当前位置:文档之家› 光伏阵列(太阳能电池板方阵)安装角度计算和确定

光伏阵列(太阳能电池板方阵)安装角度计算和确定

光伏阵列(太阳能电池板方阵)安装角度计算和确定
光伏阵列(太阳能电池板方阵)安装角度计算和确定

太阳能电池板方阵安装角度计算

由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。

1.方位角

太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°

度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

2.倾斜角

倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制

条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑

落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从

水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°?60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°?20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

3.阴影对发电量的影响

一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%?20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位角为B时,假设阴影的倍率为R,贝心

R= L2/L1= ctgA x cosB

此式应按冬至那一天进行计算,

因为,那一天的阴影最长。例如方阵的上边缘的高度为hl,下边缘的高度

为h2,则:

方阵之间的距离a=(h1-h2)XR当纬度较高时,方阵之间的距离加大,相应地设置场所的面积也会增加。对于有防积雪措施的方阵来说,其倾斜角度大,因此使方阵的高度增大,为避免阴影的影响,相应地也会使方阵之间的距离加大。通常在排布方阵阵列时,应分别选取每一个方阵的构造尺寸,将其高度调整到合适值,从而利用其高度差使方阵之间的距离调整到最小。具体的太阳电池方阵设计,在合理确定方位角与倾斜角的同时,还应进行全面的考虑,才能使方阵达到最佳状态。

太阳能电池板安装角度怎样计算

1. 太阳时()s t 时间的计量以地球自转为依据,地球自转一周,计24太阳时,当太阳达到正南处为12:00。钟表所指的时间也称为平太阳时(简称为平时),我国采用东经120度经圈上的平太阳时作为全国的标准时间,即“北京时间”。(注:大同的经度为'18113o )。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 2. 时角()ω 时角是以正午12点为0度开始算,每一小时为15度,上午为负下午为正,即10点和14点分别为-30度和30度。因此,时角的计算公式为 ()(),1215度-=s t ω (1) 其中s t 为太阳时(单位:小时)。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 3. 赤纬角()δ 赤纬角也称为太阳赤纬,即太阳直射纬度,其计算公式近似为 ()(),3652842sin 45.23度??? ??+=n πδ (2) 其中n 为日期序号,例如,1月1日为1=n ,3月22日为81=n 。(该定义摘自《太阳能应用技术》的第二章——太阳辐射) 4. 太阳高度角()α 太阳高度角是太阳相对于地平线的高度角,这是以太阳视盘面的几何中心和理想地平线所夹的角度。太阳高度角可以使用下面的算式,经由计算得到很好的近似值: ,cos cos cos sin sin sin ωδφδφα??+?= (3) 其中α为太阳高度角,ω为时角,δ为当时的太阳赤纬,φ为当地的纬度(大同的纬度为o 1.40)。(该定义摘自维基百科) 5. 太阳方位角()A 。 太阳方位角是太阳在方位上的角度,它通常被定义为从北方沿着地平线顺时

针量度的角。它可以利用下面的公式,经由计算得到良好的近似值,但是因为反正弦值,也就是()y x 1sin -=有两个以上的解,但只有一个是正确的,所以必需小心的处理。 .cos cos sin sin α δω?-=A (4) 下面的两个公式也可以用来计算近似的太阳方位角,不过因为公式是使用余弦函数,所以方位角永远是正值,因此,角度永远被解释为小于180度,而必须依据时角来修正。当时角为负值时 (上午),方位角的角度小于180度,时角为正值时 (下午),方位角应该大于180度,即要取补角的值。 ,cos sin cos cos cos sin cos α φδωφδ??-?=A (5) ,cos cos sin sin sin cos φ αφαδ??-=A (6) 其中A 为太阳的方位角,α为太阳高度角,ω为时角,δ为当时的太阳赤纬,φ为当地的地理纬度(大同的纬度为o 1.40)。 太阳能电池板方阵安装角度怎样计算? 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。 如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。 方位角 =(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。 一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。 对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。 以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

在控制中心用一台管理电脑分别通过串口把矩阵和报警主机连接

在控制中心用一台管理电脑分别通过串口把矩阵和报警主机连接(要求电脑至少有三个串口),通过电脑上安装的报警监控联动管理软件GIS2000-1.51就可以实现一防区报警就可以在电视墙上跳出当时一个或多个报警画面,反之也可以实现。这是硬软联动不能实现的。 监控报警管理软件 GIS2000-1.51 一、功能说明 警卫中心报警巡更软件通过电脑串口连接监控大型报警主机,构成集中监控的小区或大厦的大型防盗报警系统。 二、性能特点 同时集中监控多台防盗报警主机 可通过串口或CW2104串口扩充模块来连接任意多台的报警控制主机,构成大型的集中监控式联网报警系统。支持多种类型的报警主机,包括ADEMCO、DS、DSC、NEC门口机、ADEMCO IP2000等 实时报警、实时巡更监控 利用报警主机系统在警卫中心中实现实时的报警和巡更系统,报警主机所有防区只需设为24小时无声报警类型,在软件中重新设置为不同类型的防区和巡更点。 任意数量的子系统用户 可以设置包含任意数量防区的任意数量的子系统用户,不再局限于原来报警主机的有限的几个子系统。用户类型可选择使用AK8004或AK8104报警控制器的独立用户(如用在住宅小区联网报警系统中),或由电脑控制布撤防的公共用户(如用在博物馆、展览馆保安系统中),或主机键盘自行控制的主机用户。 电脑操作控制用户布撤防和防区旁路 通过电脑鼠标控制,可以任意对公共用户类型的用户进行布防、撤防,对防区进行旁路。还可任意选择一组公共用户进行集体布防、撤防,简化操作。 主机用户实现双向控制 应用安定宝IP2000接口可以实现软件到报警主机的双向控制,实时监控前端子系统,并可在电脑测试主机发来的报警信息,或手动发送信息到各子系统。 完善的巡更计划与巡更线路 可通过带锁式开关按钮作为巡更点的巡更按钮,并可任意设置巡更线路,制定多个巡更计划以避免被坏人摸清规律。可通过定时或手动的方式执行巡更操作,对未及时巡更地段及时提醒操作员注意。

太阳电池阵列间距的设计计算:

并网光伏发电系统方阵的最佳安装倾角采用专业系统设计软件进行优化设计来确定,它应是系统全年发电量最大时的倾角。当倾角确定后我们要保证每个光伏阵列在冬至日上午九时到下午三时无阴影遮挡(北半球)。 太阳电池阵列间距的设计计算: 在北半球,对应最大日照辐射接收量的平面为朝向正南,阵列倾角确定后,要注意南北向前后阵列间要留出合理的间距,以免前后出现阴影遮挡,前后间距为:冬至日(一年当中物体在太阳下阴影长度最长的一天)上午9:00到下午3:00,组件之间南北方向无阴影遮挡。 固定光伏组件方阵的支架系统安装的前后最小间距D,如下图所示: 简化的计算公式如下: 式中:φ为纬度(在北半球为正、南半球为负);H为光伏方阵阵列或遮挡物与可能被遮挡组件底边高度差。 同时在太阳能电池方阵排列布置还需要考虑地形,地貌的因素,要与当地自然环境有机的结合。同时设计要规范,并兼顾光伏电站的景观效果,在整个方阵场设计中尽量节约土地。太阳电池方阵的布置设计包括阵列倾角设计,方位角设计,阵列间距设计,需根据具体情况来进行计算。 关于跟踪系统阵列之间的间距计算相对复杂,由于跟踪支架系统的巡日条件和跟踪角度范围与其厂家产品有关,且每家不尽相同。故对其计算无实际意义。但有一点是一致的,就是我们都必须满足一天中不得小于6小时的照射时间窗口。需要说明的是上述时间为地方时。例如在计算中使用的太阳赤纬都是以天文年

历为准的,而天文年历所给出的参数都是世界时0时的值,但时角又是以地方时为依据的,而日常的钟表所显示的时间都是北京时。这里需要注意的是:北京时早8点时,乃是世界时0点,由于地球自西向东转动,所以,凡是在北京以东的地方,其地方时均比北京时要晚,即8点多,而北京以西的地方则尚未到8点。 经度订正是时间转换所必需的。在我国明确规定,东经为正,西经为负;但在美国则刚好相反。具体换算公式是:地方时(即太阳时)=北京时+E-4*(120-L)其中:E为地球绕日公转时进动和转速变化而产生的修正,单位为分;L为当地的经度

光伏阵列安装角度选择..

固定式光伏阵列安装角度 一、前言 太阳是一个巨大的能源,它以光辐射的形式每秒钟向太空发射约 3.8 M OM焦耳的能量,有22亿分之一投射到地球上,但已高达 173,000TW ,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤。太阳光被大气层反射、吸收之后,还有70%透射到地面。 亿万年来,地球以此形成生物圈。并为地球带来许多能量的来源,如风能,化学能,水能,乃至部分潮汐能均属于广义太阳能。然而,这些能源经过近代工业飞速发展,很多能源已消耗殆尽,狭义太阳能的利用逐渐被人们推向前台。被动式利用太阳能光电转换和光电转换两种方式都得到迅速发展。光热转换是把太阳能转化为热能,光电转换就是将太阳能转化为电能(即通常所说的光伏发电),其中重点是后者。 我国的太阳能资源比较丰富且分布范围较广,太阳能光伏发电的发展潜力巨大。 我国地处北半球,太阳能资源异常丰富,总面积2/3以上地区年 日照时数大于2200h,其中西藏、青海、新疆、甘肃、宁夏、内蒙古高原均为太阳能资源丰富地区;除四川盆地、贵州省资源稍差外,东部、南部及东北等其它地区都是资源较富和中等区。太阳能资源理论存储总量达每年17000亿t标准煤,与美国相近,比欧洲、日本优越得多。专家统计,如果把全国1%的荒漠中的太阳能用于发电,就可以发出相当于2003年全年的耗电量。届时,新疆、西藏、甘肃等广

■■I 大西部地区将成为我国新的能源基地。 此外,目前太阳能光伏发电技 术已日趋成熟,是最具可持续发展理想特征的可再生能源技术之一。 料 to 中厨太阳能资源分布 'lKurMV iifr++nx J 我国不同地区水平面上光辐射量与日照时间资料 表1

高清矩阵概述及应用方案参考

1.DM产品概述 和DM-MD36X36。 DM平台通过一根线缆集成视频、音频、网络和控制信号,完成了2D/3D无损高清视频、7.1声道立体声、以太网、串口、红外和USB信号的综合传输,包括了目前所有IT\AV行业的主流音视频信号及控制信号的传输。 1.1支持及传输音视频信号 监控领域:Composite、S-Video、Component 工业领域:DVI-I、RGHV IT领域:VGA、DP 民用高清领域:HDMI1.3

广电领域:SDI(SD)、HD-SDI、3G-SDI 3D领域:HDMI1.4(DVI-DL+同步或2XDVI-SL+同步的方式在调研中)1.2传输介质与距离 DM系统的传输介质采用CRESNTRON原厂电缆或市场上通用的双绞线或多模光纤,布线施工、管理、维护均相比传统方式简单。使用超5类类屏蔽双绞线可提供高达100 m 的电缆传输距离。使用OM3 50um万兆多模光纤可提供高达300 m 的电缆传输距离。 由于双绞线和光纤的价格便宜且施工方便,在系统设计之时可考虑充分的余量,在系统搭建完成之后,就无需为新增设备时为昂贵而且敷设困难的高清线缆而烦恼,DM平台的传输介质不管是光纤还是铜缆都能满足高清信号格式的传输。 1.3管理 软件操控界面分为2D信号视频界面模块、3D信号视频界面模块、音频界面模块3大板块,结构从使用者角度出发,通过最合理简单的软件模块编排来完成对这套复杂系统的驾驭。 DM平台可由任何Crestron 2系列主机控制,通过触摸屏即可起送搞得完成信号的切换和处理,以及对系统状态以及输入输出信号的监视。 2.DM产品性能特点 ●提供带超高12.5 Gbps 背板数据速率的全矩阵切换 ●处理带Deep color、3D和高位速率7.1嵌入式音频的HDMI?

光伏阵列(太阳能电池板方阵)安装角度计算和确定

太阳能电池板方阵安装角度计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30° 度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)—12)X 1$ (经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制 条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑 落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从

太阳能板安装角度

太阳能方阵安装角度的计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的

场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。

视频矩阵主机选择及安装

视频矩阵主机选择及安装 时间:2010-6-4 17:34:41 选稿:来源: 选择视频矩阵主机时首先要确定自己有多少个摄像机需要控制,是不是还会扩充,把现有的和将来有可能扩充的摄像机数目相加,选择控制器的输入路数。比如一个居住小区,目前只盖好 了10栋楼房,后期会有15栋,每栋楼房安装1只摄像机,那么最少也要有25路视频输入给控制主机,(由于控制主机大部分以输入、输出模块形式扩充,输入以8的倍数递增)所以需要选择32输入主机。 选择控制器的输出路数是看监控室内需要几台监视器。比如上面举的例子,如果监控室需要至少4台监视器,那么输出就选择4路或5路输出(输出多一些不会影响性能,但价格会增加)的控制主机。 目前控制主机常用的输入有8、16、32、48、64、80、96、128到512路,一般以8或16的倍数递增;输出从2、4、5、8、16、24到32,一般以2或4的倍数递增。 主机的控制码有多种,大部分不兼容,必须配合其系列产品或说明可以使用的设备工作。如解码器、辅助跟随器、报警接口、分控键盘、多媒体软件等。 解码器功能是把主机的控制码转换成模拟信号输出:提供云台24伏或220伏交流电压,镜头12伏直流电压,辅助24伏交流电压,2个辅助开关,有的还提供12伏直流供电。解码器是控制系统中最常用的设备,前端有一个云台或电动镜头,就需要有一个解码器。解码器分为室内 型和室外型,室外型有一个防水箱,并提供雨刷工作电压。安装时必须提供解码器的220伏电源,跳开解码器的地址码以免冲突。还有要注意云台的工作电压,因为云台工作电压有24伏和220伏两种,如果与解码器配合不对,轻则无法工作,重则烧毁云台电机,造成不必要的损失。 解码器到云台、镜头的联接线不要太长,因为控制镜头的电压为直流12伏左右,传输太远则压降太大,会导致镜头不能控制。另外由于多芯控制电缆比屏蔽双绞线要贵,所以成本也会增加。 室外解码器要做好防水处理,在进线口处用防水胶封好是一种不错的方法,而且操作简单。 从主机到解码器通常采用屏蔽双绞线,一条线上可以并联多台解码器,总长度不超过1200米(视现场情况而定)。如果解码器数量太大,需要增加一些辅助设备,如增加控制码分配器或在最后一台解码器上并联一个匹配电阻(以厂家的说明为准)。 除监控室以外还要有人操作云台、镜头等设备,需要配分控键盘,每个主机可以带分控键盘的个数不同,分控键盘的功能也有差异,有的可以控制监视器的输出,有的可以控制变速云台。分控键盘与主机一般也用屏蔽双绞线联接。 现在由于计算机多媒体技术的发展,监控系统也有向其靠拢的趋势,多数厂商在设计监控主机时留有计算机接口,通过联接电缆和接口与计算机的串行口通讯,在计算机上插一块视频捕捉卡来观看图像,插一块声卡来监听声音。多媒体控制软件一般有如下功能:设置系统控制主机的型号,设置通讯口,设置系统密码,设置操作人员的操作等级,画电子地图,设置前端摄像机的性质(是否带云台、电动镜头),对已有的地图进行增加和删除修改,对报警探测器布防和撤防,控制视频的切换,云台转动,镜头聚焦,辅助开关的闭合等等。由于多媒体软件操作界面良好,使操作者更容易理解接受,现在已广泛应用。 安装注意事项:由于监控主机输出信号是485码,与模拟信号是无法抗衡的,所以在安装时要做好设备的接地工作,保证回路内没有强电反馈给通讯口,否则会烧坏通讯芯片,使主机无法工作。

光伏电站倾角计算方式

太阳能阵列倾角计算方法的讨论和介绍在光伏阵列设计和安装中,许多参数需要根据安装地点以及周围环境进行特殊计算和分 析。太阳能阵列倾斜角度设计就是其中重要的一环。合理的设计和安装可以提高系统产能10%左右,对于一些地理位置特殊的项目,相较于较差的设计,增产更可能高达20%。据我所知,大多数业内设计师和安装师默认的方法是“阵列最佳倾角”等于“所在地的纬度角”。这篇文章将会讨论和证明这种方法的缺陷,同时介绍我个人认为更为优化和准确的测算方法。相信不少同仁在希望知道老方法的不足之前,可能更感兴趣了解这个“倾角等于纬度角”结论是怎么得出的吧。其实这并非是一个经验论,而是基于太阳行径以及方位在特殊的日期下计算出来的一个等式。 想要在地球上定位一个地点,知道经纬度是必要的.经度(Longitude)λ和纬度(Latitude) ?相当于我们平面几何中的Y轴和X轴,不过他们一个以本初子午线(the Prime Meridian)为基准,一个以赤道(Equator)为基准,其坐标交点就是我们需要查找的地点。比如北京的坐标就是39.9N°,116.4°E,意思就是北京在赤道以北39.9度,格林威治线以东116.4度。经纬度和方位角(Azimuth)是完全的两个概念,但是这两个角度对于光伏阵列的倾角和朝向,有着至关重要的影响,后文也会有所介绍。 图一:经纬度示意图 图一的?角度就是该地点相对于地心的纬度角,而λ则是该地点相对于格林威治线的经度角。

图二:方位角示意图 如果说经纬角度是定位角的话,方位角更像一个指向角。在世界地图中,“上北下南,左西右东”其实就是对方位角的通俗表达。如图二所示,方位角(Azimuth)其实就是朝向相对于正北的偏角。通常方位角有两种定义范围,分别是0至360度和180至-180度。澳大利亚采用的正北是0度,然后顺时针90度为正东,180度为正南,270度为正西。需要注意的是这里的正方向都是指的地理的正方向,而平时拿指南针或者大部分手机APP测出来的是地球磁场的北极,是有一个偏角的,由于是不规则变化,所以没有办法固定这个偏角度。专业的光伏测量仪器,比如英国的SEAWARD或美国的Solmetric生产的自带内置GPS的测量工具,是可以准确测出地理北极的。当然设计师也可以登录网上卫星地图,用直尺或量角器在误差允许的范围内进行估测。 图二中还显示了星体(太阳)的高度角(Altitude)α,它表示太阳距离观测点与水平面所成的夹角。高度角随着季节和一天内不同时间段在变化,准确的数值需要从观测站数据库获得。高度角的变化直接影响太阳能板对太阳光照强度的接收。其实一年之内,太阳相较于同一地

AB矩阵系统

AB矩阵系统 内置WEB视频服务以太网控制 一:系统介绍 AB80系列网络矩阵切换控制系统采用插拔式模块化设计包括电源模块、中央处理单元模块、数据缓冲模块、视频丢失检测模块、视频输入模块和视频输出模块。系统则最大可切换1024 路视频输入信号到128 路视频输出,并且可配置多个控制键盘或计算机图形工作站。通过AB40系列解码器可对云台、镜头实现前端控制,也可以连接AB188系列智能球进行摄像机控制。支持三级以上的多种组网功能,以太网多级联网,穿透式多级联网等远程多级编程控制及网络功能。 AB80系列网络矩阵切换控制系统选配含有内置IP控制模块和视频服务器,利用Internet,LAN 或W AN网络,可使用户在任何地方

通过客户端软件或PC浏览器打开矩阵主机提供的WEB 页面,浏览视频图像并可对矩阵主机进行操作和摄像机控制。共享网络内系统报警信息,真正实现大型的全方位报警联动响应,具有极大的灵活性。矩阵主机提供网络检测管理功能,查询的内容有编程数据、监视器状态、摄像机控制状态、系统报警、键盘使用状态、模块工作状态。并可以通过网络进行数据检查、设置和备份。 AB80-60/80网络矩阵主机支持CPU热备份切换控制功能,通过AB70-95热备份切换器可以连接两个AB80-60/80CPO外置式CPU组成双CPU矩阵切换系统,实现在主控CPU出现故障时自动切换到备份的CPU,从而保证矩阵系统的正常可靠地运行。 二:系统特性 ●基于以太网控制无需外置设备(型号后缀加“IP-OA”) ●内置WEB视频服务器可输出1-4路网络图像(型号后缀加“IP-V A4”) ●具有智能网络设备管理功能(型号后缀加“E”) ●系统支持双CPU热备份切换控制系统,支持系统电源热备份。 ●最大1024路输入128路输出 ●菜单综合设置 ●屏幕显示 摄像机标题,自带国标一、二级汉字字库 日期/时间格式可调整

光伏方阵的安装角度计算方式

光伏方阵的安装角度计算方式 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为60~70%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116)10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。 2.倾斜角 倾斜角是太阳电池方阵平面与水平地面的夹角,并希望此夹角是方阵一年中发电量为最大时的最佳倾斜角度。一年中的最佳倾斜角与当地的地理纬度有关,当纬度较高时,相应的倾斜角也大。但是,和方位角一样,在设计中也要考虑到屋顶的倾斜角及积雪滑落的倾斜角(斜率大于50%-60%)等方面的限制条件。对于积雪滑落的倾斜角,即使在积雪期发电量少而年总发电量也存在增加的情况,因此,特别是在并网发电的系统中,并不一定优先考虑积雪的滑落,此外,还要进一步考虑其它因素。对于正南(方位角为0°度),倾斜角从水平(倾斜角为0°度)开始逐渐向最佳的倾斜角过渡时,其日射量不断增加直到最大值,然后再增加倾斜角其日射量不断减少。特别是在倾斜角大于50°~60°以后,日射量急剧下降,直至到最后的垂直放置时,发电量下降到最小。方阵从垂直放置到10°~20°的倾斜放置都有实际的例子。对于方位角不为0°度的情况,斜面日射量的值普遍偏低,最大日射量的值是在与水平面接近的倾斜角度附近。以上所述为方位角、倾斜角与发电量之间的关系,对于具体设计某一个方阵的方位角和倾斜角还应综合地进一步同实际情况结合起来考虑。 3.阴影对发电量的影响一般情况下,我们在计算发电量时,是在方阵面完全没有阴影的前提下得到的。因此,如果太阳电池不能被日光直接照到时,那么只有散射光用来发电,此时的发电量比无阴影的要减少约10%~20%。针对这种情况,我们要对理论计算值进行校正。通常,在方阵周围有建筑物及山峰等物体时,太阳出来后,建筑物及山的周围会存在阴影,因此在选择敷设方阵的地方时应尽量避开阴影。如果实在无法躲开,也应从太阳电池的接线方法上进行解决,使阴影对发电量的影响降低到最低程度。另外,如果方阵是前后放置时,后面的方阵与前面的方阵之间距离接近后,前边方阵的阴影会对后边方阵的发电量产生影响。有一个高为L1的竹竿,其南北方向的阴影长度为L2,太阳高度(仰角)为A,在方位

会议系统和视频矩阵

会议系统包括:基础话筒发言管理,代表人员检验与出席登记,电子表决功能,脱离电脑与中控的自动视像跟踪功能,资料分配和显示,以及多语种的同声传译等。它广泛应用于监控、指挥、调度系统、公安、消防、军事、气象、铁路、航空等监控系统中、视讯会议、查询系统等领域,深受用户的青睐。 设备组成编辑 最基本的会议系统,由麦克风、功放、音响、桌面显示设备(例如桌面智能终端、液晶显示器),这几样设备的组合应用也可以说是一个会议系统了,它们起到了传声,显示,扩声的作用,达到能看、能听、能说话。 随着科技的发展、功能需求的提升,特别是电脑、网络的普及和应用,会议系统的范畴更大了,包括了表决/选举/评议、视像、远程视像、电话会议、同传会译、桌面显示,这些是构成现代会议系统的基本元素,同时衍生了一系列的相关设备,比如中控、温控制、光源控制、声音控制、电源控制等等。现代科技发展的促使下,会议系统定义成是一整套的与会议相关的软硬件。 分类编辑 (1)按信息流类型划分 ①音频图形会议系统 音频图形会议系统主要利用语音进行多方交流,并辅以传真机等通信设备传送图形文件。这是一种早期的会议系统形式。 ②视频会议系统 视频会议是利用数字视频压缩技术在会议中使用视频信息流的系统,这类系统又被称为视听会议。在会议中,与会者不仅可以听到其他人的说话声,还可以看到其他人的手势和面部表情。 ③数据会议系统 数据会议系统是利用计算机系统在窄带宽的通信网络上交换数据信息的会议。会议可以采用同步或异步形式。在会议终端上运行的是用户数据应用程序。 (2)按规模大小分类 按规模大小可分为大、中、小型三类。 ①大型会议系统 主要有高档会议厅和大型多功能厅。其功能主要是举行大型会议、论坛、技术交流及培训,并兼有新闻发布及小型文艺演出功能。扩声系统性能应达到“语言扩声一级标准”。在使用和控制手段方面也能够适应各种使用功能的需要。系统具有智能控制管理和切换功能。可以支持多点视频会议,具有远程会议功能。配备数字音、视频多媒体设备、同声传译系统和红外无线旁听系统等。 ②中型会议系统

屋顶光伏组件阵列间距计算的深入分析

屋顶光伏组件阵列间距计算的深入分析 目前分布式光伏系统的应用主要以工业、商业或民用建筑屋顶为主,光伏阵列排布在分布式系统设计中是非常重要的环节,对于阵列前后间距的优化,我们一般以冬至日上午9时和下午15时阵列前后互不遮挡的原则作为参考,它不仅要考虑当地纬度下的太阳高度角、太阳方位角、安装倾角,也还要考虑屋面本身的坡度、坡面朝向和坡面方位角,而目前对于光伏阵列前后间距的研究文献大多是正南朝向的水平屋面,虽然也有涉及到坡角和方位角,但分析仍不够全面,存在一定的局限性。因为实际的屋面可能同时呈现坡度和方位角,也有可能屋顶坡面东西朝向或主坡副坡同时存在,因此有必要对这些复杂屋面的阵列间距做深入分析。 通常情况下,屋面一般按其坡度的不同分为坡屋面(屋面排水坡度大于10%)和平屋面(屋面排水坡度小于5%)两大类。对于平屋面,一种是只有横向排水坡度(或称为主坡),没有纵向排水坡度(或称为副坡、边坡),另一种则稍复杂些,同时存在主坡和副坡,副坡和主坡形成一定的角度,两种情况参考图1和图2。主坡较常见的为2%~3%,副坡为0.5%~1%。 从光伏组件安装应用角度,目前使用最广泛的为平屋面,如工业彩钢瓦屋面、混凝土屋面,而坡屋面主要为别墅类,因坡屋面自身坡度较高,所以光伏组件一般沿着屋面平铺,参照图3。而平屋面的坡角较小,则需要设计一定的安装倾角来获得更高的发电效率,参照图4。 平屋面可分为坡角为0°角和不为0°角两种,按照坡面朝向又可以分为东西坡和南北坡屋面,如图5为东西朝向双坡面,图6为南北朝向双坡面,这两种屋面光伏阵列朝南安装在南坡或北坡。当然这两种屋面可能同时存在主坡和副坡,也可能存在一定的方位角,为计算方便起见,这里坡面的方位角定义为坡面法线方向在水平面的投影和正南方向的夹角,偏西为正,偏东为负。

光伏阵列安装角度选择..

固定式光伏阵列安装角度 、前言 太阳是一个巨大的能源,它以光辐射的形式每秒钟向太空发射约 3.8 M OM焦耳的能量,有22亿分之一投射到地球上,但已高达 173,000TW ,也就是说太阳每秒钟照射到地球上的能量就相当于500 万吨煤。太阳光被大气层反射、吸收之后,还有70%透射到地面。 亿万年来,地球以此形成生物圈。并为地球带来许多能量的来源,如风能,化学能,水能,乃至部分潮汐能均属于广义太阳能。然而,这些能源经过近代工业飞速发展,很多能源已消耗殆尽,狭义太阳能的利用逐渐被人们推向前台。被动式利用太阳能光电转换和光电转换两种方式都得到迅速发展。光热转换是把太阳能转化为热能,光电转换就是将太阳能转化为电能(即通常所说的光伏发电),其中重点是后者。 我国的太阳能资源比较丰富且分布范围较广,太阳能光伏发电的发展潜力巨大。 我国地处北半球,太阳能资源异常丰富,总面积2/3以上地区年日照时数大于2200h,其中西藏、青海、新疆、甘肃、宁夏、内蒙古高原均为太阳能资源丰富地区;除四川盆地、贵州省资源稍差外,东 部、南部及东北等其它地区都是资源较富和中等区。太阳能资源理论存储总量达每年17000亿t标准煤,与美国相近,比欧洲、日本优越得多。专家统计,如果把全国1%的荒漠中的太阳能用于发电,就可以发出相当于2003年全年的耗电量。届时,新疆、西藏、甘肃等广

2 河北西北 部、山西北 部、内蒙南 5852-6680 1625-1855 3000-3200 16.0-18.3 8.2-8.7 4.5-5.1 大西部地区将成为我国新的能源基地。 此外,目前太阳能光伏发电技 术已日趋成熟,是最具可持续发展理想特征的可再生能源技术之一。 我国不同地区水平面上光辐射量与日照时间资料 (印度、巴基 斯坦北部 地 区 类 别 年平均光辐射量F MJ/m2 . Kwh/m2 年平均光照 时间H (小 时) 年平均每 天辐射量 f(MJ/m2) 年平均 每天光 照时间 年平均 h (小1kw/m2 日峰 光照时间 h1 (小时) 宁夏北部、 甘肃北部、 新疆南部、 青海西部、 西藏西部、 6680-8400 1855-2333 3200-3300 18.3-23.0 8.7-9.0 5.0-6.3 '圍 r40 40 20 曲 rhXI 孑

中控矩阵会讨系统产品详细

中控、矩阵、会议系统等产品详细资料 (招投标方案设计专用) 一、高端可编程中控系统 1、高端智能可编程中控主机XBCPLM2 产品特性 XBCPLM2中控系统是捷控博采众家之长,精心研制而成的具有强大可编程能力和通讯控制能力的多媒体智能集中控制系统。它配置了主频达533MHZ的32位内嵌式处理器,内置了8M内存和16M存储FLASH,能高速运算复杂的逻辑指令;提供了现场可编程配置模式,客户可以根据自己的需求定制系统;采用了高度集成化的协处理芯片对中央处理器提供支持,让各种复杂运算和控制得以流畅运行;借鉴美国X10成熟电力载波通讯的方案,于中控行业独家引入电力载波通讯集成,通讯控制更得心应手,可以很容易扩展系统,是智能集中控制系统控制方式的一次革命。 XBCPLM2强大的中央处理器及其协处理芯片,既可以像常规可编程中控一样变成控制第三方RS232设备,又可以通过独有的电力载波通讯控制同一个电网内的任何用电设备,无需要铺设任何线缆,让客户组

网得心应手。由于具有强大的通讯控制能力和逻辑运算能力,XBCPLM2得以在大型会议厅和拼接系统等各种大型系统工程中一显身手。 XBCPLM2具有CRV-NET总线和8路红外控制端口,完全支持电力载波通讯。红外控制端口可以作为串口使用。CRV-NET总线能挂接所有符合CRV-NET总线协议的设备。总线采用了自修复保险结构,即便接错线路也不会引起设备烧毁。 产品描述 ●可编程控制平台,英文可编程界面选择,交互式的控制结构; ●采用最新32位内嵌式处理器,处理速度最高可达533MHZ; ●大量采用高度集成化协处理芯片,考究的LAY OUT让系统运行非常稳定、流畅; ●主机内置8MB内存及16MB的大容量FLASH存储器; ●独家引入电力载波通讯功能,让电网所在的300米范围无需布线即可控制; ● 8路独立可编程RS-232控制接口,可以收发RS232、RS485、Rs422格式数据; ● 8路独立可编程IR红外发射口; ● 8路数字I/0输入输出控制口,带保护电路; ● 8路弱电继电器控制接口; ●全面支持远程网络控制,可扩展网络; ● 3个CRV-NET网络控制接口,最大可接256个网络设备,相当于256个CRV-NET接口; ●客户可编程设置的任何控制协议或者控制代码; ●前、后面板具有系统软件传输接口; ●前面板具有系统系统硬件复位功能; ●内嵌智能红外学习功能模块,无须配置专业学习器; ●支持双代码的控制,即一键发二种代码; ●可扩展硬学习红外功能,客户可以方便的现场更换红外设备而无需再次编程; ●可从网上下载各种常用的电器设备的红外代码库; ●采用国际流行全贴片式(SMT)生产工艺; ●全制式环保电源(110V-240V),适合任何地区。 应用图例

光伏阵列太阳能电池板方阵安装角度计算和确定

光伏阵列太阳能电池板方 阵安装角度计算和确定 The pony was revised in January 2021

太阳能电池板方阵安装角度计算 由于太阳能是一种清洁的能源,它的应用正在世界范围内快速地增长。利用太阳光发电就是一种使用太阳能的方式,可是目前建设一个太阳能发电系统的成本还是较高的,从我国现阶段的太阳能发电成本来看,其花费在太阳电池组件的费用大约为30~40%,因此,为了更加充分有效地利用太阳能,如何选取太阳电池方阵的方位角与倾斜角是一个十分重要的问题。 1.方位角 太阳电池方阵的方位角是方阵的垂直面与正南方向的夹角(向东偏设定为负角度,向西偏设定为正角度)。一般情况下,方阵朝向正南(即方阵垂直面与正南的夹角为0°)时,太阳电池发电量是最大的。在偏离正南(北半球)30°度时,方阵的发电量将减少约10%~15%;在偏离正南(北半球)60°时,方阵的发电量将减少约20%~30%。但是,在晴朗的夏天,太阳辐射能量的最大时刻是在中午稍后,因此方阵的方位稍微向西偏一些时,在午后时刻可获得最大发电功率。在不同的季节,太阳电池方阵的方位稍微向东或西一些都有获得发电量最大的时候。方阵设置场所受到许多条件的制约,例如,在地面上设置时土地的方位角、在屋顶上设置时屋顶的方位角,或者是为了躲避太阳阴影时的方位角,以及布置规划、发电效率、设计规划、建设目的等许多因素都有关系。如果要将方位角调整到在一天中负荷的峰值时刻与发电峰值时刻一致时,请参考下述的公式。至于并网发电的场合,希望综合考虑以上各方面的情况来选定方位角。方位角=(一天中负荷的峰值时刻(24小时制)-12)×15+(经度-116) 10月9日北京的太阳电池方阵处于不同方位角时,日射量与时间推移的关系曲线。在不同的季节,各个方位的日射量峰值产生时刻是不一样的。

光伏电站的精细化设计最佳倾角及间距的优化计算

这几年随着光伏行业的整体回暖,特别是国内光伏行业的蓬勃发展,光伏电站的规模和数量日益剧增。行业的不断发展和成熟对于电站设计也提出了更高的要求,从前的粗放型设计已经无法满足当今的发展需求了,光伏电站的精细化设计,一丝一毫地抠细节以提高光伏电站的发电量才能赢得业主和投资者的认可。 目前国内的许多电站设计者们和一些光伏类工具书上对于最佳倾角的设计,往往是用软件或者公式计算倾斜面上的年辐射量最大来确定最佳倾角,比如使用PVsyst 6计算最佳倾角时,不停的调整倾角度数,以达到三个参数:Transposition Factor FT 和Global on collector plane 最大,Loss By Respect To Optimum 为0%,比如下面这样 这个时候所对应的倾角就是最佳倾角,然后再根据这个最佳倾角,使用《光伏发电站设计规范》中的规定冬至日上午9点至下午3点不遮挡的最小间距公式: D=Lcosβ+Lsinβ (0.707tan?+0.4338)/(0.707-0.4338tan?) 式中:L——阵列倾斜面长度 D——两排阵列之间距离 β——阵列倾角 ?——当地纬度 以上就是目前许多设计人员在设计固定式地面电站时候对最佳倾角和最小间距的选取过程,然而事实是,这样的设计真的是最佳方案吗?先不说间距,就说这个最佳倾角,让我们来看看某地的一个光伏电站,按照上面的设计方法计算,最佳倾角选取为38°,阵列中心间距为9.4m。我们以9.4m为固定间距不变,2°为步长,用PVsyst 6作为模拟计算软件,算出28度~44度之间的不同倾角下,1MW光伏电站发电量,列出下表

光伏阵列上太阳辐照量计算及最佳安装倾角设计

光伏阵列上太阳辐照量计算及最佳安装倾角设计 摘要:安装地点确定的固定式光伏阵列最佳倾角要受到系统并网与否的影响。根据Hay提出的天空散射辐射各向异性模型,运用一种新的太阳能辐照量和安装倾角分析方法---Ecotect 可视化分析软件,分别对并网光伏发电系统和离网光伏发电系统的光伏方阵最佳倾角进行研究。结果表明:并网发电系统光伏方阵的最佳安装倾角一般小于当地纬度。在离网发电系统中,均衡性负载的安装倾角大于当地纬度;夏季型负载的最佳安装倾角小于并网发电系统的最佳安装倾角,而冬季型负载的最佳安装倾角大于均衡性负载的安装倾角。 关键词:光伏发电;固定式支架;太阳辐照量;安装倾角 引言 在光伏发电系统中,光伏阵列最佳倾角的选择是首先需要解决的关键问题,最佳倾角的确定主要取决于系统所在区域的地理位置、气象条件以及系统的负载性质。在并网发电系统中,建设方一般希望全年日均发电量最大化,其最佳倾角的确定已有相关文献进行研究。在离网发电系统中,根据用途不同,光伏系统的负载大致可以分为均衡性、季节性和临时性3种。在多数应用中,可以认为全年日均耗电量相同的是均衡性负载;有些负载的耗电量随着季节改变而变化,我们称之为季节性负载,其最佳倾角的确定需要根据负载的具体情况进行具体分析;临时性负载常常作为应急电源使用,实际应用很少,一般只要将光伏阵列倾角调整到在使用时能接收到最大太阳辐照量即可。本文将运用一种新的太阳辐照量和安装倾角分析方法---Ecotect太阳辐照量可视化分析软件,对并网光伏发电系统、离网光伏发电系统的光伏方阵最佳倾角进行研究。 1太阳辐照量计算原理 根据Hay提出的天空散射辐射各向异性的模型,其表达式: Ht=HbRb+Hd[RbHb/H0+1/2(1-Hb/H0)(1+cosβ)]+1/2ρH(1-cosβ)(1) 式中:H、Hb和Hd分别为水平面上的太阳辐照量总量、直接辐照量和散射辐照量;Rb 为倾斜面和水平面上直接辐照量的比值;H0为大气层外水平辐照量;β为倾角;ρ为地面反射率。由此即可计算出朝向赤道不同倾角的方阵面上所接收到的太阳辐照量。 2并网光伏发电系统中光伏阵列最佳倾角的确定 在并网发电系统中,要求系统的全年日均发电量最大,即要求光伏方阵倾角调整至接收到全年最大太阳辐照量。 以在中电电气南京科技园(北纬31°54′,东经118°46′)安装并网光伏发电系统为例。根据NASA气象数据库数据,运用可视化太阳辐照量分析软件对不同安装倾角的光伏阵列上接收到的太阳辐照量进行计算。计算结果如图1。结果表明,安装倾角在25°时,全年接收到的太阳辐照量最大,累计982865Wh/m2,即该项目的最佳安装倾角是25°;同时,在24°~26°时,太阳能辐照量在982704~982865Wh/m2范围,相差较小,如果考虑预留设计裕度,安装倾角可以在24°~26°选取。 3季节性负载离网光伏发电系统中光伏阵列 最佳倾角的确定

相关主题
文本预览
相关文档 最新文档