当前位置:文档之家› 喷油器工作原理

喷油器工作原理

喷油器工作原理
喷油器工作原理

BOSCH共轨系统喷油器结构

喷油器工作原理

1、当喷油器电磁阀未被触发时,小弹簧将枢轴盘下的球阀压向泄

油孔上,泄油孔关闭,在阀控制腔内形成共轨高压。同样,在喷嘴腔内也形成共轨高压。共轨高压对控制柱塞端面的压力和喷嘴弹簧的合力高与高压燃油作用在针阀锥面上的开启力,结果,针阀被迫进入阀座且将高压通道与燃烧室隔离,密封,针阀保持关闭状态。

2、当电磁阀被触发时,枢轴盘上移,球阀打开,同时泄油孔被打

开,这时引起控制腔的压力下降,结果,活塞上的压力也随之下降,一旦活塞上的压力和喷嘴弹簧的合力降至低于作用于喷油嘴针阀承压锥面上的压力(此处油压仍为共轨高压),针阀将被打开,燃油经喷嘴上的喷孔喷入燃烧室。这种对喷油嘴针阀的不直接控制采用了一套液压力放大系统,因为快速打开针阀所需的力不能直接由电磁阀产生,所谓的打开针阀所需的控制作用,是通过电磁阀打开泄油孔使得控制腔压力降低,从而打开针阀。

3、电磁阀一旦断电不被触发,小弹簧力会使电磁阀铁芯下压,球

阀将泄油孔关闭。泄油孔关闭后,燃油从进油孔进入阀控制腔建立起油压,这个压力为油轨压力,这个压力作用在柱塞端面上产生向下压力,再加上喷嘴弹簧的合力大于喷嘴腔中高压燃油作用在针阀锥面上的压力,使喷嘴针阀关闭。

4、此外,因为燃油压力高,会在针阀和控制柱塞处产生泄漏,这

些泄露油会通过回油孔流入喷油器的回油口。

各种汽油喷射系统的工作原理

各种汽油喷射系统的工作原理 字体: 小中大| 打印编辑:master 发布时间:2008-6-24 18:46 查看次数:589次 关键词:节气门体压力感应式 第一节K型汽油喷射 一.K型汽油喷射系统的特点。汽车维修养护网 1.混合气的调节和配制为机械液力式控制; 2.定压多点连续喷射,即当发动机工作时,喷油器以一定的压力连续不断地向进气道喷油。 A.空气流量控制流量板,控制柱塞,控制出油量。 B.油压大于3.5kg/cm2连续喷油。 C.每缸一个喷油器。 D.无喉管。 E.喷油嘴有“砸碎燃油”的雾化作用。 二.K型汽油喷射系统的构成。 1. 电动汽油泵; 2.蓄压器; 3.暖车调节器; 4.油压脉动缓冲器; 5.油压调节器; 6.燃油分配器; 7.空气计量器; 8.补充空气阀; 9.热时间开关;10.节气门; 11.冷启动喷嘴;12.喷油器 三.K型汽油喷射系统工作过程。 空气首先经空气计量器计量,再经节气门进入进气管和进气道。汽油则从汽油箱被电动汽油泵吸出,并在其中加压到0.35MPao然后在汽油滤清器中滤除杂质,再经蓄压器消除汽油压力的脉动后送入燃油分配器。在电动汽油泵的入口处装有消声器,用来消除油压脉动而产生的噪声。燃油分配器根据空气计量器对发动机进气量计量的结果,将所需的燃油量分配到各缸喷油器。喷油器则将汽油喷入进气道并与其中的空气混合。当进气门开启时,混合气便进入汽缸。 四.K型汽油喷射系统工作特点。 1.混合气成分由空气计量器,燃油分配器联合控制。空气流量感知板固定在空气计量器杠杆的左端,其右端安装平衡重块。销轴是空气计量器杠杆的指点。

当空气流量感知板以销轴为支点摆动时,滚轮将推动控制柱塞上、下移动。当发动机在某工况下稳定工作时,在空气流动的压力作用下,空气流量感知板绕销轴下摆。在气体动压力、平衡重与感知板等零件的重力,以及作用在控制柱塞顶部燃油压力的共同作用下,感知板将停在某一平衡位置不动。 2.燃油分配器主要由控制柱塞与柱塞套这一对精密偶件及差压阀组成。差压阀数及柱塞套上的进、出油孔数均与发动机的气缸数相同。差压阀的作用是保持其上、下腔的压差不变,以保证燃油分配器的供油量只取决于出油孔通过截面积或控制柱塞的升程。 3.发动机不工作时,节气门关闭,空气流量感知板停在空气流道的喉部。发动机在部分负荷工作时,节气门部分开启,空气流量感知板向下摆动一定的角度并推动控制柱塞上移。发动机在全负荷下工作时,节气门全开,空气流量最大,感知板下摆至最低位置,控制柱塞上移至最高位置,柱塞套上的出油孔全开,供油量最多。 油压调节器用来调节燃油系统的压力,使其保持恒定不变。冷启动喷嘴的功用是当发动机冷启动时向进气管额外喷入一定数量的汽油,以加浓混合气。 五.KE型喷油系统简介。 KE型与K型汽油喷射系统的不同之处有: ①在空气计量器杠杆的销轴上装有电位计,空气流量感知板位置的变化及其变化的速率通过电位计转变为电信号输入电控单元,电控单元根据信号的特征判定是否需要加浓混合气。 ②差压阀内的弹簧装在膜片阀的下面,只要下腔的油压。电-液油压调节器由电控单元控制。 ③设有一套电子控制装置,其中包括各种传感器和电控单元。喷油器的基本油量仍然由空气计量器和燃油分配器联合控制,其工作原理与K型汽油喷射系统相同。电子控制装置和电-液油压调节器则对基本喷油量进行修正,以适应发动机在各种工况下对混合气成分的不同要求。 第二节压力感应式电子控制多点汽油喷射系统 (一).D型压力感应式汽油喷射系统。

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

喷油器的结构及工作原理

喷油器的结构及工作原理 1、功用、要求与型式功用:喷油器(injector)将喷油泵供给的高压柴油,以一定的压力,呈雾状喷入燃烧室。要求:①雾化均匀②具有一定的喷射压力和射程,及合适的喷注锥角③断油迅速、无滴漏现象2、喷油器的型式目前采用的喷油器都是闭式喷油器,有 1、功用、要求与型式 功用:喷油器(injector)将喷油泵供给的高压柴油,以一定的压力,呈雾状喷入燃烧室。 要求:①雾化均匀 ②具有一定的喷射压力和射程,及合适的喷注锥角 ③断油迅速、无滴漏现象 2、喷油器的型式 目前采用的喷油器都是闭式喷油器,有孔式喷油器(hole type injector)和轴针式喷油器(pintle injector)两种。

图5-8(hole type injector) 图5-9(needle assembly) 1.喷油器体 2.调压螺钉 3.调压弹簧 4.回油管螺栓 5.进油管接头 6.滤芯 7.顶杆 8.针阀 9.针阀体(责任编辑:cndeser) 3、轴针式喷油器(图5-10)工作原理与孔式相同构造:针阀下端的密封锥 面以下还向下延伸出一个轴针,其形状有倒锥形和圆柱形,轴针伸出喷孔外,使 喷孔成为圆环状的狭缝。一般只有一个喷孔,直径1~3mm,喷油压力 3、轴针式喷油器(图5-10) 工作原理与孔式相同 构造:针阀下端的密封锥面以下还向下延伸出一个轴针,其 形状有倒锥形和圆柱形,轴针伸出喷孔外,使喷孔成为圆环状的 狭缝。一般只有一个喷孔,直径1~3mm,喷油压力较低12~14MPa 特点: (1)不喷油时针阀关闭喷孔,使高压油腔与燃烧室隔开, 燃烧气体不致冲入油腔内引起积炭堵塞。 (2)喷孔直径较大,便于加工且不易堵塞。 (3)针阀在油压达到一定压力时开启,供油停止时,又在 弹簧作用下立即关闭,因此,喷油开始和停止都干脆利落,没有滴油现象。 (4)不能满足对喷油质量有特殊要求的燃烧室的需要。 图5-10

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

汽油机的工作原理-汽油机工作时

汽油机的工作原理-汽油机工作时 四冲程汽油机工作原理 四冲程汽油机工作原理 汽油机是将空气与汽油以一定的比例混合成良好的混合气,在进气行程被吸入汽缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程汽油机在进气行程、压缩行程、做功行程和排气行程内完成一个工作循环。 进气行程(intake stroke) 活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,汽

缸容积逐渐增大,汽缸内气体压力从pr 逐渐降低到pa,汽缸内形成一定的真空度,空气和汽油的混合气通过进气门被吸入汽缸,并在汽缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点(图中 a 点)汽缸内气体压力小于大气压力0 p ,即pa= (~) 0 p 。进入汽缸内的可燃混合气的温度,由于进气管、汽缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。 压缩行程(compression stroke) 压缩行程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2 000kPa,温度达600~750K。在示功图上,压缩行程为曲线a~c。 做功行程(power stroke) 当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量

的热能,使汽缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3 000~6 000kPa,温度TZ达2 200~2 800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,汽缸容积增加,气体压力和温度逐渐下降,到达b 点时,其压力降至300~500kPa,温度降至 1 200~1 500K。在做功行程,进气门、排气门均关闭,曲轴转动180°。在示功图上,做功行程为曲线c-Z-b。 排气行程(exhaust stroke) 排气行程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在汽缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r 点的压力稍高于大气压力,即pr=(~)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

发动机喷油器工作原理及组成

发动机喷油器工作原理及组成 1—1 80喷油器有何功用?分哪几种类型?由哪些部件组成? (1)功用电控燃油喷射系统的执行元件是喷油器。喷油器的功用是根据ECU的指令,控制燃油喷射量。吸粪车电控燃油喷射系统全部采用电磁式喷油器,单点喷射系统的喷油器安装在节气门体空气人口处,多点喷射系统的喷油器安装在各缸进气歧管或汽缸盖上的各缸进气道处。 (2)喷油器的分类 ①按喷油口的结构不同,喷油器可分为孔式和轴针式两种,如图1—93所示。 ②按其线圈的电阻值不同,可分为高阻(电阻值为13~16欧姆)喷油器和低阻(电阻值为2~3欧姆)喷油器两种类型。 (3)组成高压清洗车喷油器主要由滤网、线束连接器、电磁线圈、回位弹簧、衔铁和针阀等组成,针阀与衔铁制成一体。轴针式喷油器的针阀下部有轴针伸入喷口。 1—1 81 喷油器的工作原理如何? 喷油器不喷油时,回位弹簧通过衔铁使针阀紧压在阀座上,防止滴油。当电磁线圈通电时,产生电磁吸力,将衔铁吸起并带动针阀离开阀座,同时回位弹簧被压缩,燃油经过针阀并由轴针与喷口的环隙或喷孔中喷出:当电磁线圈断电时,电磁吸力消失,回位弹簧迅速使针阀关闭,喷油器停止喷油。在喷油器的结构和喷油压力一定时,喷油器的喷油量取决于针阀的开启时间,即电磁线圈的通电时间。回位弹簧弹力对针阀密封性和喷油器断油的干脆程度会产生影响。 1—1 82喷油器的驱动方式有哪几种? 喷油器的驱动方式可分为电流驱动和电压驱动两种,如图1-94所示。电流驱动方式只适用于低阻值喷油器,电压驱动方式对高阻值喷油器和低阻值喷油器均可使用。 (1)电流驱动方式在采用电流驱动方式的喷油器控制电路中,不需附加电阻器,低阻值喷油器直接与蓄电池连接,通过https://www.doczj.com/doc/105821967.html,ECU中的晶体管对流过喷油器线圈的电流进行控制。 喷油器电流驱动方式电路如图1—95所示,蓄电池通过点火开关和主继电器(或熔体)直接给喷油器和ECU供电,https://www.doczj.com/doc/105821967.html,ECU控制喷油器和主继电器线圈的搭铁回路。 (2)电压驱动方式低阻喷油器采用电压驱动方式时,必须加入附加电阻器。因为低阻喷油器线圈的匝数较少,加入附加电阻器,可减小工作时流过线圈的电流,以防止线圈发热而损坏。 ▲1—1 83喷油器检修内容有哪些? (1)简单检查方法在发动机工作时,用手触试或用听诊器检查喷油器针阀开闭时的振动或声响,如果感觉无振动或听不到声响,说明喷油器或其电路有故障。 (2)喷油器电阻检查拆开喷油器线束连接器,用万用表测量喷油器两端子之间的电阻,低阻值喷油器应为2~3欧姆,高阻值喷油器应为13~16欧姆,否则应更换该喷油器。 (3)喷油器滴漏检查喷油器滴漏可在专用设备上进行检查,也可将喷油器和输油总管拆下,再与燃油系统连接好,用专用导线将诊断座上的燃油泵测试端子跨接到12V电源上,然后打开点火开关,或直接用蓄电池给燃油泵通电,燃油泵工作后,观察喷油器有无滴漏现象。若检查时,在1min内喷油器滴油超过1滴,应更换该喷油器。 (4)喷油器的喷油量检查喷油器的喷油量可在专用设备上进行检查,也可按滴漏检查做好准备工作。燃油泵工作后,用蓄电池和导线直接给喷油器通电,并用量杯检查喷油器的喷油量。每个喷油器应重复检查2~3次,各缸喷油器的喷油量和均匀度应符合规定,否则

晶振的作用与原理

晶振的作用与原理 一,晶振的作用 (1)晶振是石英振荡器的简称,英文名为Crystal,它是时钟电路中最重要的部件,它的主要作用是向显卡、网卡、主板等配件的各部分提供基准频率,它就像个标尺,工作频率不稳定会造成相关设备工作频率不稳定,自然容易出现问题。 (2)晶振还有个作用是在电路产生震荡电流,发出时钟信号.晶振是晶体振荡器的简称。它用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 (3)晶振在数字电路的基本作用是提供一个时序控制的标准时刻。数字电路的工作是根据电路设计,在某个时刻专门完成特定的任务,如果没有一个时序控制的标准时刻,整个数字电路就会成为“聋子”,不知道什么时刻该做什么事情了。 (4)晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。

如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。 (5)电路中,为了得到交流信号,可以用RC、LC谐振电路取得,但这些电路的振荡频率并不稳定。在要求得到高稳定频率的电路中,必须使用石英晶体振荡电路。石英晶体具有高品质因数,振荡电路采用了恒温、稳压等方式以后,振荡频率稳定度可以达到10^(-9)至10^(-11)。广泛应用在通讯、时钟、手表、计算机……需要高稳定信号的场合。石英晶振不分正负极, 外壳是地线,其两条不分正负 二,晶振的原理; 石英晶体振荡器是利用石英晶体(二氧化硅的结晶体)的压电效应制成的一种谐振器件,它的基本结构大致是从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑料封装的。

(完整版)555振荡器工作原理

555 多谐振荡器 工作原理 原理 1、555定时器内部结构 555定时器是一种模拟电路和数字电路相结合的中规模集成电路,其内部结构如图(A ) 及管脚排列如图(B )所示。 它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。分压器由三个5K 的等值电阻串联而成。分压器为比较器1A 、2A 提供参考电压,比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13 cc V ,加在反相输入端。比较器由两个结构相同的集成运放1A 、2A 组成。高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_ D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。 多谐振荡器工作原理 由555定时器组成的多谐振荡器如图(C)所示,其中R 1、R 2和电容C 为外接元件。其工作波如图(D)所示。

设电容的初始电压c U =0,t =0时接通电源,由于电容电压不能突变,所以高、低触 发端TH V =TL V =0<13 VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位, 0表示低电位),R S -触发器置1,定时器输出01u =此时_ 0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。当c u 上升到 13cc V 时,2A 输出由0翻转为1,这时__1D D R S ==,R S -触发顺保持状态不变。所以0

锅炉结构及工作原理

锅炉结构及工作原理锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙内表面被水冷壁管遮盖,所以炉墙温度大为降低,使炉墙不致被烧坏。

而且又能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,从汽包中引出饱和蒸汽,再经过加热,使饱和蒸汽成为一定温度的过热蒸汽。 省煤器:布置在锅炉尾部烟道内,利用烟气的余热加热锅炉给水的设备,其作用就是提高给水温度,降低排烟温度,减少排烟热损失,提高锅炉的热效率。 减温装置:保证汽温在规定的范围内。汽温调节:1、蒸汽侧调节(采用减温器)2、烟气侧调节(采用摆动式喷燃器)炉炉就是锅炉的燃烧系统,由炉膛、烟道、喷燃器及空气预热器等组成。工作原理:送风机将空气送入空气预热器中吸收烟气的热量并送进热风道,然后分成两股:一股送给制粉系统作为一次风携带煤粉送入喷煤器,另一股作为二次风直接送往喷煤器。煤粉与一、二次风经喷燃器喷入炉膛集箱燃烧放热,并将热量以辐射方式传给炉膛四周的水冷壁等辐射受热面,燃烧产生的高温烟气则沿烟道流经过热器,省煤器和空气预热器等设备,将热量主要以对流方式传给它们,在传热过程中,烟气温度不断降低,最后由吸风机送入烟囱排入大气。 炉膛:炉膛是由一个炉墙包围起来的,供燃料燃烧好传热的主体空间,其四周布满水冷壁。炉膛底部是排灰渣口,固态排渣炉的炉底是由前后水冷壁管弯曲而形成的倾斜的冷灰斗,液态排渣炉的炉底是水平的熔渣池。炉膛上部是悬挂有屏式过热器,炉膛后上方烟气流出炉膛的通道叫炉膛出口。 空气预热器:是利用锅炉排烟的热量来加热空气的热交换设备。它是装在锅炉尾部的垂直烟道中。

除氧器的结构和原理

除氧器的结构和原理 一、除氧器用途:旋膜式除氧器是喷雾填料式除氧器的替代产品,是一种最新型热力式除氧器,旋膜除氧器原理是补水经起膜管呈螺旋状按一定的角度喷出与加热蒸汽进行热交换除氧,给水加热到对应除氧器工作压力下的饱和温度,除去溶解于给水的氧及其它气体,防止和降低锅炉给水管、省煤器和其它附属设备的腐蚀。电力部GB1576-2001《电站压力式除氧器安全技术监察规程》,对除氧器含氧量提出了部颁标准, 即低压大气式除氧器给水含氧量应小于15ц 二、除氧器结构 旋膜式除氧器结构主要是由外壳、旋膜喷管、水篦子、填料液汽网、水箱、汽水分离器等组成: 1. 外壳:是由筒身和冲压随园形封头焊制成。中、小低压除氧器配有一对法兰联接上下部,供装配和检修用,高压除氧器装有供检修的人孔。 2. 旋膜喷管:由水室、汽室、旋膜管、凝结水接管、补充水接管和一次进汽接管组成。新型旋膜器的旋膜管内增加了水膜导向装置,即使低负荷运行时也能强力旋膜,保持良好的水膜裙。 凝结水、化学补水经起膜管呈螺旋状按一定的角度喷出,形成水膜裙,并与一次加热蒸汽接管引进的加热蒸汽进行热交换,形成了一次除氧,给水经过水篦子上升的二次加热蒸汽接触被加热到接近除氧器工作压力下的饱和温度即低于饱和温度2-3℃,并进行粗除氧。一般经此旋膜段可除去给水中含氧量的90-96%左右。 3. 水篦子:是由数层交错排列的角形钢制件组成,经旋膜段粗除氧的给水在这里进行二次分配,呈均匀雨雾状落到装在其下的液汽网上。 4. 填料液汽网:是由许多形状尺寸相同的单元组成的SW型网孔波纹填料,组成的一个圆筒体,该规整填料保持丝网波纹填宵和孔板波纹填料的优点外,而且通量大,压降小、操作弹性大,分离效率高、能耗低,永远不脱落等特点。蓄热填料本身就是二次蒸汽的蓄热器,给水与蓄热器充分热交换,达到了深度除氧的目的,低压大气式除氧器低于10ug/L、高压除氧器低于5ug/L。 5. 水箱:除过氧的给水汇集到除氧头的下部容器即水箱内,除氧水箱内装有最新科学设计的强力换热再沸腾装置,该装置具有强力换热,迅速提升水温,更深度除氧.ɡ/L, 三、除氧器技术特性和配套参数

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

除氧器工作原理修订稿

除氧器工作原理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

除氧器的主要作用是除去锅炉给水中的氧气和其它不凝结气体,以保证给水的品质。若水中溶解氧气,就会使与水接触的金属被腐蚀,同时在热交换器中若有气体聚积,将使传热的热阻增加,降低设备的传热效果。因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。在火电厂采用热力除氧,除氧器本身又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的高压疏水、排汽等均可汇入除氧器加以利用,减少发电厂的汽水损失。- i (1)旋膜式除氧器概述: 旋膜式除氧器(又称膜式除氧器及水膜式除氧器)是一种新型热力除氧器,是用汽轮机抽汽将锅炉给水加热到对应除氧器工作压力下的饱和温度,除去溶解于给水的氧及其它气体,防止和降低锅炉给水管、省煤器和其它附属设备的腐蚀.可用于定压、滑压等方式运行,并且具有运行稳定,除氧效率高,适应性能好等特点.适用于各类电力系统锅炉、工业锅炉给水及热电厂补给水的除氧旋膜改进型除氧器是近年来研究并推广的一种全新结构除氧器。其设计主要是将原射流式改为旋射膜式,是集旋膜及泡沸缩合为一体的高效能新型除氧器,具有除氧效率高,换热均匀,耗气量小,运行稳定,适应性能好,对水质、水温要求不苛刻等优点,而且可超出运行。

(2)原理:新型旋膜改进型除氧器的传热,传质方式与已有的淋水盘式、水膜式、旋膜式和雾化式不同,主要是将射流,旋转膜和悬挂式三种传热方式缩化为一体的传热、传质方式,它具有很高的效率。新型旋射膜管具有很大的解析能力,并造成液膜沿管壁强力旋转卷吸大量蒸汽,增强换热,传质功能,将相向泡沸改为悬挂式泡沸,提高各层中蒸汽流速搞时泛点(飞贼)并能保持汽(气)体通道;将独立的三种传热、传质装置缩化为一体,在一个单元的部件内完成。由于它具有很高的效率和某些特殊工能,突破了已有除氧器的技术性能。 结构:除氧器的结构型式主要由外壳、汽水分离器、新型旋射起膜器、淋水篦子、规整液汽网、水箱组成。 1、外壳:是由筒身和冲压椭圆形封头焊制成。 2、汽水分离器:该种装置取代了原老式除氧器内草帽锥式结构设计,使除氧器消除了排汽带水现象。 3、新型旋射起膜器:由水室、汽室、起膜管、凝结水接管、补充水管、疏水接管和一次进汽接管组成。新型旋射起膜器的旋射膜管内增加了水膜导向装置,即使低负荷运行时也能强力降膜,保持最佳的旋射膜裙。 凝结水、化学补水、经起膜管呈螺旋状按一定的角度喷出,形成水膜裙,并与一次加热蒸汽接管引进的加热蒸汽和由水箱经液汽网,水篦子上升的二次加热蒸汽接触被加热到接近除氧器工作压力下的饱和温度(即低于饱和温度2-3℃)并进行粗除氧。一般经此起膜段可除去给水中含氧量的90-95%左右。

汽车基础电路-汽油机喷油器工作电路(第一遍)

汽油机喷油器工作电路 一、可以满足的教学功能 本电路板模拟发动机控制模块根据各种传感器的信号控制喷油器喷油时刻和喷油脉冲宽度的控制过程,重点在于执行器的驱动电路上。通过该电路板的学习,可以: 1、掌握汽油机喷油器工作电路的组成和工作原理; 2、掌握电路构成主要部件的作用和工作原理; 3、学会电路板工作性能的检测方法; 4、学会电路板常见故障的诊断和维修方法; 5、掌握万用表、数字存储示波器的使用方法。 二、电路板工作原理 电路原理图如下:

元器件参数表: 元件编号元件类型参数 R1、R2、R3、R4 电阻10K R5、R6 电阻5W/10Ω R7 电阻470Ω R8 电阻1K CT1、CT2 电解电容22uf CT3 电解电容10uf C1、C2 瓷片电容0.1uf D1 二极管1N4007 Q1 场效应晶体管IRF540 Q2 集成稳压电源7805 U1 单片机STC12C5204AD U2 光耦TLP521-1 S1、S2、S3、S4 不自锁按键SW-PB Y1 晶振2M C3、C4 瓷片电容10pf 本电路模拟汽油机喷油器工作的基本原理。在本电路中使用单片机模拟汽车中的ECU控制单元,在按动按键S2、S3、S4时,ECU 产生相关的频率方波信号,信号通过光耦由5V方波信号转为12V的方波信号,12V的方波信号使场效应功率管(IRF540)处于不停的导通(12V)和断开(0V)状态,使汽油机喷油器处于工作状态。 在本电路板中,按动开关S2、S3、S4可使汽油机喷油器工作在不同的工作频率状态。通过按动开关可使汽油机喷油器在不同工作频率下切换,观察工作状态的变化。 电路同时提供端子AD、AC、AC2。学生可使用信号发生器调节产生不同脉宽的数字、模拟信号来驱动汽油机喷油器在不同信号下工作。 三、主要组成元件的作用和工作原理 1、汽油机喷油器

喷油嘴及其工作原理 文档

喷油嘴及其工作原理 来源:未知2009-11-30 【喷油嘴】喷油嘴本身是一个常闭阀 (常闭阀的意思是当没有输入控制讯号时,阀门一直处于关闭状态;而常开阀则是当没有输入控制讯号时,阀门一直处于开启状态),由一个阀针上下...... 【喷油嘴】 喷油嘴本身是一个常闭阀 (常闭阀的意思是当没有输入控制讯号时,阀门一直处于关闭状态;而常开阀则是当没有输入控制讯号时,阀门一直处于开启状态),由一个阀针上下运动来控制阀的开闭。当ECU下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。 【喷油嘴工作原理】 从燃油路径来看,首先燃油泵浦自油箱中将油料送至输油管中,输油管再将油料送至油轨内,而油轨由调压阀来控制燃油压力,并且确保送至各缸的燃油压力皆能相同。另一方面,调压阀也会借着泄压将过多的油料送至回油管而流回油箱中。而喷油嘴一端连接于油轨上,喷嘴则为于各个器缸的进气道上。 引擎ECU根据引擎运转状况会对喷油嘴下达喷油指令,喷油量是由燃油压力及喷油嘴喷油时间所决定,燃油压力在油轨处已由调压阀所控制,而燃油调压阀之压力是由歧管真空(引擎负荷) 调整,所以ECU能控制的就是喷油时间,当引擎需要较多的燃油时,喷油时间就会较长,反之则喷油时间较短。 喷油嘴本身是一个常闭阀 (常闭阀的意思是当没有输入控制讯号时,阀门一直处于关闭状态;而常开阀则是当没有输入控制讯号时,阀门一直处于开启状态),由一个阀针上下运动来控制阀的开闭。当ECU下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。

振荡器的工作基本原理

常见振荡器的工作原理 振荡器应用在在许多不同类型的电子设备中。比如说,石英表使用石英晶体振荡器跟踪时间。还有调幅收音机发射机使用振荡器为电台创建载波,调幅收音机接收机使用称为谐振电路的特殊形式的振荡器进行调谐。以及在计算机、金属探测仪甚至眩晕枪中都有振荡器。 下面我们就要从生活中找到振荡器,并且分析其工作原理。 比如说最常见的振荡器之一就是时钟的钟摆。如果推动钟摆开始摆动,它就会以某种频率振荡——每秒钟会来回摆动一定的次数。控制频率的主要是钟摆的长度。要使物体振荡,能量必须在两种形态之间来回转换。例如,在钟摆中,能量在势能和动能之间转换。当钟摆位于摆动的一端,其能量全部是势能,并准备落下。当钟摆在循环的中间,所有势能转换为动能,钟摆以最快的速度移动。当钟摆向另一侧运动时,所有动能又转为势能。这两种形态间的能量的转换就是导致振荡的原因。 最后由于摩擦的作用,任何物理振荡都会停止。要继续运动,必须在每次循环中添加少许能量。在摆钟里,保持钟摆移动的能量来自弹簧。钟摆在每次敲钟时都得到一点推力,以弥补因摩擦而失去的能量。 电子振荡器的工作原理与之相同。振荡器要正常工作,能量必须在两种形态之间来回转换。将电容器和电感器连接在一起,即可制成一个非常简单的振荡器。如果您阅读过电容器工作原理和电感器工作原理,就会知道电容器和电感器都能储存能量。电容器以静电场的形式储存能量,而电感器则使用磁场。假设有这样一个电路:

如果用电池为电容器充电,然后将电感器插入电路,将会发生以下情况: 1.电容器将通过电感器开始放电。同时电感器将建立磁场。 2.一旦电容器放电完毕,电感器将尝试保持电路中的电流,为电容器的另一个板充电。 3.当电感器的磁场消失后,电容器已再次充电(但充电极性相反),将再次通过电感器 放电。 这种振荡将持续,直到金属线中的电阻耗完能量为止。该振荡频率取决于电感器和电容器的大小。在简单的晶体收音机中,一个由电容器或电感器组成的振荡器充当收音机的调谐器。它通过以下方式连接到天线和地线: 然后来自于不同电台的成千上万的正弦波会到达我们使用的天线。电容器和电感器要以一个特定的频率谐振。符合此特定频率的正弦波将被谐振电路放大,而所有其他频率都将被忽略。在收音机中,谐振电路中的电容器或电感器都是可调的。当我们转动收音机上的调谐旋钮时,就是在进行调节,比如调节可变电容。改变电容器会改变谐振电路的谐振频率,由此也会改变谐振电路所放大的正弦波频率。这就是我们如何“收听”收音机的不同电台!真是运用的振荡器的工作原理达到的这样一个效果。 电子电器频道https://www.doczj.com/doc/105821967.html,/jishu-dianzidianqi-cp-isp-mat

锅炉结构及工作原理

锅炉结构及工作原理 锅炉结构及工作原理锅:是指锅炉的水汽系统,由汽包、下降管、联箱、水冷壁、过热器和省煤器等设备组成。(1)锅的任务是使水吸热,最后变化成一定参数的过热蒸汽。其过程是:给水由给水泵打入省煤器以后逐渐吸热,温度升高到汽包工作压力的沸点,成为饱和水;饱和水在蒸发设备(炉)中继续吸热,在温度不变的情况下蒸发成饱和蒸汽;饱和蒸汽从汽包引入过热器以后逐渐过热到规定温度,成为合格的过热蒸汽,然后到汽轮机做功。 汽包:汽包俗称锅筒。蒸汽锅炉的汽包内装的是热水和蒸汽。汽包具有一定的水容积,与下降管,水冷壁相连接,组成自然水循环系统,同时,汽包又接受省煤器的给水,向过热器输送饱和蒸汽;汽包是加热,蒸发、过热三个过程的分解点。 下降管:作用是把汽包中的水连续不断地送入下联箱,供给水冷壁,使受热面有足够的循环水量,以保证可靠的运行。为了保证水循环的可靠性,下降管自汽包引出后都布置在炉外。 联箱:又称集箱。一般是直径较大,两端封闭的圆管,用来连接管子。起汇集、混合和分配汽水保证各受热面可靠地供水或汇集各受热面的水或汽水混合物的作用。(位于炉排两侧的下联箱,又称防焦联箱)水冷壁下联箱通常都装有定期排污装置。 水冷壁:水冷壁布置在燃烧室内四周或部分布置在燃烧室中间。它由许多上升管组成,以接受辐射传热为主受热面。作用:依靠炉膛的高

温火焰和烟气对水冷壁的辐射传热,使水(未饱和水或饱和水)加热蒸发成饱和蒸汽,由于炉墙而且又使炉墙不致被烧坏。所以炉墙温度大为降低,内表面被水冷壁管遮盖, 能防止结渣和熔渣对炉墙的侵蚀;筒化了炉墙的结构,减轻炉墙重量。水冷壁的形式:1.光管式2.膜式 过热器:是蒸汽锅炉的辅助受热面,它的作用是在压力不变的情况下,从汽包中引出饱和蒸汽,再经过加热,使饱和蒸汽成为一定温度的过热蒸汽。 省煤器:布置在锅炉尾部烟道内,利用烟气的余热加热锅炉给水的设备,其作用就是提高给水温度,降低排烟温度,减少排烟热损失,提高锅炉的热效率。 减温装置:保证汽温在规定的范围内。汽温调节:1、蒸汽侧调节(采用减温器)2、烟气侧调节(采用摆动式喷燃器)炉炉就是锅炉的燃烧系统,由炉膛、烟道、喷燃器及空气预热器等组成。工作原理:送风机将空气送入空气预热器中吸收烟气的热量并送进热风道,然后分成两股:一股送给制粉系统作为一次风携带煤粉送入喷煤器,另一股作为二次风直接送往喷煤器。煤粉与一、二次风经喷燃器喷入炉膛集箱燃烧放热,并将热量以辐射方式传给炉膛四周的水冷壁等辐射受热面,燃烧产生的高温烟气则沿烟道流经过热器,省煤器和空气预热器等设备,将热量主要以对流方式传给它们,在传热过程中,烟气温度不断降低,最后由吸风机送入烟囱排入大气。 炉膛:炉膛是由一个炉墙包围起来的,供燃料燃烧好传热的主体空间,

相关主题
文本预览
相关文档 最新文档