当前位置:文档之家› 2020年中考数学复习——探究性几何问题 练习题

2020年中考数学复习——探究性几何问题 练习题

2020年中考数学复习——探究性几何问题 练习题
2020年中考数学复习——探究性几何问题 练习题

探究性几何问题

1.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC 上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.

(1)试说明不论x为何值时,总有△QBM∽△ABC;

(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;

(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.

2.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.

(1)当点F在AC上时,求证:DF∥AB;

(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;

(3)当B,F,E三点共线时.求AE的长.

3.如图1和2,Y ABCD中,AB=3,BC=15,tan∠DAB

4

3

.点P为AB延

长线上一点,过点A作⊙O切CP于点P,设BP=x.

(1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系;

(2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧?PQ长度的大小;

(3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围.

4.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD 上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.

(1)求证:△PDE≌△QCE;

(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,

①求证:四边形AFEP是平行四边形;

②请判断四边形AFEP是否为菱形,并说明理由.

5.如图,在矩形ABCD中,AB=6 cm,AD=8 cm,连接BD,将△ABD绕B 点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC 的延长上,A′D′与CD相交于点E.

(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;

(2)将△A′B′D′以每秒2 cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x 的取值范围;

(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.

6.在△ABC中,D,E分别是△ABC两边的中点,如果?DE上的所有点都在△ABC的内部或边上,则称?DE为△ABC的中内弧.例如,图1中?DE 是△ABC的一条中内弧.

(1)如图2,在Rt△ABC中,AB=AC D,E分别是AB,AC的中点,画出△ABC的最长的中内弧?DE,并直接写出此时?DE的长;

(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t>0),在△ABC中,D,E分别是AB,AC的中点.

①若t

1

2

,求△ABC的中内弧?DE所在圆的圆心P的纵坐标的取值范围;

②若在△ABC中存在一条中内弧?DE,使得?DE所在圆的圆心P在△ABC

的内部或边上,直接写出t的取值范围.

7.如图,Rt△ABC中,∠ACB=90°,AC=BC,P为△ABC内部一点,且∠APB=∠BPC=135°.

(1)求证:△PAB∽△PBC;

(2)求证:PA=2PC;

(3)若点P到三角形的边AB,BC,CA的距离分别为h1,h2,h3,求证h12=h2·h3.

答案

1.(1)∵MQ⊥BC,

∴∠MQB=90°,

∴∠MQB=∠CAB,又∠QBM=∠ABC,

∴△QBM∽△ABC.

(2)当BQ=MN时,四边形BMNQ为平行四边形,∵MN∥BQ,BQ=MN,

∴四边形BMNQ为平行四边形.

(3)∵∠A=90°,AB=3,AC=4,

BC==5,∵△QBM∽△ABC,

∴QB QM BM

AB AC BC

==,即

345

x QM BM

==,

解得,QM

4

3

=x,BM

5

3

=x,

∵MN∥BC,

∴MN AM

BC AB

=,即

5

3

3

53

x

MN-

=,

解得,MN=5

25

9

-x,

则四边形BMNQ的面积

1

2

=?(5

25

9

-x+x)

4

3

?x

32

27

=-(x

45

32

-)2

75

32

+,

∴当x

45

32

=时,四边形BMNQ的面积最大,最大值为

75

32

2.(1)∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,

由折叠可知:DF=DC,且点F在AC上,∴∠DFC=∠C=60°,

∴∠DFC=∠A,

∴DF ∥AB . (2)存在,

如图,过点D 作DM ⊥AB 交AB 于点M ,

∵AB =BC =6,BD =4, ∴CD =2 ∴DF =2,

∴点F 在以D 为圆心,DF 为半径的圆上, ∴当点F 在DM 上时,S △ABF 最小, ∵BD =4,DM ⊥AB ,∠ABC =60°,

∴MD ,

∴S △ABF 的最小值1

2

=?6×(2)6,

∴S 最大值1

2

=

?(6)=-6. (3)如图,过点D 作DG ⊥EF 于点G ,过点E 作EH ⊥CD 于点H ,

∵△CDE 关于DE 的轴对称图形为△FDE , ∴DF =DC =2,∠EFD =∠C =60°,

∵GD ⊥EF ,∠EFD =60°, ∴FG =1,

DG =

= ∵BD 2=BG 2+DG 2, ∴16=3+(BF +1)2, ∴

BF =1, ∴

BG =, ∵EH ⊥BC ,∠C =60°, ∴CH 2EC =

EH =

=

, ∵∠GBD =∠EBH ,∠BGD =∠BHE =90°, ∴△BGD ∽△BHE ,

DG EH BG BH

=,

262

EC

EC =

-, ∴

EC =1, ∴AE =AC -EC

=7 3. (1)AP 经过圆心O ,

∵CP 与⊙O 相切于P ,∴∠APC =90°, ∵Y ABCD ,∴AD ∥BC , ∴∠PBC =∠DAB , ∴

CP BP =tan ∠PBC =tan ∠DAB 4

3

=,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2, 得(4k )2+(3k )2=152,解得k 1=-3(舍去),k 2=3,

∴x=BP=3×3=9,

故当x=9时,圆心O落在AP上,

∵AP是⊙O的直径,∴∠AEP=90°,

∴PE⊥AD,

∵Y ABCD,∴BC∥AD,

∴PE⊥BC.

(2)如图2,过点C作CG⊥AP于G,

∵Y ABCD,∴BC∥AD,

∴∠CBG=∠DAB,

∴CG

BG

=tan∠CBG=tan∠DAB

4

3

=,

设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG-BP=9-4=5,AP=AB+BP=3+4=7,

∴AG=AB+BG=3+9=12,

∴tan∠CAP

12

12

CG

AG

===1,

∴∠CAP=45°.

连接OP,OQ,过点O作OH⊥AP于H,

则∠POQ=2∠CAP=2×45°=90°,PH

1

2

=AP

7

2

=,

在Rt△CPG中,CP==13,

∵CP是⊙O的切线,

∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°,∴∠OPH=∠PCG,

∴△OPH∽△PCG,

∴PH CG

OP CP

=,即PH×CP=CG×OP,

7

2

?13=12OP,

∴OP

91 24 =,

∴劣弧?PQ长度

91

90π91

24π

18048

?

==,

∵91

π

48

<2π<7,

∴弦AP的长度>劣弧?PQ长度.

(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB 下方,且∠OAD≥90°,

当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,

∵∠DAB=∠CBP,

∴∠CPM=∠CBP

∴CB=CP,

∵CM⊥AB

∴BP=2BM=2×9=18,

∴x≥18.

4.(1)∵四边形ABCD是正方形,∴∠D=∠ECQ=90°,

∵E是CD的中点,

∴DE=CE,

又∵∠DEP=∠CEQ,

∴△PDE≌△QCE.

(2)①∵PB=PQ,

∴∠PBQ=∠Q,

∵AD∥BC,

∴∠APB=∠PBQ=∠Q=∠EPD,

∵△PDE≌△QCE,

∴PE=QE,

∵EF∥BQ,

∴PF=BF,

∴在Rt△PAB中,AF=PF=BF,

∴∠APF=∠PAF,

∴∠PAF=∠EPD,

∴PE∥AF,

∵EF∥BQ∥AD,

∴四边形AFEP是平行四边形;

②四边形AFEP不是菱形,理由如下:

设PD=x,则AP=1-x,

由(1)可得△PDE≌△QCE,

∴CQ=PD=x,

∴BQ=BC+CQ=1+x,

∵点E、F分别是PQ、PB的中点,∴EF是△PBQ的中位线,

∴EF

1

2

=BQ

1

2

x

+

=,

由①知AP=EF,即1-x

1

2

x

+ =,

解得x

1 3 =,

∴PD

1

3

=,AP

2

3

=,

在Rt△PDE中,DE

1

2 =,

∴PE==

∴AP≠PE,

∴四边形AFEP不是菱形.

5.(1)∵AB=6 cm,AD=8 cm,

∴BD=10 cm,

根据旋转的性质可知B′D′=BD=10 cm,CD′=B′D′-BC=2 cm,

∵tan∠B′D′A′=A'B'CE

A'D'CD'

=,

∴6

82

=

CE

∴CE=3

2 cm,

∴S ABCE=S ABD′-S CED′=86345

22

222

?

-?÷=(cm2).

(2)①当0≤x<11

5

时,CD′=2x+2,CE=

3

2

(x+1),

∴S △CD ′E =

32x 2+3x +32, ∴y =12×6×8-32x 2-3x -32=-32x 2-3x +452;

②当115≤x ≤4时,B ′C =8-2x ,CE =4

3(8-2x ),

∴214(82)23y x =?-=83x 2-643x +1283

. (3)①如图1,当AB ′=A ′B ′时,x =0秒;

②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24

5

, ∵AN 2+A ′N 2=36, ∴(6-

245)2+(2x +185

)2

=36,

解得:x =

95,x =9

5

-(舍去); ③如图2,

当AB ′=AA ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =24

5

, ∵AB 2+BB ′2=AN 2+A ′N 2,

∴36+4x 2=(6-245)2+(2x +185

)2

, 解得:x =

32

综上所述,使得△AA ′B ′成为等腰三角形的x 的值有:

0秒、32

. 6. (1)如图2,以DE 为直径的半圆弧?DE ,就是△ABC 的最长的中内弧?DE

,连接DE ,

∵∠A =90°,AB =AC =D ,E 分别是AB ,AC 的中点,

∴BC sin sin 45AC B =

==?

4,DE 12=BC 12=?4=2,

∴弧?1

2

DE

=?2π=π. (2)如图3,由垂径定理可知,圆心一定在线段DE 的垂直平分线上,连接DE ,作DE 垂直平分线FP ,作EG ⊥AC 交FP 于G ,

①当t 1

2

=

时,C (2,0),∴D (0,1),E (1,1),F (12,1),

设P(1

2

,m)由三角形中内弧定义可知,圆心线段DE上方射线FP上

均可,∴m≥1,

∵OA=OC,∠AOC=90°,∴∠ACO=45°,

∵DE∥OC,

∴∠AED=∠ACO=45°,

作EG⊥AC交直线FP于G,FG=EF

1

2 =,

根据三角形中内弧的定义可知,圆心在点G的下方(含点G)直线FP 上时也符合要求,

∴m

1

2≤,

综上所述,m

1

2

≤或m≥1.

②如图4,设圆心P在AC上,

∵P在DE中垂线上,

∴P为AE中点,作PM⊥OC于M,则PM

3

2 =,

∴P(t,3

2),

∵DE∥BC,

∴∠ADE=∠AOB=90°,

∴AE ===

∵PD =PE , ∴∠AED =∠PDE ,

∵∠AED +∠DAE =∠PDE +∠ADP =90°, ∴∠DAE =∠ADP , ∴AP =PD =PE 1

2

=

AE , 由三角形中内弧定义知,PD ≤PM ,

12AE 3

2

≤,AE ≤3≤3,解得:t ≤ ∵t >0,

∴0

7. (1)∵∠ACB =90°,AB =BC , ∴∠ABC =45°=∠PBA +∠PBC , 又∠APB =135°, ∴∠PAB +∠PBA =45°, ∴∠PBC =∠PAB , 又∵∠APB =∠BPC =135°, ∴△PAB ∽△PBC . (2)∵△PAB ∽△PBC , ∴

PA PB AB

PB PC BC ==, 在Rt △ABC 中,AB =AC ,

AB

BC

=

∴PB PA ==,,

∴PA =2PC .

(3)如图,过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,

∴PF =h 1,PD =h 2,PE =h 3, ∵∠CPB +∠APB =135°+135°=270°, ∴∠APC =90°, ∴∠EAP +∠ACP =90°,

又∵∠ACB =∠ACP +∠PCD =90°, ∴∠EAP =∠PCD , ∴Rt △AEP ∽Rt △CDP ,

2PE AP

DP PC

==,即322h h =, ∴h 3=2h 2, ∵△PAB ∽△PBC ,

12h AB

h BC

==,

∴12h =,

∴22

12222322h h h h h h ==?=.

即:h 12=h 2·h 3.

2020中考数学几何探究题解析

2020中考数学几何探究题解析 分析: 第一小题比较简单,一看就知道是个正方形; 第二小题看图的话,感觉像是两个线段相等,那么要证明F是CE'中点,而这个时候要注意FE'是在正方形中的,所以要懂得线段的转换; 第三小题只有两个线段长度,咋一看感觉应该有难度吧,但是如果善于发现,就很容易找到突破口了。

解答: (1)正方形 理由:BE=BE', ∠EBE'=∠BE'F=90° 所以BE//FE' 同时可得EF//BE' 所以四边形FEBE'是矩形, 同时又邻边相等 所以正方形成立; (2)分析的时候已经说了,不能忘记FE'是在刚才的正方形中的,而同时两个线段都在线段CE'上,所以要好好研究这个CE' 根据旋转可知CE'=AE 而题中刚好又给了DA=DE 这不等腰三角形吗 有等腰三角形,那么首先就想到了三线合一,干脆画出来 如图,作DH⊥AE于H,则AH=EH 别忘了刚才的AE=CE' 现在AE倒被分成了两个线段的线段, 那么如果F是CE'中点,那么CF和FE'不是就和AH、EH一样吗所以我们如果能够得到FE'等于AE的一半不是也行嘛 根据条件可以得证 △DAH≌△ABE 所以AH=BE=BE'

现在正方形派上用场了,所以FE'=BE=AH=HE 即AE=2FE' 那么CE'=2FE' 所以CF=FE' (3)这一小题给出的两个线段其实是有联系的,不知道看到这的你是否发现了 CF=3,AB=15 看看CF在什么位置,不是在刚才的CE'上吗,凑上FE'就刚好变成CE'了,而CE'=AE,同时还有FE'=BE, 所以我们如果假设FEBE'的边长为x, 那么BE=x,AE=CE'=3+x,AB=15 勾股定理走起, 可得x2+(3+x)2=152 根据经验可以直接判断BE=9,AE=12,符合3、4、5的比例嘛 现在知道了BE和AE,那么题上让求DE, 我们可以让DE处于直角三角形,利用勾股定理解决 这里可以过D向AE作垂线,也可以过E向AD作垂线, 前者刚好能构造出前面用过的全等,所以作DM⊥AE于M

(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学几何综合圆的综合大题压轴题

圆的综合大题 1.如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连接AF交BC于E,∠ABC的平分线BD交AF于D,连接BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=4,DE=3,求AD的长. 2.如图,AB是⊙O的直径,过点B作⊙O的切线BM,点P在右半圆上移动(点P与点A,B不重合),过点P作PC⊥AB,垂足为C;点Q在射线BM上移动(点M在点B的右边),且在移动过程中保持OQ∥AP. (1)若PC,QO的延长线相交于点E,判断是否存在点P,使得点E恰好在⊙O上?若存在,求出∠APC的大小;若不存在,请说明理由; (2)连接AQ交PC于点F,设,试问:k的值是否随点P的移动而变化?证明你的结论.

3.已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合),MN为折痕,点M,N分别在边BC,AD上,连接AP,MP,AM,AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H.设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 4.在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F. (I)如图①,若∠F=50°,求∠BGF的大小; (II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.

5.如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF. (1)求证:∠ACD=∠F; (2)若tan∠F= ①求证:四边形ABCD是平行四边形; ②连接DE,当⊙O的半径为3时,求DE的长. 6.如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE. (1)求AC、AD的长; (2)试判断直线PC与⊙O的位置关系,并说明理由.

2020年中考数学复习——探究性几何问题 练习题

探究性几何问题 1.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC 上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x. (1)试说明不论x为何值时,总有△QBM∽△ABC; (2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由; (3)当x为何值时,四边形BMNQ的面积最大,并求出最大值. 2.如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE. (1)当点F在AC上时,求证:DF∥AB; (2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1-S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由; (3)当B,F,E三点共线时.求AE的长.

3.如图1和2,Y ABCD中,AB=3,BC=15,tan∠DAB 4 3 .点P为AB延 长线上一点,过点A作⊙O切CP于点P,设BP=x. (1)如图1,x为何值时,圆心O落在AP上?若此时⊙O交AD于点E,直接指出PE与BC的位置关系; (2)当x=4时,如图2,⊙O与AC交于点Q,求∠CAP的度数,并通过计算比较弦AP与劣弧?PQ长度的大小; (3)当⊙O与线段AD只有一个公共点时,直接写出x的取值范围. 4.如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD 上一点(与点A、D不重合),射线PE与BC的延长线交于点Q. (1)求证:△PDE≌△QCE; (2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时, ①求证:四边形AFEP是平行四边形; ②请判断四边形AFEP是否为菱形,并说明理由.

(完整)初三数学几何的动点问题专题练习

动点问题专题训练 1、如图,已知ABC △中,10 AB AC ==厘米,8 BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q第一次在ABC △的哪条边上相遇? 2、直线 3 6 4 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发, 同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度, 点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求S与t之间的函数关系式; (3)当 48 5 S=时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四 边形的第四个顶点M的坐标.

3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4), 点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.

中考数学压轴题十大类型经典题目75665

中考数学压轴题十大类型 目录 第一讲中考压轴题十大类型之动点问题 1 第二讲中考压轴题十大类型之函数类问题7 第三讲中考压轴题十大类型之面积问题13 第四讲中考压轴题十大类型之三角形存在性问题19 第五讲中考压轴题十大类型之四边形存在性问题25 第六讲中考压轴题十大类型之线段之间的关系31 第七讲中考压轴题十大类型之定值问题38 第八讲中考压轴题十大类型之几何三大变换问题44 第九讲中考压轴题十大类型之实践操作、问题探究50 第十讲中考压轴题十大类型之圆56 第十一讲中考压轴题综合训练一62 第十二讲中考压轴题综合训练二68

第一讲 中考压轴题十大类型之动点问题 一、知识提要 基本方法: ______________________________________________________; ______________________________________________________; ______________________________________________________. 二、精讲精练 1. (2011吉林)如图,梯形ABCD 中,AD ∥BC ,∠BAD =90°,CE ⊥AD 于点E , AD =8cm ,BC =4cm ,AB =5cm .从初始时刻开始,动点P ,Q 分别从点A ,B 同时出发,运动速度均为1cm/s ,动点P 沿A -B -C -E 方向运动,到点E 停止;动点Q 沿B -C -E -D 方向运动,到点D 停止,设运动时间为x s ,△P AQ 的面积为y cm 2,(这里规定:线段是面积为0的三角形)解答下列问题: (1) 当x =2s 时,y =_____ cm 2;当x =9 2 s 时,y =_______ cm 2. (2)当5 ≤ x ≤ 14时,求y 与x 之间的函数关系式. (3)当动点P 在线段BC 上运动时,求出15 4 y S 梯形ABCD 时x 的值. (4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值.

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

2020中考数学 几何综合探究 专题练习(含答案)

2020中考数学 几何综合探究 专题练习 例题1. 如图,在等腰梯形ABCD 中,AD BC ∥,5075135AB DC AD BC ====,,,点P 从点B 出发沿 折线段BA AD DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t > (1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ DC ∥? (3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围) 【答案】⑴507550 355 t ++= =()s 时,点P 到达终点C , 此时,353105QC =?=,所以BQ 的长为 13510530-=. ⑵如图1,若PQ DC ∥,又AD BC ∥,则四边形PQCD 为平行四边形,从而PD QC =, 由35QC t BA AP t =+=, 得507553t t +-=,解得125 8 t =, 经检验:当125 8 t =时,有PQ DC ∥. ⑶①当点E 在CD 上运动时,如图2,分别过点A 、D 作AF BC ⊥于点F ,DH BC ⊥于点H , 则四边形ADHF 为矩形,且ABF DCH △≌△, 从而75FH AD ==,于是30BF CH ==,∴40DH AF ==. 又3QC t =,从而tan 34DH QE QC C t t CH =?=?=(注:用相似三角形求解亦可) ∴21 62 QCE S S QE QC t ==?=△. ②当点E 在DA 上运动时,如图1,过点D 作DH BC ⊥于点H , 由①知4030DH CH ==,, 又3QC t =,从而330ED QH QC CH t ==-=- ∴()1 1206002 QCDE S S ED QC DH t ==+=-梯形. C 图1 C 图2

中考数学重难点专题讲座动态几何与函数问题含答案(终审稿)

中考数学重难点专题讲座动态几何与函数问题 含答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学重难点专题讲座 第八讲动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC的顶点A、C分别在y轴正半轴与x轴负半轴上.过点B、C作直线l.将直线l平移,平移后的直线l与x轴交于点D,与y轴交于点E. (1)将直线l向右平移,设平移距离CD为t(t≥0),直角梯形OABC被直线l扫过的面积(图中阴影部份)为s,s关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,且NQ平行于x轴,N点横坐标为4,求梯形上底AB的长及直角梯形OABC的面积. (2)当24 t<<时,求S关于t的函数解析式.

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

中考数学专题(3)动态几何问题分析

中考数学专题3 动态几何问题 第一部分 真题精讲 【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒). (1)当MN AB ∥时,求t 的值; (2)试探究:t 为何值时,MNC △为等腰三角形. 【思路分析1】本题作为密云卷压轴题,自然有一定难度,题目中出现了两个动点,很多同学看到可能就会无从下手。但是解决动点问题,首先就是要找谁在动,谁没在动,通过分析动态条件和静态条件之间的关系求解。对于大多数题目来说,都有一个由动转静的瞬间,就本题而言,M ,N 是在动,意味着BM,MC 以及DN,NC 都是变化的。但是我们发现,和这些动态的条件密切相关的条件DC,BC 长度都是给定的,而且动态条件之间也是有关系的。所以当题中设定MN//AB 时,就变成了一个静止问题。由此,从这些条件出发,列出方程,自然得出结果。 【解析】 解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平行四边形. A B M C N E D ∵AB DE ∥,AB MN ∥. ∴DE MN ∥. (根据第一讲我们说梯形内辅助线的常用做法,成功将MN 放在三角形内,将动态问题转化成平行时候的静态问题) ∴MC NC EC CD =. (这个比例关系就是将静态与动态联系起来的关键) ∴ 1021035t t -=-.解得5017t = . 【思路分析2】第二问失分也是最严重的,很多同学看到等腰三角形,理所当然以为是MN=NC 即可,于是就漏掉了MN=MC,MC=CN 这两种情况。在中考中如果在动态问题当中碰见等腰三角形,一定不要忘记分类讨论的思想,两腰一底一个都不能少。具体分类以后,就成为了较为简单的解三角形问题,于是可以轻松求解 【解析】 (2)分三种情况讨论:

南昌中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交 于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2 x y =?? =-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

中考数学中的探究性问题动态几何(终审稿)

中考数学中的探究性问 题动态几何 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

中考数学中的《探究性问题——动态几何》 动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查 学生的综合分析和解决问题的能力。 有关动态几何的概念,在很多资料上有说明,但是没有一个统一的定义,在这里就不在赘述了。本人只是用2005 年的部分中考数学试题加以说明。 一、知识网络 《动态几何》涉及的几种情况动点问题? 动线问题动形问题? ? 二、例题经典 1.【05 重庆课改】如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P 从点A 开始在线段AO 上以每秒1 个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2 个单位长度的速度向点A 移动,设点P、Q 移动的时间为t 秒. (1) 求直线AB 的解析式; y (2) 当t 为何值时,△APQ 与△AOB 相似 24 A (3) 当t 为何值时,△APQ 的面积为 个平方单位 5 P Q

【解】(1)设直线AB 的解析式为y=k x+b 由题意,得b=6 8k+b=0 3 解得k=-b=6 4 3 所以,直线AB 的解析式为y=-x+6. 4 (2)由AO=6,BO=8 得AB=10 所以AP=t ,AQ=10-2t 1°当∠APQ=∠AOB 时,△APQ∽△AOB. t 10 2t 30 所以=解得t= (秒) 6 10 11 2°当∠AQP=∠AOB 时,△AQP∽△AOB. t 10 2t 50 所以=解得t= 10 6 13 (秒) (3)过点Q 作QE 垂直AO 于点E. BO 4 在Rt△AOB 中,Sin∠BAO= = AB 5 O y y A P Q O A Q y B B B x x x

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

初中数学中考几何综合题[1]

页眉内容 中考数学复习--几何综合题 Ⅰ、综合问题精讲: 几何综合题是中考试卷中常见的题型,大致可分为几何计算型综合题与几何论证型综合题,它主要考查学生综合运用几何知识的能力,这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.解几何综合题,一要注意图形的直观提示;二要注意分析挖掘题目的隐含条件、发展条件,为解题创造条件打好基础;同时,也要由未知想需要,选择已知条件,转化结论来探求思路,找到解决问题的关键. 解几何综合题,还应注意以下几点: ⑴ 注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基 本图形. ⑵ 掌握常规的证题方法和思路. ⑶ 运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用数 学思想方法伯数形结合、分类讨论等). Ⅱ、典型例题剖析 【例1】(南充,10分)⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点. (1)求证:DF 是⊙O 的切线.(2)若AE =14,BC =12,求BF 的长. 解:(1)证明:连接OD ,AD . AC 是直径, ∴ AD⊥BC. ⊿ABC 中,AB =AC , ∴ ∠B=∠C,∠BAD=∠DAC. 又∠BED 是圆内接四边形ACDE 的外角, ∴∠C =∠BED . 故∠B =∠BED ,即DE =DB . 点F 是BE 的中点,DF ⊥AB 且OA 和OD 是半径, 即∠DAC =∠BAD =∠ODA . 故OD ⊥DF ,DF 是⊙O 的切线. (2)设BF =x ,BE =2BF =2x . 又 BD =CD =21 BC =6, 根据BE AB BD BC ?=?,2(214)612x x ?+=?. 化简,得 27180x x +-=,解得 122,9x x ==-(不合题意,舍去).

中考数学--动点问题题型方法归纳

图 B 图 B 图动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1(2009年齐齐哈尔市)直线3 64 y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标; (2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当48 5 S = 时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的 平行四边形的第四个顶点M 的坐标. 提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2.如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学压轴题大集合

一、函数与几何综合的压轴题 1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于 E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式. ~ [解] (1)(本小题介绍二种方法,供参考) ' 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵ DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 图① 图②

方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得0 2x y =??=-? 》 ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3) E (0,-2)三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? ( = 1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2=1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2. (2004广东茂名)已知:如图,在直线坐标系中,以点M (1,0)为圆心、直

中考数学复习专题:几何综合题(含答案)

几何综合题 1.已知△ABC中,AD是的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H. (1)如图1,若 ①直接写出B ∠和ACB ∠的度数; ②若AB=2,求AC和AH的长; (2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明. 答案: (1)①75 B ∠=?,45 ACB ∠=?; ②作DE⊥AC交AC于点E. Rt△ADE中,由30 DAC ∠=?,AD=2可得DE=1,AE3 =. Rt△CDE中,由45 ACD ∠=?,DE=1,可得EC=1. ∴AC31 =+. Rt△ACH中,由30 DAC ∠=?,可得AH33 + =; (2)线段AH与AB+AC之间的数量关系:2AH=AB+AC 证明:延长AB和CH交于点F,取BF中点G,连接GH. BAC ∠ 60 BAC ∠=?

易证△ACH ≌△AFH . ∴AC AF =,HC HF =. ∴GH BC ∥. ∵AB AD =, ∴ ABD ADB ∠=∠. ∴ AGH AHG ∠=∠ . ∴ AG AH =. ∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. 2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α?<

相关主题
文本预览
相关文档 最新文档