当前位置:文档之家› 三相电压不平衡导致电容器组跳闸原因分析

三相电压不平衡导致电容器组跳闸原因分析

三相电压不平衡导致电容器组跳闸原因分析
三相电压不平衡导致电容器组跳闸原因分析

三相电压不平衡导致电容器组跳闸原因分析

【摘要】本文通过对220kV某变电站10kV电容器由于三相电压不平衡导致跳闸原因分析,找出引起电压不平衡的因素,为以后查找电容器组故障原因积累经验。

【关键词】不平衡电压;绝缘电阻;直流电阻;电容量;电抗

前言

为了补偿系统无功,变电站基本上都会在10kV系统中装设电容器组。在设备运行过程中,经常会发生电容器组跳闸现象,引起电容器组跳闸的主要原因是由于电压不平衡造成保护动作,使断路器跳闸。通常我们都会认为电压不平衡是电容器组电容量三相不平衡引起的,但实际上断路器三相不同期、放电线圈绕组直流电阻三相不平衡、电抗器三相电抗值不平衡、绝缘老化都会引起三相电压不平衡,使电容器组跳闸。

一、现场试验情况

2014年7月9日,某变电站10kV电容器首次对跳闸,对其进行电容量测量,测量结果为A相173.1μF、B相173.4μF、C相173.3μF。从测试数据看电容值没有问题,就对紫1#电容器组进行投运,此时保护定值设为3V,投上后电容器组马上就跳掉了。随后又将保护定值改到5V,再次将电容器组投上后,过了几分钟电容器再次跳掉。我们初步认为导致电容器组跳闸的可能会是电容器单元其他设备,不是电容器本身。

2014年7月11日,再次对跳闸电容器单元进行全面试验,分别对电容器电容量、绝缘项目,开关特性、直阻、绝缘项目,电抗器电感、电抗、绝缘项目,电缆绝缘项目,测试结果都正常。在对放电线圈一次绕组直流电阻测试时,发现A相1216Ω、B相1413Ω、C相1411Ω。从测试数据上看,A、B、C三相绕组直阻不平衡率约为15%。对其绝缘电阻测试时,发现A相绝缘较低,约10.92 MΩ,B、C两相均在320 MΩ左右。通过对试验数据分析,我们就能确定由于放电线圈一次绕组存在匝间短路造成三相电压不平衡,从而引起紫1#电容器跳闸。

二、影响电压不平衡的因素

1、电容器三相电容值偏差较大引起电压不平衡

Q/GDW1168-2013《输变电设备状态检修试验规程》规定电容器组的电容量与额定值的相对偏差应符合此要求:3Mvar以下的电容器组:-5%~10%;3Mvar 到30Mvar电容器组:0%~10%;30Mvar以上电容器组:0%~5%;且任意两线端的最大电容量与最小电容量之比值,应不超过1.05。如果电容器中某相电容受潮或损坏,都会导致电容值减小,造成无功补偿不均衡,从而导致电压不平衡,

漏电保护器跳闸6种常见问题排查解决方法

漏电保护器不同于断路器和隔离开关。断路器除了有分合电路功能外,还具有短路保护功能。隔离开关只有分合电路功能。漏电保护器除了分合电路功能,并有短路保护功能外,还具有漏电保护功能(漏电电流在30mA——500mA不等)。 建筑供配电系统多采用TN—C—S系统。一般设置两级漏电保护开关。第一级设置在电源进户处的总开关处,即电源进户处的总开关选用漏电电流值为300mA——500mA的4级(L1、L2、L3和N线)的漏电开关;第二级设置在用户开关箱中的插座回路(悬挂式空调回路允许不设置漏电开关),选用漏电电流值为30mA的2级(L1或L2或L3和N线)的漏电开关。从而防止了用电人员触电事故的发生及提高了建筑供配电系统安全运行的可靠性。 漏电保护开关故障跳闸后,万万不可将漏电保护开关的漏电流检测环节摘掉。应根据故障跳闸现象,分析故障跳闸原因,找出解决故障方法。漏电开关故障跳闸现象大致有6种: 第1种,用电设备本身绝缘损坏,导致用电时发生漏电开关故障跳闸现象; 第2种,线路潮湿绝缘强度降低,导致非用电时漏电开关故障跳闸现象; 第3种,人身意外触电,导致漏电开关故障跳闸现象; 第4、5、6种,施工安装时接线不正确,导致用电时发生漏电开关故障跳闸现象。 详细分析如下↓↓↓ 第1种:用电设备本身绝缘损坏而漏电(设备中的N线与PE线短接)。如图1所示。 故障现象:插座回路用电时,插座回路漏电开关跳闸。 故障原因:经分析线路接线正确无误,故判断为用电设备本身绝缘损坏而漏电(设备中的N 线与PE线短接)。 解决方法:更换或维修用电设备。 第2种:线路潮湿绝缘强度降低。如图1所示。 故障现象:不用电时,也出现AL1中的总漏电开关或插座回路漏电开关跳闸。 故障原因:经分析,线路潮湿绝缘强度降低,导致漏电流超过了漏电开关允许漏电流值。也可能因线路短路所致。 解决方法:烘干线路,提高绝缘强度。检查线路若是短路所致,排除短路故障。 第3种:有人触电,出现AL1中的总漏电开关或插座回路漏电开关跳闸。如图1所示。 故障现象:AL1中的总漏电开关或插座回路漏电开关跳闸。

(完整word版)漏电跳闸原因分析

0前言 漏电保护器在人身安全、设备保护和防止电气火灾等方面起着重要的作用。由于它使用安全方便得到广泛应用,而使用中也存在这样那样的问题、笔者从使用者的角度介绍它的相关知识和注意事项故障处理。 漏电保护器又叫漏电开关、它有电磁式、电子式等几种: 1漏电保护器的工作原理 1.1电磁式漏电保护器的工作原理 主要由高导磁材料(坡莫合金)制造的零序电流互感器、漏电脱扣器和常有过载及短路保护的断路器组成、全部另件安装在一个塑料外壳中。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值。零序电流互感器的二次绕组就输出一个信号,并通过漏电脱扣器使断路器在0.1秒内切断电源,从而起到漏电和触电保护作用。当被保护的线路或电动机发生过载或短路时,断路器中的电磁式液压延时脱扣器中热元件上的双金属片发热动作、使开关分闸,切断电源。 1.2电子式漏电保护器的工作原理 主要由零序电流互感器,集成电路放大器,漏电脱扣器及常有过载和短路保护的断路器组成。被保护电路有漏电或人体触电时,只要漏电或触电电流达到漏电动作电流值,零序电流互感器的二次绕组就输出一个信号,经过集成电路放大器放大后,使漏电脱扣器动作驱动断路器脱扣,从而切断电源起到漏电和触电保护作用。如果使用兼有过压保护是利用分压原理取得过电压信号,使可控硅导通,切断电源。 2漏电断路器的选用原则 2.1根据使用目的和电气设备所在的场所来选择 漏电断路器用于防止人身触电,应根据直接接触和间接接触两种触电防护的不同要求来选择。 2.1.1直接接触触电的防护 因直接接触触电的危害比较大,引起的后果严重,所以要选用灵敏度较高的漏电断路器,对电动工具、移动式电气设备和临时线路,应在回路中安装动作电流为30 mvA,动作时间在0.1 s之内的漏电断路器。对家用电器较多的居民住宅,最好安装在进户电能表后。 如果一旦触电容易引起二次伤害(比如高空作业),应在回路中安装动作电流为15 mA,动作时间在0.1 s之内的漏电断路器。对于医院中的电气医疗设备,应安装动作电流为6 mA,动作时间在0.1 s之内的漏电断路器。

10KV线路跳闸的主要原因

2、故障跳闸原因分析 (1)漯河供电公司郊区10KV线路大都分布在野外、点多、线长、面广、受季节性影响的特点比较明显,6-8月这3个月累计跳闸达109次,占线路跳闸总数的%,期间正是迎峰度夏高峰期,雷雨大风天气多、温度高、湿度大、树木生长旺盛,易于发生各类跳闸故障。 (2)从各类故障跳闸比例中可以看出,因线路配电设备自身原因,占线路跳闸总数的31%为最高,分析其原因有以下几点: 一是80%以上的线路设备是农网前两期时代的产物,受当时资金及技术条件的限制,工程标准起点低,网架结构薄弱,装备水平差,近年来负荷发展快,导线截面小,极易引发线路故障,如跳闸次数最多的商农线、姬工线等大都因负荷电流大,而烧坏刀闸和烧断跳线弓子等故障。 二是由于线路年久失修,加之部分线段污染严重,一遇恶劣天气易发生绝缘子击穿放电、避雷器击穿损坏、跌落保险熔管烧毁、引流线断落等故障引起跳闸。 三是线路导线80%以上为裸体线,档距大,弧垂超标,遇大风时易造成导线舞动,引发相间短路故障。 四是由于郊区负荷年增长率在35%以上,配电变压器的增容布点远远跟不上负荷的发展速度,由此屡屡造成因配变过负烧毁引起线路跳闸,据调查统计2011年烧毁各类型号的变压器62台,烧毁配变的主要原因固然有设备过负方面的(如某些厂家的变压器短时过载能力较差),但也有管理方面的,所烧毁的变压器80%以上是因三相负荷不平衡引起单相线圈烧毁。 (3)因用户配电设备原因,占线路跳闸总数的%。仅次于公用线路配电设备,分析其原因在于乡镇供电所对专变用户的设备疏于管理。 (4)因外力破坏原因占线路跳闸总数的%。如因司机违规驾驶撞击电杆,高架车挂断导线,施工取土挖断电缆等事故,如3月7日9点零7分Ⅰ姚工线被吊车撞断杆子,导致线路短路跳闸。

浅谈三相电压不平衡

浅谈三相电压不平衡 摘要:三相电压不平衡是电力系统运行中的常见非正常现象,本文浅析了中性点接地与非接地的三相系统在正常、事故情况下产生电压不平衡基本理论知识;三相电压不平衡对电力系统以及电力用户的危害;从理论上探讨了改善三相电压不平衡的切实可行措施方法;并给出了三相电压不平衡的国家执行标准。 关键词:电压不平衡不平衡危害改善措施标准 0 引言 在市场经济不断深化,国家电网公司提出建设”一强三优”的现代企业的战略目标的形势下,电能质量问题备受电力供应企业与电力用户的关注。提供优质的电能是电力企业的责任,然而随着国民经济的蓬勃发展,电力网负荷急剧增大,特别是冲击性、非线性负荷容量的不断增长,使得电网发生电压波形畸变、电压波动与闪变和三相不平衡等电能质量问题。这些特征量是评定电能质量的重要指标,三相电压不平衡在电力系统正常运行与异常运行情况下均有出现,而且长时间不平衡严重影响系统正常运行,甚至损坏电气设备,所以保证三相电压平衡更具有重要意义。 1正常运行的三相电压不平衡 三相导线的不对称排列可能使各相导线对地电容不相等而引起三相电压不平衡。设三相对地电容为Ca、Cb、Cc,对于中性点非直接接地系统,由于导线换位不良所造成的不对称电压Upd,当考虑各相绝缘的对地泄露电阻时,不平衡电压Upd为: Ca、Cb、Cc--系统的三相对地电容 假设三相电压平衡,各相泄漏电阻相等,即ra=rb=rc,则 系统采用中性点经消弧线圈接地可补偿对地电容不相等而引起三相电压不平衡问题,则不平衡电压如下[1]: 消弧线圈接地系统正常运行时电压不平衡的大小与补偿度有关,补偿度越小,中性点电压越高,三相电压愈不平衡;补偿度等于零,即谐振补偿时,中性点的电压最高即电压不平衡情况越严重。因此,一般规定补偿度选取原则是过补偿5~30%,欠补偿20~30%。 当消弧线圈调谐不当和系统对地电容处于串联谐振状态时,会引起中性点电压过高,从而引起三相对地电压的严重不平衡。这种由零序电压引起的三相电压不平衡并不影响三相线电压的平衡性,因此不影响用户的正常供电,但对输电线、变压器、互感器、避雷器等设备的安全是有威胁的,必须加以控制。

变频器频繁跳闸的解决方法

变频器频繁跳闸的解决 方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

变频器跳闸的解决方案瑞康钛业公司: 经多次到贵公司生产现场实地了解及对设备的检查情况,贵公司由于生产调速的需要,在公司各地使用变频器,其中一些变频器负荷较轻,一些负荷较重。贵公司经常发生锅炉房和煤气发生站变频器跳闸而其他变频器几乎不跳闸的情况。而贵公司这两处变频器设备又是非常关键的设备,该处设备的跳闸事故给公司的正常生产带来严重影响。 变频器跳闸时的情况:经检查安川变频器跳闸记录为欠电压跳闸;询问西门子变频器跳闸时的情况,据操作工反应显示为F003(欠电压)故障。同时据贵公司技术人员反应,当变频器跳闸时,伴随着明显的电压波动情况。 一、锅炉房和煤气发生站变频器频繁跳闸时的可能原因检查及分析: 1设备本身正常;经过对这两处变频器控制的电机检查、控制线路、按钮、电源线路的走向和绝缘检查,均正常,不存在偶然性故障的可能情况。 2变频器参数设置正常;参数为对正常风机常规设置,不存在有明显数据不属实的情况。 对变频器、电机、线路均进行了检测,设备均正常;因而排除了设备方面可能存在的问题引起变频器跳闸,在结合变频器跳闸时了解的情况综合判断,锅炉房和煤气发生站变频器跳闸的原因为电源电压波动引起的。因此对贵公司电源供电及配电情况进行了解和检查。 经检查,锅炉房和煤气发生站变频器电源均由锅炉房380V配电室供给,而该配电室电源由公司10KV高配室经变压器变为380后供给。公司10KV高配室电源由附近的110KV变电所变为10KV后供给;变电所10KV侧有多路出线,分别供给其他公

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

LED显示屏频繁跳闸原因分析及解决方法v

漏电保护器布局不合理 由于LED显示屏安装现场所具有的特殊性,如接线错误、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱等原因,以及漏电保护器本身不可避免的误动和拒动,再加上没有按照实际用电情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸。 对于这种情况除了加强管理外,还需要从技术的角度,根据实际情况对漏电保护器进行合理布置。进线总电源上的漏电保护器,可主要做为防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可在200~500mA 之间选择,额定漏电动作时间可选择0.2~0.3s。这样,可极大地减少浪涌电压、浪涌电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 在保护范围内没有形成有效的二级或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。由于LED显示屏内金属导体很多,电线接头较多,如果导线绝缘不是很好,就会导致经常漏电的状况;有的还加了一些插座,在很多时候都不装漏电保护器,经常造成漏电。只有在每个保护范围内形成有效的二级或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。

漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设备主回路中的漏电流,三相或三相四线在磁环中不可能布置完全均衡。LED显示屏的三相用电负荷也不可能完全平衡,在大电流下或较高的过电压下,会在有很高导磁率的磁环中感应出一定的电动势,这个电动势大到一定程度,就会导致漏电保护器跳闸。由于额定电流越大的漏电保护器采用相对较大的磁环,产生的漏磁通也相对较大,且漏电流要克服磁环本身的磁化力,导致实际使用的漏电保护器额定电流越大,灵敏度越低,拒动率也越大。 (2)漏电保护器在额定漏电动作电流和额定漏电不动作电流之间有一段动作不确定区域,漏电保护器的漏电流在此区域内波动时,可能导致漏电保护器无规律跳闸。 漏电保护器选型不合理 (1)开关箱内使用的额定漏电动作电流超过了30mA或者是超过用电设备额定电流两倍以上的漏电保护器,或是选用了带延时型的漏电保护器,由于额定漏电动作电流的提高或保护灵敏度的下降,发生漏电故障时,末级漏电保护器没有动作,上级漏电保护器就可能动作 (2)给LED显示屏通电时的启动电流往往都比较大,此大电流可能会使漏电保护器跳闸。因此,应尽可能分批次地给显示屏的箱体上电。另外,一般应选用对浪涌过电压、过

漏电开关总是自动跳闸实教你一招解

英杰职业教育:漏电开关总是自动跳闸实在很烦恼电工师傅一招解决 家庭都装有漏电开关,时常发生跳闸现象,如果一天跳几次,找不到原因,就让人实在很烦恼!有的是属漏电引起的正常跳闸,有的并非是漏电引起的跳闸,但为了用电安全,我们通常都会安装漏电开关。漏电开关在电路出现故障的时候都会自己自动跳闸,但是漏电开关怎么跳闸的,人们都不了解,要怎样才能使得大家更好的使用漏电开关呢? 开关即跳大家都有没遇到过,所以三相四相制接漏电开关一定要接四极漏电开关,即零线必须经过漏电开关。三相漏电开关跳闸是因为安装不良,如果漏电保护器在安装时各接线柱未接牢固,时间一长,往往会导致接线柱发热氧化,使电线绝缘层被烧热连在一起,其实在一个铁芯上有两个组:一个输入电流绕组和一个输出电流绕组,当无漏电时,输入电流和输出电流相等,在铁芯上二磁通的矢量和为零,就不会在第三个绕组上感应出电势,否则第三绕组上就会感应电压形成,经放大去推动执行机构,使开关跳闸。 正常工作时电路中除了工作电流外没有漏电流通过漏电保护器,此时流过零序互感器(检测互感器)的电流大小相等,方向相反,总和为零,互感器铁芯中感应磁通也等于零,二次绕组无输出,自动开关保持在接通状态,漏电保护器处于正常运行。当被保护电器与线路发生漏电或有人触电时,就有一个接地故障电流,使流过检测互感器内电流量和不为零,互感器铁芯中感应出现磁通,其二次绕组有感应电流产生,经放大后输出,使漏电脱扣器动作推动自动开关跳闸达到漏电保护的目的。 漏电开关 对于老电路或布线时没有套管的电路是很难用上漏电保护器,即使你能用一到潮湿天气它就跳个不停,漏电的原因和位置是很难查的。一般有三种原因,第一种原因,所接负载或导线存在火线或零线对地漏电。第二种原因,负载或导线存在短路。 第三种原因,负载电流过大,造成过载跳闸,这时候要关闭开关,断开电源,把输出电线的相线全部解开,用万用表逐一测量相线对地是否电阻非常小或电阻为零,排除后继续检查短路线路的情况,更换或加装即可。

变压器三相负荷不平衡原因分析及防范措施

变压器三相负荷不平衡原因分析及防范措施 发表时间:2018-06-11T15:06:54.410Z 来源:《河南电力》2018年2期作者:张璇 [导读] 变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。 (国网山西省电力公司太原供电公司山西太原 030012) 摘要:变压器三相负荷不平衡,可能使低压电网的三相负荷不平衡度加大,这不仅关系到供电可靠性和稳定性,还会增加低压线路线损,使变压器出力下降。因此变压器台区三相负荷不平衡问题应当引起重视。 关键词:变压器三相负荷不平衡;原因;防范措施 一、变压器三相负荷不平衡引起的麻烦 某地区多个台变多次出现一相总熔断器熔丝烧断的情况,利用用电采集系统采集配变的三相负荷数据,均为三相负荷不平衡引起,随着夏季用电负荷的不断增加,这种不平衡的情况也突显出来,随之带来抢报修以及服务热线诉求工单的数量猛增,给企业的优质服务带来影响。 在线损合格台区整改提高工作中也发现,因三相负荷的不平衡也会造成台区线损率的增加。在三相负荷不平衡度较大的情况下,在配电变压器中性点不接地或接地电阻达不到技术要求时,中性点将发生位移造成中性线带有一定的电压,从而加大线路电压的电压降,降低功率的输出,线路供电电压偏低,尤其是线路末端的电压远远超出电压降的允许范围,直接导致用户的用电设备不能正常工作,电气效能降低,同时极大的增加了低压线损率。通过用电采集系统提供的相关数据证明,一般情况下三相负荷不平衡可引起低压线损率升高2%~10%,三相负荷不平衡度若超过15%,则线损率显著增加,不平衡度越高对低压线损率的影响越大,如不平衡度超过30%,通过计算影响低压线损可以达到3%~6%。而事实上由于城乡用户受经济条件的制约和家用电器普及率的逐年提高,三相负荷不平衡度情况越来越严重,目前通过用电采集系统提供的数据计算,每天三个用电高峰期三相负荷不平衡度超过10%的占总综合变台区的60%,不平衡度超20%的台区数占总台区的40%,不平衡度超过30%的台区数占台区的26%。不平衡度越大的台区供电线路末端用户普遍反映电压偏低,而低压线损率也普遍反映较大。在低压三相负荷不平衡度的影响下,使配电变压器处于不对称运行状态,造成配电变压器的负载损耗和空载损耗增大,而影响到10kV线损率。 二、三相不平衡对变压器的影响 (1)三相不平衡将增加变压器的损耗 变压器的损耗包含空载损耗和负荷损耗,正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随着变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。 (2)三相不平衡降低了配电变压器的出力 配电变压器容量的设计和制造是以三相负载平衡条件确定的,如果三相负载不平衡,配电变压器的最大出力只能按三相负载中最大一相不超过额定容量为限,负荷轻的相就有富裕容量,从而使配电变压器出力降低。例如100kVA配电变压器,二次额定电流为144A,若Ia为144A,Ib、Ic分别为72A,配电变压器的出力只有67%。 (3)三相不平衡可能造成烧毁变压器的严重后果 上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器的寿命。(温度每增加8度,使用年限将减少一半,甚至烧毁绕组。 (4)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高 在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序通磁,这些零序通磁就会在变压器的油箱壁或其它金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重使将导致变压器运行事故。 三、影响变压器三相负荷不平衡的原因 三相负荷不平衡发生的原因主要是管理上存在薄弱环节,由于在对配电变压器三相负荷的分配上存在盲目性、工作随意性,以及运行维护人员对配电变压器三相负荷管理的责任心不到位,农村用电动力、照明的混用,尤其是居民用电单相负荷发展时无序延伸,用户用电情况不好掌握等客观因素,而在管理中又由于缺乏有效的监测、调整和考核机制,导致目前农村综合变压器三相负荷处于不平衡状态下运行。 四、防止变压器负荷不平衡运行采取的措施 (1)加强配电变压器负荷不平衡运行管理。运维班安排专人负责利用用电采集系统定期进行三相不平衡电流测试,并结合台区责任人的现场测量情况,按季度考核变压器三相负荷不平衡度的情况,把它列入考核项目,以提高农电管理人员搞好三相负荷平衡的自觉性和积极性。负荷每月至少进行一次测量,特殊情况下(如高峰负荷期间,负荷变化较大时等)可增加测量次数,对配电变压器负荷状况做到心中有数,并完善相关记录台帐,为调整配电变压器负荷提供准确可靠的数据。 管理人员应熟悉台区的每个用户用电情况、设备安装地点、用电能量变化情况,特别是注意大功率用电设备数量和容量等,看其分布在那相上。然后根据情况及时调整负荷。 (2)改造配电网,加强对三相负荷分布控制。在改造台区供电方案前,要了解所改造台区的负荷变化规律和负荷分配情况,对所改造的台区进行现场勘察,掌握负荷分布情况,同时绘制台区负荷分配接线图,并严格按三相负荷平衡的原则进行布线,尽量使三相四线深入到各重要负荷中心。配电变压器设置于负荷中心,供电半径不大于500m,主干线、分支干线均采用三相四线制供电,5户以上居民尽量不采用单相供电,中性线导线截面与其它相线截面一致,以减少损耗,消除断线的事故隐患。同时制定台区负荷分配接线图,做到任何一

施工现场漏电保护器频繁跳闸原因分析标准范本

安全管理编号:LX-FS-A70052 施工现场漏电保护器频繁跳闸原因 分析标准范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

施工现场漏电保护器频繁跳闸原因 分析标准范本 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使

三相电压、电流不平衡的影响

三相电压不平衡度是指三相系统中三相电压的不平衡程度,用电压或电流负序分量与正序分量的均方根百分比表示。三相电压不平衡(即存在负序分量)会引起继电保护误动、电机附加振动力矩和发热。额定转矩的电动机,如长期在负序电压含量4%的状态下运行,由于发热,电动机绝缘的寿命将会降低一半,若某相电压高于额定电压,其运行寿命的下降将更加严重。 我国目前执行的GB/T 15543—1995《三相电压允许不平衡度》规定了电力系统公共连接点正常电压不平衡度允许值为2%,同时规定了短时的不平衡度不得超过4%,其短时允许值的概念是指任何时刻均不能超过的限制值,以保证继电保护和自动装置正确动作。对接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。 大部分用户在使用过程中发生的三相电力不平衡主要原因如下: 1)太偏重于单相负载使各相之间发生不平衡; 2)系统的无效电力,高次谐波电流使各相之间发生不平衡; 3)机器接触端子及电缆接触不良导致另外的不平衡; 4)外部环境的人力,电力导致不平衡的发生; 三相不平衡对负载的影响: 1)电压不平衡的发生导致达到数倍的电流不平衡的发生; 2)诱导电动机中逆扭矩增加使温度上升,效率降低,损失增加,发生震动,输出节减等影响; 3)各相之间不平衡的发生带来缩短机器寿命和加快机器及部品交替周期和增加了设备维持补修的费用; 4)断路器容许电流的余量减少,负载变更时或负载交替时发生超载、短路; 5)中性线中流入过大的不平衡电流所以中性线增粗; 三相负载不平衡运行对变压器的危害 1)三相负载不平衡将增加变压器的损耗; 2)三相负载不平衡运行会造成变压器零序电流过大,局部金属件温升增高; 三相负荷不平衡对线损的影响 采用三相四线制供电方式,由于用户较为分散,线路较长,如果三相负荷不平衡,将直接增加电能在线路的损耗:当三相负荷平衡时线损最小;当一相负荷重,两相负荷轻的情况下线损增量较小。 当一相负荷重,一相负荷轻,而第三相的负荷为平均负荷的情况下线损增量较大;当一相负荷轻,两相负荷重的情况下线损增量最大。 当三相负荷不平衡时,不论何种负荷分配情况,电流不平衡度越大,线损增量也越大。 为此在三相四线制的低压网络运行中,应经常测量三相负荷并进行调整,使之平衡,这是降损节能的一项有效措施,对于输送距离比较远的配电线路来说,效果尤为显著。 三相电压不平衡度是指三相电力系统中三相电压的不平衡程度,用电压负序分量与正序分量的方均根值百分比表示;测量时需要在系统正常运行的最小运行方式下,负荷不平衡度最大的时候测量;按上一版国标规定(网上也能查到新国 标),电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%。接入公共连接点的每个用户引起该点正常电压不平衡度允许值一般为1.3% 。

三相不平衡度

三相不平衡度 三相不平衡度在三相电力系统中指三相不平衡的程度,用电压、电流的负序基波分量或零序基波分量与正序基波分量的方均根百分比表示。 一、定义 国家标准《GB/T15543-2008电能质量三相电压不平衡》(下称“国标”)对三相不平衡度及相关定义如下: 不平衡度unbalance factor 在三相电力系统中三相不平衡的程度,用电压、电流的负序基波分量或零序基波分量与正序基波分量的方均根百分比表示。电压、电流的负序不平衡度和零序不平衡度分别用εu2、εu0、εi2、εi0表示。 电压不平衡voltage factor 三相电压在幅值上不同或相位差不是120°,或兼而有之。 正序分量positive-sequence component 将不平衡三相系统的电量按对称分量法分解后其正序对称系统中的分量。 负序分量negative-sequence component 将不平衡三相系统的电量按对称分量法分解后其负序对称系统中的分量。 零序分量zero-sequence component 将不平衡三相系统的电量按对称分量法分解后其零序对称系统中的分量。 公共连接点point of common coupling 电力系统中一个以上用户的连接处。 二、电压不平衡度限值 电网正常运行时,公共连接点电压不平衡度限值为: εU2≯2%,短时(3s~1min)εU2≯4%。

接于公共连接点的每个用户引起的电压不平衡度限值为: εU2≯1.3%,短时(3s~1min)εU2≯2.6%。 三、不同的计算方法 1、三相不平衡度的国标计算方法 国标定义的三相不平衡度需要知道三相相电压的大小和相位,运算较复杂。此外,在三相三线制系统中,相电压不易测量,电机试验电参数测量多数属于这种情况,可参考其它相关标准。以下汇集了国标及相关标准对三相不平衡度的计算方法。 2、三相不平衡度的国标简化计算方法 对于没有零序分量的三相系统,国标推荐的三相不平衡度的简化计算方法如下: 3、三相不平衡度的IEEE std936-1987计算方法

施工现场漏电保护器频繁跳闸原因分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 施工现场漏电保护器频繁跳闸原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4487-40 施工现场漏电保护器频繁跳闸原因 分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。

2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护

配电线路跳闸的原因分析及防范措施

配电线路跳闸的原因分析及防范措施 摘要:故障的情况下进行开关合闸,但常因过流保护动作跳闸而无法正常送电。现场情况表明,对这类存在开关异常跳闸状况的线路进行合闸送电瞬间,电流表指针往往大幅度偏转,然后又在较短的时间内返回到正常值。合闸冲击电流过大会导致过流保护动作跳闸,更为严重的是,有的线路只能将线路分段后逐段送电。 一跳闸原因: 1 管理原因: (1)外力破坏:电力线路受外力破坏易造成倒杆断线恶性事故,严重威胁电网安全运行。 (2)盗窃设施:电力线路多为金属材料,受价格上涨因素,犯罪分子偷盗电力设施,案发前必然先造成线路跳闸停电后实施犯罪。 (3)车辆撞杆:线路延公路两侧架设方案仍是目前普遍推行的首选方案,它便于施工与接火跳线,但随着车辆快速增长,违章行车直接撞击电杆事故也呈上升趋势。 (4)杆根取土:修路、建房、烧砖等取用土时,对架设在田间地头电杆地段进行取土,破坏了电杆基础,造成电杆倾斜倒塌。 (5)破坏拉线:组立在农村耕地上带有接线的电杆,因其不便于农机作业和农作物的收种,从而擅自拆除拉线,引起电杆倒塌。 (6)焚烧农作物秸秆:每年农作物收割之后,废弃在耕地中或堆积在田间地头、公路两侧的秸秆就地焚烧而引起线路跳闸。 (7 短路:人为因素较多,大都是缺乏电力保护常识而引发障碍。重点有:风筝、过街宣传横幅,彩带等绕线;金属丝抛挂,此类故障多集中在村庄附近和空旷地段;架空导线飞鸟短路,地下电缆出线裸露部分小动物短路。 (8线路巡查不到位:线路的安全管理重点在线路上,线路巡查工作必须要认真仔细,并要正确巡查所有设备,确保线路设备保持良好的运行状态。 (9 路薄弱点不清:没有标定危险部位与薄弱环节,遇到负荷高峰期,线路连接薄弱点放电发热烧断导线。 二原因:

三相电压不平衡度

三相电压不平衡度 1主题内容与适用范围 本标准规定了三相电压不平衡度的允许值及其计算、测量和取值方法。 本标准适用于交流额定频率为50Hz电力系统正常运行方式下由于负序分量而引起的公共连接点的电压不平衡。 2术语、符号 2.1不平衡度ε unbalance facor ε 指三相电力系统中三相不平衡的程度,用电压或电流负序分量与正序分量的方均根值百分比表示。电压或电流不平衡度分别用εu或εI表示。 2.2正序分量Positive—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其正序对称系统中的分量。 2.3负序分量negative—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其负序对称系统中的分量。 2.4公共连接点Point of common coupling 电力系统中一个以上用户的连接处。 3电压不平衡度允许值 3.1电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%(取值见附录A)。 电气设备额定工况的电压允许不平衡度和负序电流允许值仍由各自标准规定,例如旋转电机按GB755《旋转电机基本技术要求》规定。 3.2接于公共接点的每个用户,引起该点正常电压不平衡度允许值一般为1.3%,根据连接点的负荷状况,邻近发电机、继电保护和自动装置安全运行要求,可作适当变动、但必须满足3.1条的规定。 4用户引起的电压不平衡度允许值换算

电压不平衡度允许值一般可根据连接点的正常最小短路容量换算为相应的负序电流值,为分析或测算依据;邻近大型旋转电机的用户,其负序电流值换算时应考虑旋转电机的负阻抗。有关不平衡度的计算见附录B。 5不平衡度的测量(见附录A) 附录A不平衡度的测量和取值(补充件) A1本标准中ε值指的是在电力系统正常运行的最小方式下负荷所引起的电压不平衡度为最大的生产(运行)周期中的实测值。例如炼钢电弧炉应在熔化期测量;对于日波动负荷,可取典型日24h测量。 A2本标准规定的正常ε允许值,对于波动性较小的场合,应和实测的五次接近数值的算术平均值对比;对于波动性较大的场合,应和实测值的95%概率值对比,以判断是否合格。其短时允许值是指任何时刻均不能超过的限值。 为了实用方便,实测值的95%概率值可将实测值(不少于30个)按由大到小次序排列舍弃前面5%的大值,取剩余实测值中的最大值;对于日波动负荷,也可以按日累计超标时间不超过72min,且每30min中超标时间不超过5min来判断。 A3不平衡度测量仪器应满足本标准的测量要求。每次测量,一般按3s方均根取值,对于离散采样的测量仪器,推荐按下式计算: (A1) 式中:εk——在3s内第k次测得的不平衡度; m——在3s内均匀间隔取值次数(m≥6)。 对于特殊情况,由供用电双方另行商定。 仪器的电压不平衡度测量的绝对误差不超过0.2%;电流不平衡度测量的绝对误差不月过1%。

三相不平衡的程度

1主题内容与适用范围 本标准规定了三相电压不平衡度的允许值及其计算、测量和取值方法。 本标准适用于交流额定频率为50Hz电力系统正常运行方式下由于负序分量而引起的公共 连接点的电压不平衡。 2术语、符号 2.1不平衡度ε unbalance facor ε 指三相电力系统中三相不平衡的程度,用电压或电流负序分量与正序分量的方均根值百分比表示。电压或电流不平衡度分别用εu或εI表示。 2.2正序分量Positive—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其正序对称系统中的分量。 2.3负序分量negative—sequence component 将不平衡的三相系统的电量按对称分量法分解后,其负序对称系统中的分量。 2.4公共连接点Point of common coupling 电力系统中一个以上用户的连接处。 3电压不平衡度允许值 3.1电力系统公共连接点正常电压不平衡度允许值为2%,短时不得超过4%(取值见附录A)。

电气设备额定工况的电压允许不平衡度和负序电流允许值仍由各自标准规定,例如旋转电机按GB755《旋转电机基本技术要求》规定。 3.2接于公共接点的每个用户,引起该点正常电压不平衡度允许值一般为1.3%,根据连接点的负荷状况,邻近发电机、继电保护和自动装置安全运行要求,可作适当变动、但必须满足3.1条的规定。 4用户引起的电压不平衡度允许值换算电压不平衡度允许值一般可根据连接点的正常最小短路容量换算为相应的负序电流值,为分析或测算依据;邻近大型旋转电机的用户,其负序电流值换算时应考虑旋转电机的负阻抗。有关不平衡度的计算见附录B。 5不平衡度的测量(见附录A) 附录A不平衡度的测量和取值(补充件) A1本标准中ε值指的是在电力系统正常运行的最小方式下负荷所引起的电压不平衡度为最大的生产(运行)周期中的实测值。例如炼钢电弧炉应在熔化期测量;对于日波动负荷,可取典型日24h测量。 A2本标准规定的正常ε允许值,对于波动性较小的场合,应和实测的五次接近数值的算术平均值对比;对于波动性较大的场合,应和实测值的95%概率值对比,以判断是否合格。其短时允许值是指任何时刻均不能超过的限值。

对施工现场漏电保护频繁跳闸原因分析

对施工现场漏电保护频繁跳闸原因分析 对施工现场漏电保护频繁跳闸的原因分析 1 引言 施工现场的用电环境一般比较差,使用的设备、线路本身安全隐患比较多,流动性、重复性、临时性较强,参加施工的用电人员甚至管理人员的素质参差不齐,在施工现场强制采用TN—S三相五线式供电方式的目的就是为了保障施工现场用电的安全及加强对用电的管理。各级漏电保护器是TN—S供电系统中最关键的保护设备,在实际施工中由于施工现场所具有的特殊性,总是造成各级漏电保护器的频繁跳闸。这不仅严重影响了施工现场的正常施工,而且使施工现场用电的安全无法得到有效的保障。通过在施工现场对施工用电的管理和体验,对施工现场漏电保护器频繁跳闸的原因进行了以下的分析。 2 施工现场漏电保护器频繁跳闸的原因 2.1 漏电保护器布局不合理 根据《施工现场临时用电安全技术规范》JCJ46—88,在临时用电总配电箱和开关箱中应装设漏电保护器,形成三级配电二级漏电保护的模式。由于施工现场所具有的特殊性,如电工素质差、接线错误、非电工接线、线路破损、开关箱内漏电保护器损坏、部分用电器具没有经过开关箱及施工现场管理不善等原因,以及漏电保护器本身不可避免的误动和拒动,再加上在实际施工中没有按照工地的实际情况对漏电保护器进行布置,造成了总漏电保护器频繁跳闸,停电范围较大。在施工高峰期,总漏电保护器的频繁跳闸不仅严重影响了工地的正常施工,而且让处理故障的电工疲于奔命,甚至束手无策。对于这种情况除了加强施工现场的管理外,需要从技术的角度,根据施工现场实际情况对漏电保护器进行合理布置。在一些住宅楼工地、工业项目等比较大的施工现场,需要将整个工地按专业或不同的施工队划分为若干个小的漏电保护范围,在每个保护范围内形成二级漏电保护,必要时形成三级漏电保护,这样可以提高每个保护范围内二或三级漏电保护的保护灵敏度,提高保护范围内故障漏电时的漏电保护器的动作率,减少总漏电保护器跳闸。合理的布置也可以促使各个施工队自主管理和方便项目部的统下管理。这样工地进线总电源上的漏电保护器,可主要做为施工现场防止电气火灾隐患和电气短路的总保护,兼做每个小的漏电保护范围的后备保护,它的额定漏电动作电流可根据施工现场的大小在200~500mA之间选择,额定漏电动作时间可选择0.2—0.3s,可极大地减少浪涌电压、电流、电磁干扰对总漏电保护器的影响,提高总漏电保护器动作的选择性和可靠性。如果能通过加强对工地漏电保护器的管理,使每个漏电保护范围内的二级漏电保护处于有效保护状态,就可以大大地减少工地总漏电保护器的频繁跳闸机率。 2.2 在保护范围内没有形成有效的二或三级漏电保护 开关箱内的末级漏电保护器是用电设备的主保护,如果末级漏电保护器不装、损坏或选型不当,将可能导致上级漏电保护器频繁跳闸。如施工现场有的照明部分相当混乱,存在很多问题:工地照明线经常随施工部位的改变而重新敷设,乱拉乱挂现象比较多,导线绝缘不是很好,经常漏电;现场办公室照明线虽然比较固定,但是一般固定的比较低,人很容易触及,还带有一些插座回路,在很多时候都不装漏电保护器,特别是在天刚黑需要照明的时候,经常造成了总漏电保护器频繁跳闸。施工现场移动设备比较多,如振捣棒、手电钻、小型切割机、打夯机、小型电焊机等随机使用性比较强,有的时候使用这些设备时没有接入开关箱,这也增加了总漏电保护器频繁跳闸的几率。只有在每个保护范围内形成有效的二或三级漏电保护模式,才能有效地减少漏电保护器的频繁跳闸。 2.3 漏电保护器本身有一定的局限性 (1)目前的漏电保护器,不论是电磁型还是电子型均采用磁感应电压互感器拾取用电设

线路跳闸原因分析报告

线路跳闸原因分析报告 线路跳闸原因分析报告随着科技的发展迅猛,无线网络也进入家家户户,不管城市还是农村,居民生活对用电质量的要求提高,根据国家要求,现在每年计划的停电次数在逐渐减少,同时在发生故障之后能够及时处理设备,恢复用户用电。 1 配网线路跳闸原因分析 1.1 外力的破坏 配网线路一般放置于比较复杂的环境中,不可避免的要面对来自大自然的外力干扰,经调查外力的损坏占总比例高达30.2%,例如:狂风的破坏、暴雨的洗刷、雾霾的覆盖、寒冬暴雪的侵蚀,种种外力因素都可使线路的绝缘层遭到破坏导致绝缘层老化、变质,从而发生绝缘层断裂保护力下降等现象,最终导致跳闸。由此可见,外力的破坏也成为配网线路跳闸的一大因素[1]。 1.2 用户的原因 用户对于设备的监督检查管理力度不够,也可导致线路的绝缘能力下降,供电管理部门的检查力度不夠也可引发故障,各项监管工作做不到位,使各种问题和存在的隐患都可导致配网线路的损坏。一些用户存在对知识的匮乏,缺乏对配网线路规定的额定电压等级的认知,随意使用设备,从而导致设备故障。用户自身原因或者监管不够的原因占发生故

障总比例的17%,这些都是不可忽视的重要因素。 1.3 设备的缺陷 工作人员对于线路检查不够认真,态度随意,不能及时发现、处理问题,且发现问题不及时处理,都为设备造成缺陷致使引发跳闸。检修人员不按照规定的周期检查,也没有对设备进行清扫和处理,导致设备运行老化、卡涩、变形等异常。一旦发生异常,都可引发设备故障,导致跳闸。 1.4 绝缘子串闪络放电引发的原因 导致绝缘子串闪络的因素之一就是过电压,例如:配网系统自身的暂态过电压、供电的高峰期瞬间过电压等,四面八方的过电压叠加都可使电压值迅速上升,一旦超过系统的额定电压值,就会导致绝缘子串闪络问题,引发对地方电及短路等故障。如果绝缘子的绝缘度不达标质量不合格时,都可引发短路、跳闸。 2 配网线路跳闸治理措施 2.1 防范外力的破坏 外力损坏是引发配网线路跳闸的外部因素最重要的原因,因此就需要加大力度排除这种干扰因素,保护好配网线路及设备的安全。例如:预防恶劣天气带来的损坏,在经常发生冰雪覆盖的区域做调查,收集冰雪覆盖情况、冰凌的性质、结冻的高度、冰凌出现的月份和次数等。这些都可作为在改造线路时候的参考因素,且加强对积雪的处理,可避免

相关主题
文本预览
相关文档 最新文档