连通,所以颜色各不相同。 方法应用 例1.将三种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植一种作物,不同的种植方法有 种.(以数字作答) 答:结构抽象如右图,涂法数为:() () 51 51 3 2 255333122148642L L C ---=?--??-=-= 例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)

高中数学选修2-3答案

选修2-3课本例题习题改编 1.原题(选修2-3第二十七页习题1.2A 组第四题)改编1 某节假日,附中校办公室要安排从一号至六号由指定的六位领导参加的值班表. 要求每一位领导值班一天,但校长甲与校长乙不能相邻且主任丙与主任丁 也 不 能 相 邻 , 则 共 有 多 少 种 不 同 的 安 排 方 法 ( )A .336 B .408 C .240 D .264 解:方法数为:选 改编2 某地高考规定每一考场安排24名考生,编成六行四列就坐.若来自同一学校的甲、乙两名学生同 时排在“考点考场”,那么他们两人前后左右均不相邻的概率是 ( )A . B . C . D . 解:若同学甲坐在四角的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在四边(不在角上)的某一个位置,有种坐法,此时同学乙的选择有种;若同学甲坐在中间(不在四边、角上)的某一个位置,有种坐法,此时同学乙的选择有种;故所求概率为答 案选 2.原题(选修2-3第二十七页习题 1.2A 组第九题)改编 1 在正方体 的各个顶点与各棱的中点共20个点中,任取2点连成 直线,在这些直线中任取一条,它与对角线垂直的概率为_________. 解:如图,分别为相应棱上的中点,容 易证明正六边形,此时在正六边形上有条,直 线与直线垂直;与直线垂直的平面还有平面、平面、 平面、平面,共有直线条.正方体的各个顶点与各棱的中点共20个点,任取2点连成直线数为条直线(每条棱上如直线其实 为一条),故对角线垂直的概率为 改编2 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于 (A ) (B ) (C ) (D ) 解:如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意 625224 6252242336,A A A A A A -+=.A ????276119272 119136119138119 42112208194211220819119 ,2423138 ?+?+?=?.D 1111ABCD A B C D -1BD ,,,,,,,,,,,E F G H I J K L M N P Q 1BD ⊥EFGHIJ 2 615C =1BD 1BD ACB NPQ KLM 11A C B 2 3412C ?=1111ABCD A B C D -22 20312(1)166C C -?-=,,AE ED AD 1BD 151227 .166166 +=1752753754 75 ???? ?B C D E F 图4

高中数学选修2-2-2-3知识点

-可编辑- 高中数学选修2----2知识点 第一章 导数及其应用 知识点: 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割 线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ', 即0 ()() ()lim x f x x f x f x x ?→+?-'=? 考点:无 知识点: 二.导数的计算 1)基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若()log x a f x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x '= 2)导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()() [ ]()[()] f x f x g x f x g x g x g x ''?-?'= 3)复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 考点:导数的求导及运算 ★1、已知 ()22sin f x x x π=+-,则()'0f = ★2、若()sin x f x e x =,则()'f x = ★3.)(x f =ax 3+3x 2+2 , 4)1(=-'f ,则a=( ) 3 19.3 16 .3 13.3 10.D C B A ★★4.过抛物线y=x 2上的点M )4 1,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° ★★5.如果曲线2 932 y x = +与32y x =-在0x x =处的切线互相垂直,则0x = 三.导数在研究函数中的应用 知识点: 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结

第一章 计数原理 1、分类加法计数原理:做一件事情,完成它有 N 类办法,在第一类办法中有M 1种不同的 方法,在第二类办法中有M 2种不同的方 法,……,在第N 类办法中有M N 种不同的 方法,那么完成这件事情共有 M 1+M 2+……+M N 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要 分成N 个步骤,做第一 步有m1种不同的 方法,做第二步有M 2不同的方法,……, 做第N 步有M N 不同的方法.那么完成这件 事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元 素,按照一定顺序...... 排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数: ),,()! (!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个 元素并成一组,叫做从n 个不同元素中取出 m 个元素的一个组合。 6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ;m n n m n C C -= m n m n m n C C C 1 1+-=+

7、二项式定理 :()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101() 9.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变 量的函数()f r ,定义域是{0,1,2,,}n L , (1)对称性.与首末两端“等距离”的两个二项式系数相等(∵m n m n n C C -=). (2)增减性与最大值:当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1 2n n C -,1 2n n C +取得最大值. (3)各二项式系数和:∵1(1)1n r r n n n x C x C x x +=+++++L L , 令1x =,则0122n r n n n n n n C C C C C =++++++L L 第二章 随机变量及其分布 知识点: (3)随机变量:如果随机试验可能出现的结果 可以用一个变量X 来表示,并且X 是随着 试验的结果的不同而变化,那么这样的变量 叫做随机变量. 随机变量常用大写字母X 、 Y 等或希腊字母 ξ、η等表示。 (4)离散型随机变量:在上面的射击、产品检 验等例子中,对于随机变量X 可能取的值, 我们可以按一定次序一一列出,这样的随机 变量叫做离散型随机变量.

高中数学概率中的涂色问题

二、高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 1、 一.区域涂色问题根据分步计数原理,对各个区域分步涂色,这是处理染色 问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂 一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用加法原理求 出不同的涂色方法种数。 例2、四种不同的颜色涂在如图所示的6 个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有4 4 A ; (3)②与⑤同色、③与⑥同色,则有4 4A ; (4)③与⑤同色、② 与④同色,则有4 4A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为54 4 A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4 不同色,有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同 色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为(2) 有且仅两个区域相同的颜色, (3) 即只 ① ② ③ ④ ⑤ ⑥

高中数学教材选修2-3知识点

高中数学选修2-3知识点汇总 目录 第一章计数原理 (2) 分类加法计数原理 (2) 分步乘法计数原理 (2) 二项式定理 (2) 第二章随机变量及其分布 (3) 第三章统计案例 (6)

高中数学选修2-3知识点总结 第一章计数原理 知识点: 分类加法计数原理 做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。 分步乘法计数原理 做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数: ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 5、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 6、组合数:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ; m n n m n C C -= m n m n m n C C C 1 1+-=+ 二项式定理 ()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 8、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101()

高中数学选修2_2全套知识点与练习答案解析

选修2-2 知识点及习题答案解析 导数及其应用 一.导数概念的引入 1. 导数的物理意义: 瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是000 ()()lim x f x x f x x ?→+?-?, 我们称它为函数 () y f x =在 x x =处的导数,记作 0() f x '或 |x x y =',即 0()f x '=000 ()()lim x f x x f x x ?→+?-? 2. 导数的几何意义: 曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数 ()y f x =在0x x =处的导数就是切线PT 的斜率 k ,即00 ()()lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时, ()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作 y ',即 ()()()lim x f x x f x f x x ?→+?-'=? 二.导数的计算 基本初等函数的导数公式: 1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '= 7 若 ()log x a f x =,则1()ln f x x a '= 8 若 ()ln f x x =,则1()f x x '= 导数的运算法则 1. [()()]()()f x g x f x g x '''±=± 2. [()()]()()()()f x g x f x g x f x g x '''?=?+? 3. 2 ()()()()()[]()[()] f x f x g x f x g x g x g x ''?-?'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内

高中数学教材选修2-2知识点

高中数学选修2-2知识点汇总 目录 第一章导数及其应用 (2) 常见的函数导数和积分公式 (2) 常见的导数和定积分运算公式 (3) 用导数求函数单调区间的步骤 (3) 求可导函数f(x)的极值的步骤 (3) 利用导数求函数的最值的步骤 (4) 求曲边梯形的思想和步骤 (4) 定积分的性质 (4) 定积分的取值情况 (4) 第二章推理与证明 (5) 第三章数系的扩充和复数的概念 (7) 常见的运算规律 (8)

高中数学选修2-2知识点总结 第一章 导数及其应用 1.函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 常见的函数导数和积分公式

常见的导数和定积分运算公式 若()f x ,()g x 均可导(可积),则有: 用导数求函数单调区间的步骤 ①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 求可导函数f(x)的极值的步骤 (1)确定函数的定义域。(2) 求函数f (x )的导数'()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的 点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/ ()f x 在方程根左右的值的符号, 如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值

高中数学选修2-3知识点72534

111--++=?+=m n m n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点 第一章 计数原理 1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。 3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一 个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。 ),,()! (! )1()1(N m n n m m n n m n n n A m ∈≤-= +--=Λ 5、公式: , 11 --=m n m n nA A 6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ ; m n n m n C C -= m n m n m n C C C 1 1+-=+ 8、二项式定理: ()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n +=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r n r n r r +-==101() 10、二项式系数C n r 为二项式系数(区别于该项的系数) 11、杨辉三角: () ()对称性:,,,……,1012C C r n n r n n r ==- ()系数和:…2C C C n n n n n 012+++=

高考数学 秒杀必备 涂色问题的常见解法及策略

高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 一、区域涂色问题 1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色, 相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。 例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44 A ; (3)②与⑤同色、③与⑥同色,则有4 4A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120 例3、如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有 44 A 种,故用四种颜色时共有244A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2? 24=72 ① ②③ ④ ⑤ ⑥

高中数学选修2-3知识点总结

1 数学选修2-3第一章计数原理知识点必记 1. 什么是分类加法计数原理? 答:做一件事情,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法…在第n 类办法中有n m 种不同的方法。那么完成这件事情共有n m m m N +++= 21种不同的方法。 2. 什么是分步乘法计数原理? 答:做一件事情,完成它需要n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法。那么完成这件事情共有n m m m N ???= 21种不同的方法。 3. 排列的定义是什么? 答:一般地,从n 个不同的元素中任取()n m m ≤个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中任取m 个元素的一个排列。 4. 组合的定义是什么? 答:一般地,从n 个不同的元素中任取()n m m ≤个元素并成一组,叫做从n 个不同的元素中任取m 个元素的一个组合。 5. 什么是排列数? 答:从n 个不同的元素中任取()n m m ≤个元素的所有排列的个数,叫做从n 个不同的 元素中任取m 个元素的排列数,记作m n A 。 6. 什么是组合数? 答:从n 个不同的元素中任取()n m m ≤个元素的所有组合的个数,叫做从n 个不同的 元素中任取m 个元素的组合数,记作m n C 。 7.排列数公式有哪些? 答:(1)()()()121+---=m n n n n A m n 或()! m n n A m n -=! ; (2)!n A n n =,规定1!0=。 8.组合数公式有哪些? 答:(1)()()()! 121m m n n n n C m n +---= 或()!!m n m n C m n -=!; (2)m n n m n C C -=,规定10=n C 。 9.排列与组合的区别是什么?答:排列有顺序,组合无顺序。 10.排列与组合的联系是什么?答:m m m n m n A C A ?=,即排列就是先组合再全排列。 11.排列与组合的性质有哪些? 答:两个性质公式:(1)排列的性质公式:1 1-++=m n m n m n mA A A (2)组合的性质公式:m n n m n C C -=;1 1-++=m n m n m n C C C 12.二项式定理是什么? 答:()()+---∈++++++=+N n b C b a C b a C b a C a C b a n n n r r n r n n n n n n n n 222110。 13二项展开式的通项是什么? 答:()+-+∈∈≤≤=N n N r n r b a C T r r n r n r ,,01。 14.()n x +1的展开式是什么? 答:()0 221101x C x C x C x C x n n n n n n n n n ++++=+-- ,若令1=x ,则有 ()n n n n n n n C C C C ++++==+ 210211。 数学选修2-3第二章随机变量及其分布知识点必记 15.什么是随机变量? 答:在某试验中,可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量。 离散型随机变量:如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量。 16.什么是概率分布列? 答:要掌握一个离散型随机变量X 的取值规律,必须知道:

2021-2022年高中数学竞赛辅导资料《涂色问题》

2021-2022年高中数学竞赛辅导资料《涂色问题》涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。有些问题,本来就属于图论的内容。有些问题的解决,则需要用到数论、组合数学的理论和方法。这里介绍,只是中学数学竞赛中的有关问题。 1.小方格染色问题 最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧. 2.线段染色和点染色 (1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解. (2)点染色.先看离散的有限个点的情况. 例题讲解 1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。过各分点作平行于AD的线段,得到n个矩形。每一个矩形又被对角线BD分成两部分。将奇数号矩形左部及偶数号矩形的右部

涂上同一颜色。证明:在对角线BD两侧的有同色的部分,其面积和相等。 2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3的六方格矩形内恰好2个红方格。试问:一个9×11的99方格矩形内包含多少个红方格? 3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换 两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点 的对角线下方。 4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。 5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。

高中数学选修哪几本书数学教材顺序

高中数学选修哪几本书数学教材顺序 人教版高中数学教材A版有13本和B版有14本,广州高中理科数学共学习11本书,其中必修5本,选修6本。下面是具体数学选修教材顺序,仅供参考。 人教版高中数学教材选修有几本? A版有13本和B版有14本 数学1- 1 (选修)A版 数学1- 2 (选修)A版 数学2- 1 (选修)A版 数学2- 2 (选修)A版 数学2- 3 (选修)A版 数学3- 1 (选修)A版数学史选讲 数学3- 4 (选修)A版对称与群 数学4- 1 (选修)A版几何证明选讲 数学4- 2 (选修)A版矩阵与变换 数学4- 4 (选修)A版坐标与参数方程 数学4- 5 (选修)A版不等式选讲 数学4- 6 (选修)A版初等数论初步 数学4- 7 (选修)A版优选法与试验设计初步 数学1- 1 (选修)B版 数学1- 2 (选修)B版 数学2- 1 (选修)B版 数学2- 2 (选修)B版 数学2- 3 (选修)B版 数学3- 1 (选修)B版对称与群

数学3- 4 (选修)B版数学史选讲 数学4- 1 (选修)B版几何证明选讲 数学4- 2 (选修)B版矩阵与变换 数学4- 4 (选修)B版坐标系与参数方程 数学4- 5 (选修)B版不等式选讲 数学4- 6 (选修)B版 数学4- 7 (选修)B版优选法与实验设计初步 数学4- 9 (选修)B版风险与决策 点击查看:高中理科数学选修学几本书 高中理科数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。 高考范围为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,而选修4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲),三选二,共10本。 就教学进度来说,各个学校可根据实际情况安排。就我们学校来说,先学习高考考察的主干知识,再学习零散知识,速度由慢到快,深度有难到易,难度自始至终与广东高考理科数学难度相当。 具体来说,高一第一学期刚开学不讲上述11本书的内容,而是对初、高中的知识进行衔接,继续深入探讨二次函数的性质和应用,韦达定理,二次根式,因式分解等。接着进入必修1的学习,然后是选修2-2的导数部分。本学期学习的核心是函数与导数。 高一第二学期学习必修5的数列部分,必修4,核心是数列、三角与平面向量。 高二第一学期先学习选修4-1,再学习必修2的立体几何部分,然后是必修2和选修2-1的解析几何部分的直线、圆和椭圆,核心是平面几何、立体几何和解析几何。 高二第二学期继续必修2和选修2-1的解析几何部分的双曲线、抛物线的学习,接着是隶属与解析几何的选修4-4,再学必修5的线形规划部分,再学选修2-3的其余部分(包括排列组合与二项式定理、概率与统计),接着完成选修2-2的其余部分(包括定积分、数学归纳法、复数),选修2-1其余部分(包括常见逻辑用语、空间向量),必修5和选修4-5的不等式部分,必修3(算法)等零散知识的学习,结束高中理科数学课程。本学期的主干是解析几何、概率和统计、排列组合二项式定理。

人教A版高中数学选修2-1知识点总结

高二数学选修2-1知识点 第一章 常用逻辑用语 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假

高考数学涂色问题

【引例】 引例1.在一个正六边形的6个区域栽种观赏植物,如右图,要求同一块中种 同一种植物,相邻的两块种不同的植物.现有四种不同的植物可供选择,则有 ________种栽种方案. 引例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽 种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不 同的栽种方法有_____种.(以数字作答) 【分析】首先栽种第1部分,有14C 种栽种方法; 然后问题就转化为用余下3种颜色的花,去栽种周围的5个部分(如右图所 示), 此问题和引例1是同一题型,因此我们有必要对这一题型的解法做一深入探讨。 【剖析】 为了深入探讨这一题型的解法, (1)让我们首先用m (m≥3)种不同的颜色(可供选择),去涂4个扇形的情形 (要求每一个扇形着一种颜色,相邻扇形着不同颜色),如图所示 以1和3(相间)涂色相同与否为分类标准: ①1和3涂同一种颜色,有m 种涂法;2有m-1种涂法,4也有m-1种涂法, ∴ 共有 (1)(1)m m m ?-?-种涂法。 ②1和3涂不同种颜色,有2m A 种涂法;2有m-2种涂法,4也有m-2种涂法, ∴ 共有 2(2)(2)m A m m ?-?-种涂法。 综合①和②,共有(1)(1)m m m ?-?-+2(2)(2)m A m m ?-?-432 463m m m m =-+-种涂法。 (2)下面来分析引例1 以A 、C 、E (相间)栽种植物情况作为分类标准: ①A 、C 、E 栽种同一种植物,有4种栽法;B 、D 、F 各有3种栽法, ∴ 共有 4×3×3×3=108 种栽法。 ②A 、C 、E 栽种两种植物,有222432C C A 种栽法(24 C 是4种植物中选出2 种,23C 是A 、C 、E3个区域中选出2个区域栽种同一种植物,22A 是 选出的2种植物排列),B 、D 、F 共有3×2×2 种栽法(注:若A 、C 栽种同一种植物,则B 有 3 种栽法,D 、F 各有2种栽法), 222 432322432C C A ∴???=共有种栽法。 ③A 、C 、E 栽种3种植物,有34A 种栽法;B 、D 、F 各有2种栽法, ∴ 共有 34A ×2×2×2=192 种栽法。 综合①、②、③,共有 108+432+192=732种栽法。 (3)上述(1)、(2)给出了“设一个圆分成P 1,P 2,…,Pn ,共n (n 为偶数)个扇形,用m 种不同的颜色

相关主题
文本预览
相关文档 最新文档