当前位置:文档之家› 人教版六年级数学下册教学设计 数学广角—鸽巢问题教案

人教版六年级数学下册教学设计 数学广角—鸽巢问题教案

人教版六年级数学下册教学设计 数学广角—鸽巢问题教案
人教版六年级数学下册教学设计 数学广角—鸽巢问题教案

《数学广角—鸽巢问题》教学设计

数学广角—鸽巢问题

例1:本例描述“抽屉原理”的最简单的情况。着重探讨为什么这样的结论是成立的。教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。这种方法比第一种方法更为抽象,更具有一般性。

通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法──枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。

例2:本例描述“抽屉原理”更为一般的形式,即“把多于(是正整数)个物体任意分放进个空抽屉里,那么一定有一个抽屉中放进了至少(+1)个物体”。教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。在具体编排这道例题的时候,在数据上进行了一个很细微的调整。在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进3个抽屉里,总有一个抽屉至少放进了3本书”。通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。

例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样,就可以把“摸球问题”转化为“抽屉问题”。教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。很多学生误以为要摸5

次才可以摸出球,这可以让学生通过实验来验证。

1、知识与技能

知道什么是“鸽巢问题”并掌握解决“鸽巢问题”的方法。

2、过程与方法

通过探究“鸽巢问题”的解决过程,掌握数形结合的学习思想。

3、情感态度和价值观通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,培养学生独立思考问题的能力。

把具体问题转化成“鸽巢问题”并总结“鸽巢问题”解决的方法。

多媒体课件

一、情景引入(课件展示)

我给大家变一个“魔术”:一副扑克牌,抽掉大小王之后还有52张牌,现在你们5个人每人随意抽一张,我知道至少有两张牌是同花色的,你相信我吗?

二、导入新课

例1、把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?

学生动手操作:

方法一:把各种情况都摆出来。(列举法)

方法二:把4分解成3个数。(分解法)

例1提出的问题就是“鸽巢问题”,4支铅笔就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

例2、把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?

如果有8本书会怎样呢?10本书呢?

方法一:把7本书放进3个抽屉里,共有8种情况,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

方法二:如果每个抽屉最多放2本,那么3个抽屉最多放6本,可是题目要求放7本,那么剩下的那本书要放在3个抽屉中的其中一个中。所以7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

8÷3=2余2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本;放进其中一个抽屉里,这个抽屉就变成4本。因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

10÷3=3余1本,把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

问题:你是这样想的吗?你有什么发现?

例3、盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

思考:只摸2个球就能保证这2个球同色吗?当摸出的这两个球正好是一红一蓝时就不能同色。

解:把红、蓝两种颜色看作两个“鸽巢”,因为3÷2=2余下1,所以摸出3个球时,至少有2个是同色的。

结论:只要摸出的球数比它们的颜色种数多1,就能保证有两个球同色。

三、即时练习

1、5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子,为什么?

解:3只鸽子分别飞入3只笼子中,剩下的2只分别放入其中2只鸽笼中,那么这两只鸽笼中都有2只鸽子;剩下的2只放入其中一只鸽笼里,那么这只鸽笼就有3只鸽子。所以5只鸽子飞进了3只笼子,总有一只鸽笼至少飞进了2只鸽子。

2、你理解上面扑克魔术的道理了吗?

解:扑克牌有4种花色,看做4个“鸽巢”,5个人每人抽一张,抽了5张,看做5只“鸽子”;问题就转化为“5只鸽子飞入4个鸽巢,总有一个鸽巢飞入了2只鸽子”。4只鸽子分别飞入4个鸽巢中,剩下的1只飞入其中一个鸽巢,那么总有一个鸽巢飞入了2只鸽子。

3、11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子,为什么?

解:11÷4=2余3只,分别放进其中3只鸽笼中,使其中3只鸽笼都变成3只;放进

其中2只鸽笼里,这两只鸽笼中一只鸽笼变成4只鸽子,另一只鸽笼里变成了3只鸽子;放进其中一个鸽笼里,这个鸽笼利就变成了5只鸽子。所以11只鸽子飞进了4只鸽笼,总有一只鸽笼至少飞入了3只鸽子。

4、5人坐4把椅子,总有一把椅子上至少坐2人,为什么?

解:5÷4=1余下1人,这个人坐在其中一个椅子上,那么这把椅子上坐了2个人。所以5人坐4把椅子,总有一把椅子上至少坐2人。

5、向东小学六年级共有367名学生,其中六(2)班有49名学生。(1)六年级里至少有2个人的生日是同一天。(2)六(2)班中至少有5人是同一个月出生的。他们说的对吗?为什么?

解:(1)一年最多366天。假设367个学生中366个学生的生日在不同的一天:367÷366=1余1个学生,可以看做鸽巢问题,所以六年级里至少有2个人的生日在同一天。

(2)一年有12个月。假设49个学生的生日分别在不同的月份:49÷12=4余1人,看做鸽巢问题,所以六(2)班中至少有5人是同一个月出生的。所以他们的说法正确。

6、把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球?

解:看作鸽巢问题,5÷4=1余1,至少取5个球,就能保证取到两个颜色相同的球。拓展思考

把红、蓝、黄3种颜色的筷子各3根混在一起,如果让你闭上眼睛,每次最少拿出几根才能保证一定有2根同色的筷子?如果要保证有2双筷子呢?

解:把红、黄、蓝看作3个鸽巢:4÷3=1余1,每次至少拿出4根能保证一定有2根同色的筷子。

保证有2双筷子:一次拿出5根时,因为每种颜色各有3根,当一种颜色的筷子拿了3根,其余2种颜色的筷子各拿1根,这时不能保证有2双筷子;一次拿出6根时,有以下情况:

这时能保证至少有2双筷子。所以至少拿出6根能保证有2双筷子。

习题巩固

1、随意找13位老师,他们中至少有2个人的属相相同,为什么?

解:一共有12个属相。13÷12=1余1,所以他们中至少有2个人属相相同。

2、张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?

解:当5镖全部低于9环时,成绩最多是5×8=40环,而张叔叔得了41环,那么其中一环必定要大于8环,即至少有一镖不低于9环。

3、给一个正方体木块的6个面分别涂上蓝、黄两种颜色。不论怎么涂至少有3个面涂的颜色相同,为什么?

解:蓝(黄)色涂1个面时,黄(蓝)色涂5个面;蓝(黄)色涂2个面时,黄(蓝)色涂4个面;蓝(黄)色涂3个面时,黄(蓝)色涂3个面。所以不论怎么涂至少有3个面涂的颜色相同。

4、任意给出3个不同的自然数,其中一定有2个数的和是偶数,为什么?

解:已知:偶数与偶数的和是偶数,奇数与奇数的和是偶数,自然数分为偶数、奇数。那么找出3个自然数只有两种情况:两个偶数,一个奇数;一个偶数,两个奇数。这两种情况都满足有2个数的和是偶数。

本课小结

1、把具体问题转化成“鸽巢问题”。

2、总结“鸽巢问题”解决的方法。

略。

第五单元《鸽巢问题》例1例2 教学设计教学提纲

第五单元数学广角 第一课时《鸽巢问题》例1例2 教学设计 教学内容: 人教版教材六年级数学上册第68--69 页。 教学目标: 1.知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。 2.过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。 3.情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。教学重、难点: 经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。 课时安排:一课时 教具学具:多媒体课件、每人一枚一元硬币 教学过程 一、问题引入。 师:同学们,你们玩过抢椅子的游戏吗?现在,老师这里准备了3把椅子,请4个同学上来,谁愿来? 1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。 2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗? 游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。 引入:不管怎么坐,总有一把椅子上至少坐两个同学?你知道这是什么道理吗?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究

这个原理。 二、探究新知 (一)教学例1 1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法? 师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师出示各种情况。 板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1), 问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢? 引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。 问题: (1)“总有”是什么意思?(一定有) (2)“至少”有2枝什么意思?(不少于两只,可能是2枝,也可能是多于2枝?) 教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢? 学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。 问题:把6枝笔放进5个盒子里呢?还用摆吗?把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。) 总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。 2.完成课下“做一做”,学习解决问题。

人教版六年级下册数学_鸽巢问题(精品)

第5单元数学广角——鸽巢问题 汪村中心小学钱少华 第3课时鸽巢问题(3) 【学习目标】 1.能通过观察、比较、判断、归纳等方法,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。 2.能够根据“抽屉原理”解决生活中的实际问题。 【学习过程】 一、知识铺垫 把n+1个物体放入n个抽屉,总有: _____________________________________。 把 a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么: _________________________________________________________。 二、自主探究 1.盒子里有同样大小的红球和蓝球各四个。要想摸出的球一定有两个同色的,最少要摸出几个球? 我的猜想:_____________________________________________。 2.小组内说一说:你是怎么思考的? 3.跟我们前面学过的“抽屉原理”有什么联系吗? 我发现:______________________________________________ ________________________________________。

4.小结:在本题中,一共有红、蓝两种颜色的球,就可以把两种“颜 色”看成两个_______, “同色”就意味着________,要保证摸出两个同 色的球,摸出的球的数量至少要比颜色种数多_____。 5. 三、课堂达标 1.王东玩掷骰子游戏,要保证掷出的骰子总数至少有两次相同,他最少应掷()次。 A.5 B.6 C.7 D.8 2.张阿姨给孩子买衣服,有红、黄、白三种颜色,但结果总是至少有两个孩子的颜色一样,她至少有()孩子。 A.2 B.3 C.4 D.6 3.瓶子里有同样大小的红球和黄球各5个。要想摸出的球一定有2个同色的,最少要摸出()个球 A.2 B.3 C.4 D.5 4.李叔叔要给房间的四面墙壁涂上不同的颜色,但结果是至少有两面的颜色是一致的,料的颜色最多有()种。 A.2 B.3 C.4 D.5 5.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。至少取多少个球,可以保证取到两个颜色相同的球? 6.同心小学6.共有370名学生,其中六(2)班有49名学生。请问下面两人说的对吗?为什么? 生1:“6.里一定有两人的生日是同一天。” 生2:“六(2)班中至少有5人是同一个月出生的。

人教版小学数学六年级下册 鸽巢问题 教学设计

《鸽巢问题》教学设计 教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。 教学目标: 1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重、难点: 重点:引导学生把具体问题转化成“鸽巢问题”。 难点:找出“鸽巢问题”解决的窍门进行反复推理。 教学准备:课件。 教学过程: 一、情境导入: 老师组织学生做“抢凳子的游戏”。 请4位同学上来,摆开3张凳子。 老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。 教师背对着游戏的学生。 师:都坐下了不?老师不用瞧,也知道肯定有一张凳子上至少坐着2

位同学。老师说得对不? 师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。 二、探究新知: 教学例1、(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”与“至少”就是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”与“至少”就是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。 方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数就是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

最新数学广角鸽巢问题教案

《鸽巢问题》教学设计 黄岭子镇中心校 赵春宇

数学广角——鸽巢问题 黄岭子中心校赵春宇教学目标 1.经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”,理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 2.通过操作发展学生的归纳推理的能力,形成比较抽象的数学思维。 3.会用“抽屉原理”解决简单的实际问题,感受数学的魅力。重点难点 重点:经历“抽屉原理”(鸽巢原理)的探究过程,初步了解“抽屉原理”。 难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。 教学过程 第一学时 教学活动 活动1【导入】游戏导入 上课前,我们先来热身一下,做一个预测的游戏。 请各位同学在本子上任意写出三个自己喜爱的老师的名字,之后老师进行预测,如果预测准的话给老师五秒钟的掌声。其实在这个预测的游戏中还蕴含着一个有趣的数学原理,这

节课我们就一起来研究. 活动2【讲授】自主探究,初步感知 1、研究4枝笔放进3个笔筒。 (1)要把4枝笔放进3个笔筒 ,有几种放法?请同学们小组内摆一摆。 (2)反馈:四种放法(课件出示) (3)判断:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进2支笔。这句话说的对吗?为什么? (4)“总有”什么意思?(一定有) (5)“至少”有2枝什么意思?(不少于2枝) (6)师:4枝笔放进3个笔筒,不管怎么放,总有一个杯子里至少放进几支笔?你是怎么知道的?(先找到每种摆法中笔数最多的杯子,然后再找到这些最多的杯子中最少的笔数) (7)师:实际就是多中找少 师:我们刚刚把所有摆放的方法都一一罗列出来,从而找到总有一个杯子里至少放进2支笔,这种方法叫枚举法。这种方法好不好?(评价:随着数据的扩大,摆放的方法一定会更多,甚至不能一一罗列)那么我们能不能找到一种更为直接的方法,也能得到这个结论呢?请同学们在小组内讨论讨论,怎么摆? (每个杯子都先放进一枝,还剩一枝不管放进哪个杯子,总会有一个杯子至少有2枝笔)(你的方法果然简单)

鸽巢问题教案

第10讲抽屉原理 一、教学内容:抽屉原理 二、教学目标: 1、理解抽屉原理的概念:抽屉原理:把M个物体分进N个空抽屉里(M>N,N是非0的自然数)那么总有一个抽屉至少有2个物体。 2、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。 3、通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 4、经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 5、通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 三、教学重点: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。 四、教学难点 1、理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 2、要把a个物体放进n个抽屉,如果a÷n =b……c 至少数=b+1即至少数=物体数÷抽屉数+1 3、知道抽屉数和至少数,求物体时,物体数=(至少数-1) ×抽屉数+1当至少数为2时, 物体数=抽屉数+1 五、教学用具:课件、一定数量的笔、铅笔盒。 六、教学过程: 1课时 复习巩固(作业纠错):见课件 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2支铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1)师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。 2、逐步深入,建立模型 (1)初建模型

最新六年级下数学广角-鸽巢问题知识点

最新六年级下数学广角-鸽巢问题知识点 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体. 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体. 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体.(2)设计“鸽巢”的具体形式.(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题. 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书. (√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”. 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符.本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算. 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体. 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个. 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数. 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点.规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案.所以, 一共有3+3=6(种)参观方案.求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢. 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服. 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本.至少有几名学生所借的书的类型完全相

六年级下数学广角-鸽巢问题知识点

第五单元:数学广角-鸽巢问题 【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非0自然数,且 m>n),那么一定有一个鸽巢中至少放进了2个物体。【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是非0自然数), 那么一定有一个鸽巢中至少放进了(k+1)个物体。【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题转化成“鸽 巢问题”,即弄清楚“鸽巢”(“鸽巢”是什么,有几个鸽巢) 和分放的物体。(2)设计“鸽巢”的具体形式。(3)运用 原理得出某个“鸽巢”中至少分放的物体个数,最终解决问 题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉中,总有一个 抽屉里至少放5本书。(√) 错解分析此题错在把这个抽屉至少放的书的本数用“3(商)+2(余数)” 计算了,应该是“3(商)+1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同色的? 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得的结果也是 与问题要求不符。本题属于已知鸽巢数量(3中颜色即3个 鸽巢)和分的结果(保证一个鸽巢里至少有2个同色的), 求要分放物体的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5 个玻璃球?

思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数量求出平均 每个鸽巢里所放物体的数量和余数,其中至少有一个鸽巢中 有(平均每个鸽巢里所放物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看成鸽巢数, 要使其中一个鸽巢里至少有5个玻璃球,则玻璃球的个数至 少要比鸽巢数的(5-1)倍多1个。 正确解答(25-1)÷(5-1)=6个(个) 方法总结(分放的物体总数-1)÷(其中一个鸽巢里至少有的物体个数-1)= a....b(a.b为自然数,且b>a),则a就是所求的 鸽巢数。 典型例题平安路小学组织862名同学去参观甲、乙、丙处景点。规定每名同学 至少参观一处,最多可以参观两处,至少有多少名同学参观 的景点相同? 思路分析参观甲、乙、丙3处景点,若只参观一处,则有3种参观方案;若参观 两处,则有“甲乙、乙丙和甲丙”这3种参观方案。所以, 一共有3+3=6(种)参观方案。求至少有多少名同学参 观的景点相同,可以转化为“鸽巢问题”解答,把862名 同学看成要分放的物体,把6中参观方案看成6个鸽巢。 正确解答3+3=6(种) 862÷6=143(名).....4(名) 143+1=144(名) 【综合测评】 1、 (1)小东玩掷骰子游戏(掷一枚骰子),要保证掷出的骰子数至少有两次是相同 的,小东至少应该掷()次 (2)李阿姨给幼儿园的孩子买衣服,有红、黄、白3种颜色,结果总是至少有2 个孩子的衣服颜色一样,她至少给()个孩子买衣服。 2、11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类型的书,最少可借一本。至少有几名学生所借的书的类型完全相 同?

六年级数学下册第五单元鸽巢问题教案

闽侯县实验小学课堂教学设计 年级:六年级学科:数学

闽侯县实验小学课堂教学设计 年级:六年级学科:数学

的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…… 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n 是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出示例题2情境图) 思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢? (二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。(1)探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。 8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b

最新人教版六年级下册数学《数学广角——鸽巢问题》教案

数学广角——鸽巢问题 【教学目标】 1.知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2.过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【课时安排】 3课时 【第一课时】 【教学重难点】 1.引导学生把具体问题转化成“鸽巢问题”。 2.找出“鸽巢问题”解决的窍门进行反复推理。 【教学准备】 课件 【教学过程】 一、探究新知: 1.教学例1.(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。 理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 探究证明。

方法一:用“枚举法”证明。 方法二:用“分解法”证明。 把4分解成3个数。 由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。 方法三:用“假设法”证明。 通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 认识“鸽巢问题” (1)像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。 (2)如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔…… 小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了2个物体。 2.教学例2(课件出示例题2情境图) 思考问题: (1)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢? (2)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明→得出结论”的学习过程来解决问题(一)。 探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。

人教版数学六年级下册鸽巢问题

《鸽巢问题》教学反思 日照第四小学朱玉雪 数学广角的教学是为了丰盛学生解决问题的方法和策略,使学生感受到数学的魅力。本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。 一、情境导入,初步感知 兴趣是最佳的老师。在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。通过小游戏,一下就抓住学生的注意力,有用地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。 二、活动中恰当引导,建立模型 采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。 在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。 大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的大凡规律,让学生借助直观操作、观察、表达等方式,让学生经历从例外的角度认识鸽巢原理。特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。 三、通过练习,解释应用 合适设计形式多样化的练习,可以引起并保持学生的练习兴趣。如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色

鸽巢问题教案

数学广角——鸽巢问题 教学设计 团田中心小学 陈亚一

一、教学目标: 1、知识与技能:通过猜测、验证、观察、分析等数学活动,建立 数学模型,发现规律。渗透“建模”思想。 2、过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 3、情感、态度与价值观:通过“抽屉原理”或“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 二、教学重点难点: 教学重点:经历”抽屉原理”或“鸽巢原理”的探究过程,初步了解“抽屉原理”或“鸽巢原理”。 教学难点:理解“抽屉原理”或“鸽巢原理”,并对一些简单实际问题加以“模型化”。 三、教学过程: (一)游戏激趣,初步体验 游戏:请四位同学从数字1、2、3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜,我就可以肯定,至少有2个同学写的数字相同。你们信吗? 生:自由发言。 师:你们想知道这是为什么吗? 生:想。 师:其实刚才的游戏中蕴含着一个数学小知识,今天我们就一起来学

习这个小知识。(板书:鸽巢问题) (二)合作探究,感知规律 例1:探究4支笔放进3个笔筒的现象 师:把4支笔放入3个笔筒中,总有一个笔筒里至少有2支笔。这句话里的“总有”是什么意思? 生:一定有 师:“至少”呢 生:最少。 师:那可以是3支吗?4支吗? 生:可以 师:那到底是不是总有一个笔筒里至少有2支铅笔呢?我们一起来验证一下。请同学们拿出课前准备的笔筒(画在纸上的)和4支笔, 请同桌两人一组,动手摆一摆,注意两个人分工合作,一人摆,另一人记录在记录卡上。在活动中,老师有一个小提示,在摆的过程中,我们忽略笔筒的顺序,如,在这个笔筒里放3支和在另一个笔筒里放3支属于同一种类型。听清楚了吗? 生:听清楚了。 师:那就开始动手吧。(学生同桌合作完成,师巡视指导。) 师:哪一桌愿意上来给大家汇报一下你们摆的结果? 生:(指名交流) 师:刚才同学们用动手操作的方法验证了老师的猜想是正确的,我们一起再来回顾一下这几种放法:(大屏出示:4 0 0 3 1 0 2 2 0

六年级数学-鸽巢问题

第十讲鸽巢问题 鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家 狭利克雷明确地提出来的,因此,也称为狭利克雷原理。把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式 物体个数宁鸽巣个数二商……余数至少个数二商+1 摸同色球计算方法: ①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。 物体数=颜色数x(相同颜色数—1)+ 1 ②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出 一个什么颜色的球,都能保证一定有两个球是同色的。

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业 2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。 3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。 5、证明:某班有52名学生,至少有5个人在同一个月出生 6、一幅扑克牌除大小王有52张,最少要抽取几张牌,方能保证其中至少有2 张牌有相同的点数?最少要抽取几张牌,方能保证其中至少有2张牌有相同的花色? 7、幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件, 那么不

5 数学广角——鸽巢问题

第五单元数学广角——鸽巢问题 【例1】红、黄、蓝三种颜色的球各6个,混合后放在一个布袋里,一次至少摸出几只,才能保证有两只是同色的? 球看作元素,从最不利情况考虑,每个抽屉先放1个 球,共需要3个,再取出1个不论是什么颜色,总有 一个抽屉里的球和它同色,所以至少要取出:3+1=4 (个)。 解答:3+1=4(个) 答:一次至少摸出4个,才能保证有两个是同色的。 【例2】在一次春游活动中,三年级1班有31人带了面包,38人带了饮料,36人带了水果,34人带了巧克力,全班有45人。可以肯定的是有()人这4种都带了。 解析:可能没带面包的:45 - 31 = 14 、可能没带饮料的:45 - 38 = 7 、可能没带水果的:45 - 36 = 9 、可能没带巧克力的:45 - 34 = 11 、可能只带四样中其中一样的:14 + 7 + 9 + 11 = 41 ,所以可以肯定四样都带了的至少有:45 - 41 = 4 (人)。 解答:可以肯定至少有4人这四样都带了。 【例3】一个袋里有红珠子6粒,黄珠子8粒,蓝珠子10粒。最少要抽出多少 粒珠子才可保证有3粒是同一颜色? 一共摸出6粒:同时摸出红色、蓝色、黄色各2颗;此时再 任意摸出一个,就一定有3粒珠子颜色相同。 解答:3×2+1=7(粒) 答:最少要抽出7粒珠子才可保证有3粒是同一颜色。 【例4】笔筒里有3支红笔和2支黑笔,如果蒙上眼睛摸一次,至少拿出几支笔 才能保证有1支红笔? 解析:把红笔和黑笔看做是两个抽屉,5只笔看做是5个元素,根据抽屉原理考 虑最差情况:摸出2支全是黑笔,那么再任意摸出一支就是红笔。 2+1=3(支) 答:一次必须摸出3支铅笔才能保证至少有一支红笔。 【例5】一个兴趣小组有16名同学,他们都订阅了甲乙两种杂志中的一种或两 种,那么至少有()名同学都订阅的杂志种类相同。 A 5 B 4 C 6 解析:可以订阅杂志的情况有甲、乙或甲和乙一共三种可能,也就是说有3个抽 屉,根据抽屉原理,从最不利的情况考虑:16÷3=5(人)…1(人),所以至少 有5+1=6(名)同学订阅的杂志种类相同。 解答: C 【例6】有100个苹果分给幼儿园某班的小朋友,已知其中有人至少分到了3个。 那么,这个班的小朋友最少有多少人? 解析:本题考查的知识点是抽屉原理。解答时把小朋友的人数为抽屉个数,人数 最少,则分得3个苹果的人数最多,所以用100÷3=33…1,33+1=34(人) 解答:100÷3=33…1 33+1=34

六年级下册《鸽巢问题》教案知识分享

“鸽巢问题”教案 教学内容:教材第68-70页例1、例2,及“做一做”。 学习目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感态度与价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。学习重点:引导学生把具体问题转化成“鸽巢问题”。 学习难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。 学习过程: 一、创设情境,导入新知 老师组织学生做“抢椅子”游戏(请3位同学上来,摆开2条椅子),并宣布游戏规则。 其实这个游戏中蕴藏着一个非常有趣的数学原理,这节课我们就一起来研究这类问题。-----出示课题《鸽巢问题》“鸽巢原理”又称“抽屉原理”,最先是由19世纪的德

国数学家狄利克雷提出来的,所以又称“狄利克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们就来研究这一原理。 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢? 问题:“总有”和“至少”是什么意思? 学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。 (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 (3)探究证明。个人调整意见 方法一:用“分解法”证明。把4分解成3个数。由图

人教版六年级下册鸽巢问题单元教材分析

鸽巢问题单元教材分析 一、单元总目标 1、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。 2、经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。 3、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。 二、单元重难点 重点:1、了解抽屉原理的基本内容,能够利用抽屉原理创造性的解决实际问题。 2、指导学生完成水资源浪费情况调查的实践课题。 难点:理解抽屉原理的思维方法并应用解决问题。 三、单元学情分析 本单元重在培养学生的数学思想方法和训练其思维能力,以及通过实践活动用探究式的课题活动培养学生的动手实践能力及解决问题的能力。经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。经历对“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题,发展分析、推理的能力。 四、具体编排 例1及其做一做 例1借助把4支笔放进3个杯子里,不管怎么放,总有一个杯子至少放进了2支笔的情境,介绍了一类比较简单的鸽巢问题。为解释这一现象,教材呈现了两种思考方法:枚举法和假设法。

教学时,教师可引导学生对枚举法和假设法进行比较,并通过逐步类推,使学生逐步理解抽屉原理的一般化模式。 做一做中安排了抽纸牌的原理,和例题紧紧呼应。 例2及其做一做 例题介绍了另外一种抽屉问题,把多于kn个物体任意放进n个空抽屉,那么一定有一个抽屉放进了至少(k+1)个物体。教材提供了7本书放进了3个抽屉的情境。仍然用枚举法及其假设法探究该问题,并用有余数的除法形式7÷3=2……1表达假设法的思路。 教学时,引导学生理解假设法最核心的思路是把书尽量多地平均分给各个抽屉。 做一做中让学生利用在例2的基础上进行迁移类推。 例3 例3是抽屉原理的具体应用,也是运用抽屉原理进行逆向思维的一个典型的例子。 教学时,先引导学生思考这个问题与抽屉原理有什么联系,找出这里的抽屉是什么,抽屉有几个,在利用前面学习的抽屉原理进行反向推理。 四、教学建议 1、应让学生初步经历数学证明的过程。 在小学阶段,虽然不需要学生对涉及到抽屉原理的相关现象给出严格的形式化的证明,但是仍然乐意引导学生用直观的方式进行就事论事的解释。教学时,可以鼓励学生借助学具实物操作或者画草图的方式进行说理。通过这样的方式,有助于提高学生的逻辑思维能力。 2、应该有意识的培养学生模型思想 抽屉原理的变式很多,应用更加具有灵活性。但是能否将这个具体问题和抽屉问题联系起来,能否找到问题中的具体情境和抽屉问题的一般化模型之间的内在关系是影响能

小学数学_鸽巢问题教学设计学情分析教材分析课后反思

鸽巢问题教学设计 一、谈话引入: 1.谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。你们信吗? 2.验证:学生报出生月份。 根据所报的月份,统计13人中生日在同一个月的学生人数。 师:“至少2个同学”是什么意思?(也就是2人或2人以上,反过来,生日在同一个月的可能有2人,可能3人、4人、5人……,也可以用一句话概括就是“至少有2人”) 3.设疑:你们想知道这是为什么吗?通过今天的学习,你就能像老师一样料事如神,下面我们就来研究这类问题,鸽巢问题。 二、学习新知 (一)初步感知 1.出示题目:有3支铅笔,2个笔筒(把实物摆放在讲桌上),把3支铅笔放进2个笔筒,怎么放?有几种不同的放法?谁愿意上来试一试。 2.学生上台实物演示。 可能有两种情况:一个放3支,另一个不放;一个放2支,另一个放1支。 师记录:(3,0)、(2、1) 3.提出问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话说得对吗? 学生尝试回答, 师:这句话里“总有一个笔筒”是什么意思? 生:一定有,不确定是哪个笔筒,最多的笔筒 师:这句话里“至少有2支”是什么意思? 生:最少有2支,不少于2支,包括2支及2支以上

师总结:从刚才的实验中,我们可以看到3支铅笔放进2个笔筒,总有一个笔筒至少放进2支笔。 (二)合作探究 问:如果现在有4支铅笔放进3个笔筒,还会出现这样的结论吗? 1.小组合作: (1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来; (2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出; (3)我们发现:总有一个笔筒至少放进了()支铅笔。 2.交流后明确: (1)四种情况:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0) (2)每种摆法中最多的一个笔筒放进了:4支、3支、2支。 (3)总有一个笔筒至少放进了2支铅笔。 3.小结:刚才我们通过“画图”、“数的分解”两种方法列举出所有情况验证了结论,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找到“至少数”呢? (三)计算 1.学生尝试回答。(如果有困难,也可以直接投影书中有关“假设法”的截图) 2.学生操作演示,教师图示。 3.语言描述:把4支铅笔平均放在3个笔筒里,每个笔筒放1支,余下的1支,无论放在哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进了2支笔。(指名说,互相说) 4.引导发现: (1)这种分法的实质就是先怎么分的?(平均分) (2)为什么要一开始就平均分?(均匀地分,使每个笔筒的笔尽可能少一点,方便找到“至少数”),余下的1支,怎么放?(放进哪个笔筒都行)

六年级下数学广角鸽巢问题知识点

六年级下数学广角鸽巢 问题知识点 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

第五单元:数学广角-鸽巢问题【知识点一】“鸽巢原理”(一) “鸽巢原理”(一):把m个物体任意分放进n个鸽巢中(m和n是非 0自然数,且m>n),那么一定有一个鸽巢中 至少放进了2个物体。 【知识点二】“鸽巢原理”(二) “鸽巢原理”(二):把多于kn个物体任意分进n个鸽巢中(k和n是 非0自然数),那么一定有一个鸽巢中至少放进 了(k+1)个物体。 【知识点三】应用“鸽巢原理”解决简单的实际问题 应用“鸽巢原理”解题的一般步骤(1)分析题意,把实际问题 转化成“鸽巢问题”,即弄清楚“鸽巢”(“鸽 巢”是什么,有几个鸽巢)和分放的物体。 (2)设计“鸽巢”的具体形式。(3)运用原 理得出某个“鸽巢”中至少分放的物体个数,最 终解决问题。 【误区警示】 误区一:判断:因为11÷3=3....2,所以把11本书放进3个抽屉 中,总有一个抽屉里至少放5本书。 (√)

错解分析此题错在把这个抽屉至少放的书的本数用“3(商) +2(余数)”计算了,应该是“3(商)+ 1”。 错解改正× 误区二:有红、绿、蓝三种颜色的小球各5个,至少取出几个能保证有2个同 色的 5×3÷3=5(个) 错解分析此题错在把小球的总数作为要分放物体的数量了,求得 的结果也是与问题要求不符。本题属于已知鸽巢 数量(3中颜色即3个鸽巢)和分的结果(保证 一个鸽巢里至少有2个同色的),求要分放物体 的数量,各种颜色小球的数量并与参与运算。 错解改正3+1=4(个) 【方法运用】运用逆推法解决鸽巢问题 典型例题把25个玻璃球最多放进几个盒子里,才能保证至少有一个 盒子里有5个玻璃球 思路分析由“鸽巢原理”(二)可知,用分放的物体总数除以鸽巢数 量求出平均每个鸽巢里所放物体的数量和余数, 其中至少有一个鸽巢中有(平均每个鸽巢里所放 物体的数量+1)个物体。 此题可以把玻璃球的总数看成分放的物体总数,把盒子数看 成鸽巢数,要使其中一个鸽巢里至少有5个玻璃

相关主题
文本预览
相关文档 最新文档