当前位置:文档之家› H-可靠性与安全性-7-相关失效系统可靠性

H-可靠性与安全性-7-相关失效系统可靠性

H-可靠性与安全性-7-相关失效系统可靠性
H-可靠性与安全性-7-相关失效系统可靠性

第7章相关失效系统可靠性模型

根据零件的可靠度计算系统可靠度是一种通行的做法。在传统的零件/系统可靠性分析中,典型的方法是借助载荷-强度干涉模型计算零件的可靠度,或通过可靠性实验来确定零件的可靠度。然后,在“系统中各零件失效相互独立”的假设条件下,根据系统的逻辑结构(串联、并联、表决等)建立系统可靠性模型。然而,由于在零件可靠度计算或可靠度试验过程中没有或不能区分载荷分散性与强度分散性的不同作用,虽然能得到零件可靠度这个数量指标,却混合了载荷分散性与强度分散性的独特贡献,掩盖了载荷分散性对系统失效相关性的特殊作用,丢失了有关系统失效的信息。因而,无法从零件可靠度直接构建一般系统(即除独立失效系统之外的其它系统,以下称相关失效系统)的可靠度模型。

众所周知,最具代表性传统的系统可靠度计算方法是,对于由零件A、 B、和 C构成的串联系统,其可靠度R s为零件可靠度R i的乘积:

R s=R A R B R C

事实上,隐含了各零件独立失效假设。若组成串联系统的n个零件的可靠度分别为R1,R2,……,R n,则系统可靠度为

R s=?R i

若各零件的可靠相等,即R i=R,(i=1,2,……,n),则有

Rs=R n

显然,这样的公式只有当各零件的失效是相互独立时才成立。

早在1962年,就有研究者指出,由n个零件构成的串联系统的可靠度R n的值在其零件可靠度R(假设各零件的可靠度相等)与各零件可靠度的乘积R n之间。系统可靠度取其上限R 的条件是零件强度的标准差趋于0;而系统可靠度取其下限R n的条件是载荷的标准差趋于0。

关于系统失效概率P(n)与零件失效概率P i(n)之间的关系还有如下阐述。对于串联系统

maxP i(n)

下限适用于各构件失效是完全相关的情况,上限适用于相互独立失效的情况。一般说来,如果载荷的变异性大于抗力的变异性,系统的失效概率接近于下限,反之则接近上限。

对于并联系统则有

P i(n)

当各构件失效为相互独立事件时,下限是精确值;当各构件失效完全相关时,上限是精确值。

7.1 相关失效现象与机理

对于工程实际中的绝大多数系统,组成系统的各零件处于同一随机载荷环境下,它们的失效一般不是相互独立的。或者说,系统中各零件的失效存在统计相关性。因此,相关失效问题是系统可靠性问题的重要内容之一。系统失效相关的根源可划分为三大类:一是各子系统存在共用的零件或零件间的失效具有传递性;二是各子系统或零部件共享同一外部支撑条件(动力、能源等);三是被称为“共因失效”的统计相关性。

前两种失效相关性都能通过系统功能图或可靠性逻辑框图清楚地表达,数学模型处理也比较简单。共因失效(Common Cause Failure,简称CCF),或称共模失效(Common Mode Failure)是各类系统中广泛存在的、零件之间的一种相关失效形式,这种失效形式的存在严重影响冗余系统的安全作用,也使得一般系统的可靠性模型变得更为复杂。

从工程的角度,共因失效事件是无法显式地表示于系统逻辑模型中的、零件之间的相关失效事件。“相关”是系统失效的普遍特征,忽略系统各部分的失效相关性,简单地在各部分失效相互独立的假设条件下进行系统可靠性分析与评价,常常会导致过大的误差,甚至得出错误的结论。

目前,系统可靠性分析还大都假设各零件的失效是相互独立的事件。已有研究指出,对于电子装置,这样的假设有时是正确的;对机械零件,这样的假设几乎总是错误的。由于共因失效对冗余系统的可靠性有重要影响,近年来得到了广泛的重视和研究。到目前为止,已提出了许多共因失效模型或共因失效概率分析方法。然而,在传统的研究中,大都是用CCF 事件来反映一组零件的失效相关性,据此再从工程应用的角度提出相应的经验或半经验模型。

根据载荷-强度干涉理论,零件破坏是由于载荷大于其强度造成的结果。因此,在零件失效分析中,既应同时包括环境载荷与零件性能这两方面因素,又须对这二者区别对待。这里,环境载荷指的是导致零件失效的外部因素,如机械载荷、温度、湿度等。相应地,零件性能指的是零件对相应各种环境载荷的抗力,如强度、耐热性、耐湿性等。

对于各零件承受同一环境载荷或相关环境载荷的系统,载荷的随机性是导致系统共因失效的根本原因。系统中各零件之间的失效相关程度是由载荷的分布特性与零件性能(强度)的分布特性共同决定的。载荷-强度干涉分析表明,系统中各零件完全独立失效的情况只是在环境载荷为确定性常量而零件性能为随机变量时的一种极特殊的情形。在一般情况下,环境载荷和零件性能都是随机变量,因而都不同程度地存在失效相关性。在数学上,任何系统(例如,串、并联系统、表决系统)的失效相关性(共因失效)都可以借助于环境载荷-零件性能干涉分析进行评估与预测。

在恒定载荷X e作用下,零件失效概率等于零件性能随机变量X p小于该载荷X e 的概率。在这样的载荷条件下,系统中各零件的失效是相互独立的,因为各零件失效与否完全取决于其自身的个体性能情况。就整个系统而言,在这种情况下不存在零件间的失效相关性,即不存在共因失效问题。这正是系统失效的一种特殊情形-完全独立的零件失效。导致这种情形

的必要条件是环境载荷为确定性常量,而零件性能为随机变量。系统失效的另一种特殊情形是其各零件完全相关的失效。导致完全的失效相关的条件是,零件性能是确定性常量(即所有的零件性能都完全相同,没有分散性),而环境载荷为随机变量。显然,在这样的场合,或者没有一个零件失效(若载荷的某一实现(样本值)小于零件性能指标),或者所有零件都同时失效(若载荷某一实现(样本值)大于等于零件性能指标)。

在绝大多数情况下,环境载荷和零件性能都是随机变量,因而系统中各零件的失效一般既不是相互独立的,也不是完全相关的。系统失效的相关性来源于载荷的随机性,零件性能的分散性则有助于减轻各零件间的失效相关程度。

相关失效分析方法可以分为定性分析和定量计算两类。定性分析包括问题的定义、建立逻辑模型(如可靠性框图、事件树、故障树)、数据分析等。由于相关失效在系统可靠性和概率风险评价中都不能忽略,所以其定量计算更为重要。定量计算主要是依靠参数模型,通过特定的共因参数的使用定量地解释共因失效的影响。迄今为止,提出的模型有β因子模型、二项失效率(BFR )模型、共同载荷(CLM )模型、基本参数(BP )模型、多希腊字母(MGL )模型、α因子模型等。由于这些模型和方法都有其各自的缺陷,所以很难在工程实际中得到广泛应用。

7.2 传统共因失效模型

7.2.1 β因子模型

β因子模型是应用于核电站概率风险评价中的第一个参数化模型,同时也是一种比较简单的模型。该模型的基本思想是,部件有两种完全互相排斥的失效模式,第一种失效模式以脚标I 标记,代表部件本身的独立原因引起的失效;第二种失效模式以脚标C 标记,代表某种“共同原因”导致的集体失效。由此,在该模型中,零件的失效率被分为独立失效(只有一个零件失效)和共因失效(所有零件全部失效)两部分。即:

其中,λ—零件的总失效率 λI —独立失效率

λC —共因失效率

由此定义了一个共同原因因子β:

C

I C C λλλλλβ+== (7-1) 或者: βλλ=C

C

I λλλ+=

λβλ)1(I -=

共因因子β可以由失效事件数据统计来确定。 根据因子模型,由两个失效率皆为的零件构成的并联系统的失效率为

2/2=((1-))2+ (7-2) 对于高于二阶的系统,因子模型给出的各阶失效率为:

(7-3) 在此需要说明的是,工程中(例如核电站概率风险评价)习惯用失效率

这个指标,因此 因子模型是以失效率(而不是失效概率)表达的。 显然,β因子模型有明显的局限性。当系统中的单元数多于两个时,会出现其中几个单元同时失效的失效率为零的情况。实际上,由外部载荷因素所导致的共因失效,可能导致系统中任意个单元同时失效。所以严格地讲,β因子模型只适用于二阶冗余系统,而对于高阶冗余系统,计算结果偏于保守。但由于该模型简单、易于掌握,所以,曾广泛地用于概率风险评价。

7.2.2 α因子模型

α因子模型实际上是为了克服 因子模型的缺陷,考虑任意阶数失效的情况,对于m 阶冗余系统引入了m 个参数λ1,λ2,…,λm 。单个零件的失效率λ与这m 个参数的关系为:

∑=--=m k k

k m C 111λλ (7-4)

其中,λk ——特定k 个零件的失效率

通常,零件的失效率可以根据已知数据求得。此外,在α因子模型中还引入了参数αk (k=1,2,…,m ),其意义为:由于共同原因造成的k 个单元的失效率与系统失效率之比,即: s

k k m k C λλα= (7-5)?????=<<=-=m

k m k k k βλλβλ10

1)1(

其中, ∑==m

k k s 1λλ——系统失效率。 因子模型的具体应用方法是,用概率统计的知识(如极大似然估计法),根据已知的失效数据确定参数αk ,从而求得各阶失效率λk 。

7.2.3 BFR 模型

BFR 模型认为有两种类型的失效:一种是在正常的载荷环境下零件的独立失效,另一种是由冲击 (shock) 因素引起的、能导致系统中一个或多个零件同时失效。冲击因素又分为致命性冲击和非致命性冲击两种。非致命性冲击出现时,系统的中的各个零件的失效概率为常量p ,且各零件的失效是相互独立的。当致命性的冲击出现时,全部零件都以100%概率失效。

根据环境载荷-零件性能干涉概念,BFR 模型考虑的失效情形可解释为有三种相互独立的环境因素。这三种环境因素与三种相应的零件性能之间的关系分别示于图7-1(a), (b)和 (c)中。第一种环境是以100%的概率出现的确定性载荷 s 1 ,这种环境载荷是只能导致零件独立失效的确定性载荷。在该载荷作用下,零件的失效概率记为Q i 。第二种环境是以概率 出现的载荷s 2,对应于非致命性冲击。在该载荷作用下,零件的失效概率记为 p 。而第三种环境是以概率 出现的极端载荷 s 3,对应于致命性冲击。在该极端载荷作用下,零件的失效概率为100%。也就是说,所有的零件都同时发生失效。可见,实际上所有这三种环境载荷都分别对应于独立的零件失效的情形,相应的零件失效概率(以相应的环境载荷为条件)分别为 Q i , p 和 1。这些参数就是BFR 模型所定义的,即

Q i = 在正常环境下每个零件的独立失效概率;

= 非致命冲击载荷出现的频率;

p = 在非致命冲击载荷条件,零件的条件失效概率;

= 致命冲击载荷出现的频率。

由此,得到各阶失效概率的数学表达式如下:

(7-6)

对于2/3冗余系统,BFR 模型把系统失效概率估计为:

?????=+<<-=-+=--m

k p m k p p k p p Q p m k

m k m i k ωμμμ1)1(1)1(1

Q s = 3[Q i +p(1-p)2]2+3p 2(1-p)+p 3+ (7-

7)

图7-1 环境载荷与零件性能间的三种关系

7.2.4 共同载荷模型

共同载荷模型(CLM)是通过应力-强度干涉理论来建立共因失效概率的,其中所有共同的原因机制(如环境应力、人为差错等)通过应力变量分布表达,而一些非直接的共因失效机制(如系统的退化、零件性能的变化)通过强度分布描述。所以,该模型的表达式为:

(7-8)

其中,Q k/m ——m 阶冗余系统中,k 个零件同时失效的概率

)(L L x f ——载荷X L 的概率密度函数

)(S S x f ——强度X S 的概率密度函数

该模型的最大缺点是应力及强度的分布无法精确表达,而只能用“试凑法”计算系统失效概率。

7.2.5 MGL 方法

MGL(The Mulitiple Greek Letter-多希腊字母)方法也是β因子法的进一步发展。下面以三个部件并联的系统为例来说明冗余系统中的共因失效问题。记A ,B ,C 为部件A ,B ,C 的独立失效事件,如图7.2所示。AB ,BC 和AC 为两部件

L

k m x S S S k x S S S L L k

m m k dx dx x f dx x f x f C Q L L -∞∞????????????=???)()()(00/

的同时失效事件,ABC 表示三部件同时失效事件,事件发生概率分别记为

图7.2 三部件并联系统

??

???=======ABC AC

BC AB C

B A Q Q Q Q Q Q Q Q Q Q 321 (7-9) 两重以上失效事件发生是由于共同原因所致,为了计算每一个部件在需要它投入时而可能失效的总的概率为

Q

Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q T Q T Q T Q ABC BC AC C ABC

BC AB B ABC AC AB A C B A =++=+++=+++=+++===3212)()()((7-10)

定义共因失效因子β Q

Q Q Q Q Q Q Q C B A 3232132222+=+++====ββββ (7-11) β是指两个以上部件同时发生失效时的条件概率,另一个共因比例因子γ定义为系统三个部件由于共因而同时失效的条件概率:

3

232Q Q Q C B A +====γγγγ (7-12) 由上述公式可得到各阶失效概率

???

????

-=-==Q Q Q Q Q Q )1(2)1(123ββγγβ (7-13) 式(7-13)为MGL 模型的计算公式,可以用这组公式来求解2/3冗余系统共因失效问题。

对于2/3冗余系统,按照系统的成功准则,可求出以下的最小割集-包括三对独立失效割集,三对两部件共因失效割集,以及一个三部件同时共因失效的割集:

}{},{},{},{},,{},,{},,{ABC AC BC AB C A C B B A

其他可能组合的割集不是最小割集。所以,根据容斥原理可求出:

3

32323213

323223213

221322213213221)1(3)]1(31[(3)1(3)331(3939333)3/2(Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q S +-+---=+-++--=+---++= (7-14)

将(7-13)代入可得 Q Q Q Q Q Q Q Q S γβγββγγββγγββ+--+-----=)1()1(23)]1()1(2

31[)1(3)3/2(22 (7-15)

在工程实际的计算中,有时可以应用近似计算公式,忽略三阶的β和Q 值:

Q Q Q Q S γββγ+-+=)1(2

33)3/2(2 (7-16) 公式中的第一项代表两部件独立失效贡献,第二项为共因导致二部件同时失效贡献,第三项为共同原因造成三个部件全部失效。

7.3 系统层的载荷-强度干涉模型

7.3.1应力-强度干涉分析

应力和强度是失效问题中的一对矛盾。一般来说,应力 s 是一个随机变量,用 h(s) 表示其概率密度函数;强度S 也是随机变量,其概率密度函数用 f(S) 表示。分析与模拟结果均表明,应力的随机性是产生共因失效这种失效相关性的最基本原因,而零件性能的分散性则有助于减轻系统中零件失效的相关程度。

在传统的可靠性分析、计算方法中,一般都没有区分应力分散性与强度分散性对产生系统失效相关性的不同意义。例如,零件失效概率 p (零件强度 S 小于应力 s 的概率)是借助应力-强度干涉模型计算的:

s d dS S f s h p s

??∞=00])()[( (7-17) 根据这样的计算模型,不同的应力分布与强度分布的组合可以产生相同的零件失效概率,不同的应力分布(例如,不同的均值与标准差的组合)与同一强度分布(或同一应力分布与不同的强度分布)也可以产生相同的零件失效概率。

但是,不同的应力分布与强度分布的组合将导致明显不同的系统失效概率,即使这些组合都产生相同的零件失效概率。

在应力与强度均为正态分布随机变量的条件下,计算零件可靠度时还可以做如下的变换,即构造一个新的随机变量z :

z=S-s (7-18)

显然,由于应力与强度可以看作是相互独立的随机变量,z 也是一个服从正态分布的随机变量,其均值和标准差分别为z =S -s 和z =(S 2+s 2)1/2。这里,S 、S 分别为强度

随机变量S 的均值与标准差;s 、s 分别为应力随机变量s 的均值与标准差。

用g(z)表示随机变量z 的概率密度函数,零件失效概率可表达为

?∞-=0

)(dz z g p (7-19) 从这样计算零件失效概率的传统公式可见,在计算零件失效概率的过程中,显然是混合了应力的分布特性与强度的分布特性,即使用的是一个新的控制变量z 及新的分散性指标 z 。由于应力的分布特性与强度的分布特性对产生共因失效有截然不同的作用,而在上述零件失效概率计算过程中却混合了应力分散性参数与强度分散性参数,相当于遗失了共因失效信息,因而无法再用这样计算出的零件的可靠度通过串、并联等可靠性逻辑关系计算系统(除非是各零件独立失效的系统)的可靠度。

在确定性载荷条件下(确定性的载荷用斜体字母 Y 表示),各零件的失效是完全独立的(这种情形的应力-强度干涉关系如图7-3所示),零件失效概率可表示为:

(Y) = P(S

0d f ? (7-20) 而系统的 n 个零件中有任意 k 个失效的概率为:

k n k n k s k n k n p ---=)1()!

(!!/ππ (7-21)

(整理)安全性可靠性性能评价

3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

可靠性安全性发展

可靠性安全性发展 可靠性历史概述 尽管产品的可靠性是客观存在的,但可靠性工程作为一门独立的学科却只有几十年的历史。现代科学发展到一定水平,产品的可靠性才凸现出来,不仅影响产品的性能,而且影响一个国家经济和安全的重大问题,成为众所瞩目需致力研究的对象。在社会需求的强大力量推动下,可靠性工程从概率统计、系统工程、质量管理、生产管理等学科中脱颖而出,成为一门新兴的工程学科。 可靠性工程历史大致可分为4个阶段。 1 可靠性工程的准备和萌芽阶段(20世纪30—40年代) 可靠性工程有关的数学理论早就发展起来了。 最主要的理论基础:概率论,早在17世纪初由伽利略、帕斯卡、费米、惠更斯、伯努利、德*摩根、高斯、拉普拉斯、泊松等人逐步确立。 第一本概率论教程——布尼廖夫斯基(19世纪);他的学生切比

雪夫发展了定律(大数定律);他的另一个学生马尔科夫创立随机过程论,这是可修复系统最重要的理论基础。 可靠性工程另一门理论基础:数理统计学,20世纪30年代飞速发展。代表性:1939年瑞典人威布尔为了描述疲劳强度提出了威布尔分布,该分布后来成为可靠性工程中最常用的分布之一。 最早的可靠性概念来自航空。1939年,美国航空委员会《适航性统计学注释》,首次提出飞机故障率≤0.00001次/ h,相当于一小时内飞机的可靠度Rs=0.99999,这是最早的飞机安全性和可靠性定量指标。我们现在所用的“可靠性”定义(三规定)是在1953年英国的一次学术会议上提出来的。 纳粹德国对V1火箭的研制中,提出了由N个部件组成的系统,其可靠度等于N个部件可靠度的乘积,这就是现在常用的串联系统可靠性模型。二战末期,德火箭专家R?卢瑟(Lussen)把Ⅴ1火箭诱导装置作为串联系统,求得其可靠度为75%,这是首次定量计算复杂系统的可靠度问题。因此,V-1火箭成为第一个运用系统可靠性理论的飞行器。 最早作为一个专用学术名词明确提出“可靠性”的是美国麻省理工学院放射性实验室。他们在1942年11月4日向海军与军舰船员提

可靠性试验相关标准清单

可靠性试验相关标准 GB/T 3187-1994 可靠性、维修性术语 GB/T 4888-1985 故障树名词术语和符号 GB/T 5329-1985 试验筛选与筛分试验术语 GB/T 7289-1987 可靠性、维修性与有效性预计报告编写指南 GB/T 7826-1987 系统可靠性分析技术失效模式和效应分析(FMEA)程序 GB/T 7827-1987 系统可靠性分析技术可靠性预计程序 GB/T 7828-1987 系统可靠性分析技术可靠性设计评审 GB/T 7829-1987 系统可靠性分析技术故障树分析程序 GB/T 9586-1988 荧光数码显示管加速寿命试验方法 GB/T 15174-1994 可靠性增长大纲 GB/T 10593.1-1989 电工电子产品环境参数测量方法振动 GB/T 10593.2-1990 电工电子产品环境参数测量方法盐雾 GB/T 10593.3-1990 电工电子产品环境参数测量方法振动数据处理和归纳 GB/T 2423.1-1989 电工电子产品基本环境试验规程试验A:低温试验方法 GB/T 2423.2-1989 电工电子产品基本环境试验规程试验B:高温试验方法 GB/T 2423.3-1993 电工电子产品基本环境试验规程试验Ca:恒定湿热试验方法 GB/T 2423.4-1993 电工电子产品基本环境试验规程试验Db:交变湿热试验方法 GB/T 2423.5-1995 电工电子产品基本环境试验第2部分试验方法试验Ea和导则:冲击 GB/T 2423.6-1995 电工电子产品基本环境试验第2部分试验方法试验Eb和导则:碰撞 GB/T 2423.7-1995 电工电子产品基本环境试验第2部分试验方法试验Ec和导则:倾跌与翻倒(主要用于设备型样品) GB/T 2423.8-1995 电工电子产品基本环境试验第2部分试验方法试验Ed:自由跌落 GB/T 2423.9-1995 电工电子产品基本环境试验规程试验Cb:设备用恒定湿热试验方法 GB/T 2423.10-1997 电工电子产品基本环境试验第2部分试验方法试验Fc和导则:振动(正弦) GB/T 2423.11-1997 电工电子产品基本环境试验第2部分试验方法试验Fd:宽频带随机振动一般要求 GB/T 2423.12-1997 电工电子产品基本环境试验第2部分试验方法试验Fda:宽频带随机振动高再现性 GB/T 2423.13-1997 电工电子产品基本环境试验第2部分试验方法试验Fdb:宽频带随机振动中再现性 GB/T 2423.14-1997 电工电子产品基本环境试验第2部分试验方法试验Fdc:宽频带随机振动低再现性 GB/T 2423.15-1995 电工电子产品基本环境试验第2部分试验方法试验Ga和导则:稳态加速度 GB/T 2423.16-1999 电工电子产品基本环境试验第2部分试验方法试验J和导则:长霉试验方法 GB/T 2423.17-1993 电工电子产品基本环境试验规程试验Ka:盐雾试验方法 GB/T 2423.18-2000 电工电子产品基本环境试验第2部分试验方法试验Kb:盐雾,交变(氯化钠溶液) GB/T 2423.19-1981 电工电子产品基本环境试验规程试验Kc:接触点和连接件的二氧化硫试验方法 GB/T 2423.20-1981 电工电子产品基本环境试验规程试验Kd:接触点和连接件的硫化氢试验方法 GB/T 2423.21-1981 电工电子产品基本环境试验规程试验M:低气压试验方法 GB/T 2423.22-1987 电工电子产品基本环境试验规程试验N:温度变化试验方法 GB/T 2423.23-1995 电工电子产品基本环境试验试验Q:密封 GB/T 2423.24-1995 电工电子产品基本环境试验第2部分试验方法试验Sa:模拟地面上的太阳辐射 GB/T 2423.25-1992 电工电子产品基本环境试验规程试验Z/AM:低温/低气压综合试验 GB/T 2423.26-1992 电工电子产品基本环境试验规程试验Z/BM:高温/低气压综合试验 GB/T 2423.27-1981 电工电子产品基本环境试验规程试验Z/AMD:低温/低气压/湿热综合试验方法 GB/T 2423.28-1982 电工电子产品基本环境试验规程试验T:锡焊试验方法 GB/T 2423.29-1999 电工电子产品基本环境试验第2部分试验方法试验U:引出端及整体安装强度

如何保证企业数据的安全性和可靠性

如何保证企业数据的安全性和可靠性 据身份盗窃资源中心称,已知去年发生的数据泄露事故数量为656宗,总共泄露了3570万条记录。数量为656宗,总共泄露了3570万条记录。涉及的行业包括商业、金融、医疗设施、教育机构和政府部门。发生数据泄露的主要原因是什么呢?据ITRC 称,只有2.4%的机构泄露的数据经过了加密或者带有严密的保护措施,只有8.5%的数据带有口令保护。 为什么其他机构不使用口令保护和加密措施呢?有些机构是因为骄傲自大,有些机构则是因为它们误以为它们的数据保密措施已经足够了。还有一些机构担心对数据进行加密可能需要花费太多的钱和时间。 然而,各行各业的机构们因为数据泄露而招致的财务成本和公共关系成本已经越来越高,它们必须制定精确的数据保护政策和标准。这些政策和标准倒不一定复杂,也不一定附带着高昂的成本。 虽然许多数据存储厂商如Sun、EMC、惠普和IBM等正在讨论建立加密密钥管理的标准问题,但是你可以按下列步骤采取正确的措施来保护你的数据。 首先制定一套良好的数据保护政策 身份盗窃911主席兼联合创始人、安全专家Adam Levin表示,一套良好的数据保护政策必须包含下列五个因素: 1、包含与收集、使用和储存敏感信息有关的良好的安全和保密政策。 2、把信息储存在电脑和笔记本电脑上时对它们进行加密。 3、限制敏感信息的访问权限。 4、安全地清除旧的或过期的敏感信息。 5、制定一套突发事件反应计划,以备发生数据泄露事故之需。 除了上诉内容之外,Levin还建议企业组织配置和使用最新的防火墙、反间谍软件和杀毒保护软件;不要使用无线连网技术;将数据截断,这样就可以保证在不需要的地方那些敏感信息就无法使用。 他强调,最重要的是确保使用安全加密的技术来获取和储存敏感信息,使用加密协议,将所有的数据加密。

H-可靠性与安全性-7-相关失效系统可靠性

第7章相关失效系统可靠性模型 根据零件的可靠度计算系统可靠度是一种通行的做法。在传统的零件/系统可靠性分析中,典型的方法是借助载荷-强度干涉模型计算零件的可靠度,或通过可靠性实验来确定零件的可靠度。然后,在“系统中各零件失效相互独立”的假设条件下,根据系统的逻辑结构(串联、并联、表决等)建立系统可靠性模型。然而,由于在零件可靠度计算或可靠度试验过程中没有或不能区分载荷分散性与强度分散性的不同作用,虽然能得到零件可靠度这个数量指标,却混合了载荷分散性与强度分散性的独特贡献,掩盖了载荷分散性对系统失效相关性的特殊作用,丢失了有关系统失效的信息。因而,无法从零件可靠度直接构建一般系统(即除独立失效系统之外的其它系统,以下称相关失效系统)的可靠度模型。 众所周知,最具代表性传统的系统可靠度计算方法是,对于由零件A、 B、和 C构成的串联系统,其可靠度R s为零件可靠度R i的乘积: R s=R A R B R C 事实上,隐含了各零件独立失效假设。若组成串联系统的n个零件的可靠度分别为R1,R2,……,R n,则系统可靠度为 R s=?R i 若各零件的可靠相等,即R i=R,(i=1,2,……,n),则有 Rs=R n 显然,这样的公式只有当各零件的失效是相互独立时才成立。 早在1962年,就有研究者指出,由n个零件构成的串联系统的可靠度R n的值在其零件可靠度R(假设各零件的可靠度相等)与各零件可靠度的乘积R n之间。系统可靠度取其上限R 的条件是零件强度的标准差趋于0;而系统可靠度取其下限R n的条件是载荷的标准差趋于0。 关于系统失效概率P(n)与零件失效概率P i(n)之间的关系还有如下阐述。对于串联系统 maxP i(n)

产品设计五性可靠性维修性安全性测试性和保障性

3 “五性”的定义、联系及区别 3.1 可靠性 产品在规定的条件下和规定的时间内完成规定功能的能力。可靠性的概率度量称为可靠度(GJB451-90)。 可靠性工程:为达到产品的可靠性要求而进行的一套设计、研制、生产和试验工作。 (GJB451-90) 显然,这个定义适用于各种装备、设备、系统直至零部件的各个产品层次。可靠性是产品的一种能力,持续地完成规定功能的能力,因此,它强调“在规定时间内”;同时,产品能否可靠地完成规定功能与使用条件有关,所以,必须强调“在规定的条件下”。 为了使产品达到规定的可靠性要求,需要在产品研制、使用开展一系列技术和管理活动,这些工程活动就是可靠性工程。即:可靠性工程是为了达到产品的可靠性要求而进行的一套设计、研制、生产和试验工作。(GJB451-90)。实际上,可靠性工程还应当包含产品使用、储存、维修过程中的各种保持和提高可靠性的活动。 3.1.1可靠性要求

3.1.1.1 定性要求 对产品的可靠性要求可以用定性方式来表达,满足这些要求使用中故障少、即使发生故障影响小即可靠。例如,耐环境特别是耐热设计,防潮、防盐雾、防腐蚀设计,抗冲击、振动和噪声设计,抗辐射、电磁兼容性,冗余设计、降额设计等。其中冗余设计可以在部件(单元)可靠性水平较低的情况下,使系统(设备)达到比较高的可靠性水平。比如,采用并联系统、冷储备系统等。除硬件外,还要考虑软件的可靠性。 3.1.1.2 定量要求 可靠性定量要求就是产品的可靠性指标。产品的可靠性水平用可靠性参数来表达,而可靠性参数的要求值就是可靠性指标。常用的产品可靠性参数有故障率、平均故障间隔时间以及可靠度。 故障率是在规定的条件下和规定的时间内,产品的故障总数与时间(寿命单位总数)之比。即平均使用或储存一个小时(发射一次或行驶100km)发生的故障次数。 平均故障间隔时间(MTBF)是在规定的条件下和规定的时间内,产品寿命单位(时间)总数与故障总次数之比。即平均多少时间发生一次故障。通常可以用故障率的倒数表示。 可靠度R(t)是可靠性的概率表示。即在规定的条件下和规定时间内,产品完成规定功能的概率。即:

可靠性有效性可维护性和安全性RAMS

1目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员的人身安全。 FME(C)A:FailureModeandEffect(Criticality)Analysis故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4职责 4.1销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

可靠性增长与可靠性增长试验

众所周知,产品的可靠性是由设计决定的。但是,由于受到各种原因的影响,设计缺陷总是难免的,产品在研制阶段往往达不到用户的可靠性要求,因此必须开展可靠性增长活动。 必须指出,可靠性增长活动不是针对设计低劣的产品的,而是针对经过认真设计仍然由于某些技术原因达不到要求的产品,而且可靠性增长活动比可靠性设计活动所需的资源和时间都多。 1、概述可靠性增长可从多个不同的角度来看,早期有关可靠性增长的一些工作主要集中在管理方面。1970年Selby和Miller研制的可靠性计划与管理(RPM)模型是联系可靠性要求和实施计划的管理工具,可帮助确定所需样品数和设计方案通过增长过程的成熟时间,并可监测进展情况,评价对原计划进行调整的必要性。但大多数情况下提及可靠性增长这一话题时,讨论的重点都是可靠性增长试验。一般而言,为了证明设计的正确性以及设计中使用的模型和分析工具的有效性,试验是开发的标准、必要部分。对于可靠性增长试验,大量的工作被用于研制各种统计模型,以便计划和跟踪通过试验所取得的可靠性增长。由于试验费用很高,因此自然会把很多精力放在研制好的模型和注重可靠性增长过程上。我们知道最常用的模型是Duane模型。Duane的观点是把整个重点放在试验中发现失效,然后通过重新设计予以排除。在笔者参加的某次“可靠性与风险分析先进课题”系列专题会议会议上,分组讨论中有一组的主题是“可靠性增长的范围和目的”。会上讨论了把试验作为实现可靠性增长首选方法的状况。其中一位成员提出,象卫星这样的产品,由于成本高,供试验的物品有限,因而极少可能进行那种和可靠性增长有关的试验。对这种系统如何实现可靠性增长呢? 2、可靠性增长更广泛的

可靠性、有效性、可维护性和安全性(RAMS)

1 目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2 适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3 定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员 的人身安全。 FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4 职责 4.1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3 工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

第17讲 人机系统的可靠性和安全性

第十七讲人机系统的可靠性和安全性 通过本章的学习,应能够: 1.描述人机系统的可靠性、可靠度; 2.掌握人、人机系统的可靠度计算方法; 3.说明人机系统可靠性设计的要求; 4.运用故障树对人机系统得安全性进行描述和分析。 一、基本概念 1.可靠性 定义:可靠性是指研究对象在规定条件下和规定时间内功能的能力。 研究对象:指系统、机器、部件或人员。本学科只研究人的操作可靠性,即以引起系统故障或失效的人为因素为研究对象。 可靠性高低与研究对象所处的规定条件和规定时间有密切关系。研究对象所处的条件包括温度、湿度、振动、冲击、负荷、压力等,还包括维护方法、自动操作还是人工操作、作业人员的技术水平等广义的环境条件。规定的时间一般指通常的时间概念,根据研究对象的不同也使用周期、距离、次数等相当于时间指标的量。 研究对象的功能:是指对象的某些特定的技术指标。 2.可靠度 定义:可靠度R是指在规定的条件下、规定的时间内,完成规定功能的概率。 不可靠度或失效概率F:研究对象在规定的条件下、规定时间内丧失规定的功能的概率。 R十F=1或R=l—F 可靠度的获得:研究对象的不可靠度可以通过大量的统计实验得出。 3.人的操作可靠度 定义:作业者在规定条件下、规定时间内正确完成操作的概率,用R H表示。 人的操作不可靠度(人体差错率)F H,R H+F H=1。 人的操作可靠度计算: 人的行动过程包括:信息接受过程、信息判断加工过程、信息处理过程。人的可靠性也包活人的信息接受的可靠性、信息判断的可靠性、信息处理的可靠性。这三个过程的可靠性就表达了人的操作可靠性。 (1)间歇性操作的操作可靠度计算。

失效模式与效应分析程序FMEA

1.目 的: 1.1對產品設計及其制程中的潛在失效影響效應建立認知并予以評價。 1.2確認系列措施及消除或降低失效發生的機會。 1.3建立產品設計及其制程的文件記錄。 2.范 圍﹕ 2.1DFMEA :所有新產品在開發初期﹐收到客戶設計資料后,并進行可行性評估與規划之前均適用。 2.2 PFMEA ﹕ 2.2.1在APQP 的制程設計與開發驗証階段實施。 2.2.2對新制程或將修訂的制程實施。 3.權 責﹕ 3.1制訂﹕DFMEA 由開發部主要跨功能小組訂定﹔PFMEA 由生產部主要跨功能小組訂定。 3.2審查﹕由各主要跨功能小組組長審查并督導落實執行。 3.3核准﹕管理代表核准。 4.定 義﹕ 4.1失效模式﹕指產品或過程可能不能滿足設計意圖或過程要求的方式或方法。 5.作業內容﹕按設計或制程FMEA 表格執行,以下簡介FMEA 表的制作﹕ 5.1 FMEA 表編號﹕編號原則如右圖 5.2項目﹕填入要分析之產品型別。 部門﹕填入要分析之工序。 5.3制定部門﹕填入主導FMEA 單位別。 5.4編制人﹕填入主導完成FMEA 工程師的名字。 5.5次系統 / 機種﹕填入客戶產品名稱。 5.6生效日期﹕填入FMEA 最新發布日期。 5.7 FMEA 日期( 原 始 )﹕填入最初FMEA 制定日期。 5.8核心小組﹕填入跨功能小組所有成員姓名。 5.9功能 / 作業要求或目的﹕盡可能簡潔地填入被分析部位(制程)的功能或作業要求,如果項目包 含一個以上有不同功能或(制程)作業要求時﹐則列出所有項目。 5.10潛在失效模式﹕ D(P) 03 04 25 01 流 水 號 日 月 年 設 計 ( 制程 )

浅谈供用电技术安全性与可靠性的影响因素

浅谈供用电技术安全性与可靠性的影响因素 发表时间:2016-11-29T14:26:53.593Z 来源:《电力设备》2016年第18期作者:黄锦泉 [导读] 本文分析了供用电技术的必要性,阐述现在电力系统中影响安全性和可靠性的因素。 (广东电网有限责任公司江门台山供电局) 摘要:随着我国国民经济快速发展,企业和社会大众对电力的需求量日益增大。电力是保证社会正常运行的基本需求,对国民经济的发展有重要作用,供用电技术的安全性和可靠性问题会直接影响人们的生产生活。所以供用电技术的安全性与可靠性应该受到充分的重视。本文分析了供用电技术的必要性,阐述现在电力系统中影响安全性和可靠性的因素。本文供参考。 关键词:供用电技术;安全性;可靠性;影响因素; 一、提供安全可靠的供用电技术的必要性 供用电的安全性一般是指在供电和用电中设备和人身财产的安全情况。供用电的可靠性指的是供电系统能够持续供电的能力。人们的日常生活离不开电力。如果电力不能正常供给,很多工作都会被中止,给生活造成很多麻烦。电力为生活带来了光明,对我们生活有重要作用。对大型生产工厂而言,没有电力供应,生产会被中止,会遭受到巨大的经济损失,所以供用电技术的可靠性和安全性就尤为重要了。电力行业处于良性发展,可以保证社会和企业正常运行,为国家和社会创造更多的社会效益和经济效益。 二、供用电技术安全性和可靠性的影响因素分析 目前,电力行业已经进入一个新的发展时期,电力技术也在不断改进,电力部门提高了对供用电技术安全性和可靠性的重视程度。由于影响供电技术可靠性和安全性的因素很多,使得电力企业为民众提供更好的电力服务的难度加大。在整个电力系统运行过程中,供电线路是故障的高发区,所以必须做好线路的检查维修工作。 2、1供电线路问题多 供电技术的影响因素很多,并且部分因素不受人为掌控。电线是供电设备系统中的主要输送载体。电力企业需要电线将电力传送给用户,那么电线是否完好,线路通畅与否都会影响到电力的传送,影响服务质量。线路是供电系统的一个难点,检查维修的难度都很大。只要电力系统在运行,供电的每一个设备都处于作业状态,其间出现一点小问题,也会影响到该条线路,甚至会整个电力系统崩溃。自然因素也会影响电力设备的正常运行,如雷雨天、大风暴雨天等造成电路短路,电力中断是很正常的现象。 2、2设备检修维护工作不到位 我们不能控制自然因素对线路的不利影响,也不能阻止线路老化等问题,所以我们必须做好后期检修维护工作。线路发生故障时不可避免的,但问题出现后的解决速度和方法是可以控制的。当线路或者供电设备出现故障,工作人员必须第一时间到达现场维修,将供电设备对市民的影响程度降到最低。由于电力供电系统是一个非常庞大繁杂的工程,因为它涉及到多个设备、多条环节和多个区域的问题,人才配备数量和要求很高,需要专业人士才可以进行操作。电力工作人员花费了大量时间精力去做检修维护工作,有可能在工作人员人为因素影响系统的运行,如在维修时也可能因为操作不当造成线路堵塞;在电力出现问题时候,没有第一时间去排查检修也会影响供电设备的正常运作。 2、3自动化运用程度较低 不少企业为了提高生产效率,主动引进先进设备,减少人工操作,生产系统达到自动化水平。目前为止,电气行业中的自动化水平很低。目前的电力状况使自动化功能受到局限。当供电系统出现故障,电力监控和报警系统也不能保证警报的准确性和及时性,质疑了供用电技术的安全性,为电力供电系统留下了安全隐患。 2、4供电系统处于超负荷运作 由于社会的进步,经济的发展,对电力的需求量很高。电力系统必须保证每时每刻都要运作,设备一直处于超负荷运作状态,加快了供电设备的老化速度,所以电力系统的供电设施不能非长期可靠安全的为市民提供电力服务。长期处于负荷状态的电力系统肯定会出现故障,严重的会产生电力事故,既影响供电的安全可靠性,又危及民众的生命财产安全。 三、提高供用电技术的可靠性与安全性 简析了电力系统中存在的问题,影响了供用电技术的安全性和可靠性。针对上述的问题,提出几点解决要点。 3、1加强检修维护工作 由于电力系统具有统一性和完整性,牵一发而动全身。任意一个环节出现故障都会影响电力供应。所以,电力工作人员必须做好日常检修工作,加大系统的排查力度。发现系统的潜在隐患应该及时反映处理。检修中发现的老化设备或者问题线路应该及时更换,避免造成更大的麻烦。此外,工作人员应该第一时间维修故障部位,降低供电中断带来的经济损失。 3、2加强人才队伍建设 电力行业中,检修队伍是一个重要的工作团队。检修人员必须具有丰富工作经验、专业的电力知识、良好的职业素养。企业需要定期对检修人员进行培训教育,定期测试,测试合格后才能正式上岗,保证工作团队的专业性和稳定性。让工作人员树立为人民服务的意识,提高团队的职业素养,同时每个工作人员保持较高的安全警惕,时刻注意安全问题。在工作中,需要端正好心态,提高安全意识,严格按照相关技术准则处理问题。 3、3逐渐提高自动化水平 电力系统中自动化水平的提高对供用电技术安全性与可靠性有重要作用。让电力系统顺利运行和稳定发展,需要加大对系统的投入,增加自动化设备。及时更换陈旧及低效率的设施,在革新监控和警报系统的同时融入现代电力技术,使得系统的监控和警报更加准确及时,保证将故障的扼杀在摇篮内。其次,电力企业需要重视对电力设施的保护和改进,运用网络技术充分监控区域内电力设施,使出现故障的部位不会扩展延伸,该区域的电源自动被切断或者隔离,系统自动诊断故障问题,提高供电的安全性。 3、4确定合理的供电范围 供电设备超负荷运转,增加电力损耗的同时也提高的电力应用的风险性,电力隐含了潜在隐患。供电设备的运转时间不能缩短,但可

6结构安全性与可靠性评价工作细则解读

1、目的和适用范围 1.1目的 加强对已有建筑物的安全与合理使用,判定该建筑物结构的可靠性,制定本细则。 1.2适用范围 1.2.1 建筑物的安全鉴定(包括危房鉴定及其它应急鉴定)。 1.2.2 建筑物使用功能鉴定。 1.2.3 建筑物改变用途、改变使用条件或改造前的专门鉴定。 2、参考标准 2.1《建筑结构检测技术标准》GB/T 50344-2004 2.2《建筑结构设计统一标准》GB 50068-2001 2.3《建筑结构荷载规范》GB 50009-2012 2.4《建筑地基基础设计规范》GB 50007-2011 2.5《建筑抗震设计规范》GB 50011-2010 2.6《混凝土结构设计规范》GB 50010-2010 2.7《砌体结构设计规范》GB 50003-2011 2.8《钢结构设计规范》GB 50017-2003 2.9《木结构设计规范》GB 50005-2003 2.10《高层建筑混凝土结构技术规范》JGJ 3-2010 2.11《工业建筑防腐蚀设计规范》GB 50046-2008 2.12《冷弯薄壁型钢结构技术规范》GB50018-2002 2.13《民用建筑可靠性鉴定标准》GB50292-1999 2.14《工业建筑可靠性鉴定标准》GBJ144-2008 2.15《危险房屋鉴定标准》JGJ125-1999(2004年版) 2.16《既有建筑地基基础加固技术规范》JGJ 123-2012 2.17《回弹法检测混凝土抗压强度技术规程》JGJ/T 23-2011 2.18《钻芯法检测混凝土强度技术规程》CECS 03:2007 3、检查分类 根据业主要求和建筑在使用过程中出现的不同情况,检查分如下几类:

风险评估技术-失效模式和效应分析(FMEA)及失效模式、效应和危害度分析(FMECA)

失效模式和效应分析(FMEA及失效模式、效应和危害度分析(FMECA) 1 概述 失效模式和效应分析(Failure Mode and Effect Analysis ,简称FMEA)是用来识别组件或系统未能达到其设计意图的方法。 FMEA 用于识别: ?系统各部分所有潜在的失效模式(失效模式是被观察到的是失误或操作不当); ?这些故障对系统的影响; ? 故障原因; ? 如何避免故障及 /或减弱故障对系统的影响。 失效模式、效应和危害度分析(Failure Mode and Effect and Criticality Analysis ,简称 FMECA)拓展了 FMEA 的使用范围。根据其重要性和危害程度,FMECA 可对每种被识别的失效模式进行排序。这种分析通常是定性或半定量的,但是使用实际故障率也可以定量化。 2 用途 FMEA 有几种应用:用于部件和产品的设计(或产品) FM EA ;用于系统的系 统FMEA ;用于制造和组装过程的过程 FMEA ;服务FMEA和软件FMEA。 FMEA/ FMECA 可以在系统的设计、制造或运行过程中使用。然而,为了提高可靠性,改进在设计阶段更容易实施。 FMEA/ FMECA 也适用于过程和程序。例如,它被用来识别潜在医疗保健系统中的错误和维修程序中的失败。 FMEA/FMECA 可用来: ?协助挑选具有高可靠性的替代性设计方案; ?确保所有的失效模式及其对运行成功的影响得到分析; ?列出潜在的故障并识别其影响的严重性; ?为测试及维修工作的规划提供依据; ? 为定量的可靠性及可用性分析提供依据。

它大多用于实体系统中的组件故障,但是也可以用来识别人为失效模式及影响。 FMEA 及 FMECA 可以为其他分析技术,例如定性及定量的故障树分析提供输入数据。 3 输入数据 FMEA 及 FMECA 需要有关系统组件足够详细的信息,以便对各组件出现故障的方式进行有意义的分析。 信息可能包括: ? 正在分析的系统及系统组件的图形,或者过程步骤的流程图; ? 了解过程中每一步或系统组成部分的功能; ? 可能影响运行的过程及环境参数的详细信息; ? 对特定故障结果的了解; ? 有关故障的历史信息,包括现有的故障率数据。 4 过程 FMEA 的步骤包括: ? 界定研究的范围及目标; ? 组建团队; ? 了解 FMECA 适用的系统; ? 将系统分成组件或步骤; ? 对于列出的各组件或步骤,确认: 各部分出现明显故障的方式是什么?造成这些失效模式的具体机制?故 障可能产生的影响?失败是无害的还是有破坏性的?故障如何检测? ? 确定故障补偿设计中的固有规定。 对于FMECA ,研究团队接着根据故障结果的严重性,将每个识别出的失效模式进行分类;这可以有几种方法完成。普通方法包括: 模式危险度指数; 风险等级;风险优先级。 模式危险度是一种概率计量,即所考虑的模式将导致整个系统故障;其被定义

安全性可靠性性能评价

如对你有帮助,请购买下载打赏,谢谢! 3.3 安全性、可靠性和性能评价 3.3.1主要知识点 了解计算机数据安全和保密、计算机故障诊断与容错技术、系统性能评价方面的知识,掌握数据加密的有关算法、系统可靠性指标和可靠性模型以及相关的计算方示。 3.3.1.1数据的安全与保密 (1)数据的安全与保密 数据加密是对明文(未经加密的数据)按照某种加密算法(数据的变换算法)进行处理,而形成难以理解的密文(经加密后的数据)。即使是密文被截获,截获方也无法或难以解码,从而阴谋诡计止泄露信息。数据加密和数据解密是一对可逆的过程。数据加密技术的关键在于密角的管理和加密/解密算法。加密和解密算法的设计通常需要满足3个条件:可逆性、密钥安全和数据安全。 (2)密钥体制 按照加密密钥K1和解密密钥K2的异同,有两种密钥体制。 ①秘密密钥加密体制(K1=K2) 加密和解密采用相同的密钥,因而又称为密码体制。因为其加密速度快,通常用来加密大批量的数据。典型的方法有日本的快速数据加密标准(FEAL)、瑞士的国际数据加密算法(IDEA)和美国的数据加密标准(DES)。 ②公开密钥加密体制(K1≠K2) 又称不对称密码体制,加密和解密使用不同的密钥,其中一个密钥是公开的,另一个密钥是保密的。由于加密速度较慢,所以往往用在少量数据的通信中,典型的公开密钥加密方法有RSA和ESIGN。 一般DES算法的密钥长度为56位,RSA算法的密钥长度为512位。 (3)数据完整性 数据完整性保护是在数据中加入一定的冗余信息,从而能发现对数据的修改、增加或删除。数字签名利用密码技术进行,其安全性取决于密码体制的安全程度。现在已经出现很多使用RSA和ESIGN算法实现的数字签名系统。数字签名的目的是保证在真实的发送方与真实的接收方之间传送真实的信息。 (4)密钥管理 数据加密的安全性在很大程度上取决于密钥的安全性。密钥的管理包括密钥体制的选择、密钥的分发、现场密钥保护以及密钥的销毁。 (5)磁介质上的数据加密

可靠性技术与测试流程 试题及答案

可靠性技术与测试流程试题 一、选择题(单项选择) 1、可靠性试验是定量评估产品的可靠性,即产品在的条件下,规定时间内完成的概率。 2、环境试验考察的是产品对环境的;确定产品的是符合合同要求,为接收,拒收提供决策依据。 3、温度变化对产品在:;;等方面有很大的影响。 4、湿热对产品在:;等方面有很大的影响。 5、MTBF也称为:,是指相邻两次故障之间的平均工作时间。 二、选择题(不定项选择) 1、哪些试验项目对产品有影响?() A、高低温试验 B、湿热试验 C、太阳辐射试验 D、大气腐蚀试验 2、振动试验的类型主要有:() A、正弦扫频振动 B、正弦定频振动 C、随机振动 D、定频随机振动 3、冲击试验的波型主要有:() A、半正弦波 B、后峰锯齿波 C、梯形波 D、方波 4、以下标准号中,哪个是指“电工电子产品环境试验第2部分:试验方法,试验C ab:恒定湿热试验”() A、GB/T2423.1 2001 B、GB/T2423.2 2001 C、GB/T2423.3 2006 D、GB/T2423.4 1993 5、客户要求产品的MTBF值≥20000h;已知生产风险α= 0.2;客户接收风险β=0.2。鉴别比:Dm=4.3;产品的MTBF θ1≥20000h 失效数r≤1;品数量:n=80台;温度加速因子AF;工作最大上限温度为40℃的产品在45℃的环境温度下进行实验,根据温度加速因子的计算公式得AF=1.477,请计算出80台产品在45℃条件下,当失效次数≤1次时,产品的MTBF≥20000h;需要多少时间:() A、600h B、700h C、616h D、717h 6、可靠性预计常用的试验方法为:() A、元器件计数法 B、应力分析法 C、高温老化应力法 D、器件温升测试法 7、以下哪些测试项目是在HALT试验中必须确定的() A、低温破坏极限 B、低温工作极限 C、高温破坏极限 D、高温工作极限 8、已知加速度频谱密度值为:0.5(m/s2)2/Hz,则对应的功率频谱密度值为: ( ) A、0.005 B、0.01 C、0.05 D、0.001 9、在IPD流程中,可靠性测试介入的阶段点为()。 A、TR4 B、TR5 C、TR6 D、TR4及TR5 10、在影响产品的环境因素中,以下哪些为机械条件() A、冲击 B、振动 C、噪音 D、摇摆 三、是非题(每题2分,共10题计20分) 1、试样的表面最热点温度低于周围大气的环境温度5℃以上为散热样品;高于5℃为非散热样品( )。 2、欠试验条件中断:试验条件低于允许误差下限时,应将试验条件重新稳定后继续试验。试验时间应为重新稳定后时间()。 3、水试验的目的是考核防水产品的外壳、防护罩(盖)的密封防水能力,与产品性能无关()。 4、太阳辐射的热效应可用高温试验来评价,因其作用机理相同,从而其试验结果也相同()。 5、大气中经常含有不同浓度的二氧化硫和硫化氢等有害的气体,对产品金属零部件及材料有影响,但不影响产品的使用安全()。 6、砂尘是黏附在设备上,并且不断地积累,长期作用后形成导电桥、产生短路,从而影响产品的功能和性能()。 7、材料表面的霉菌可以产生酸和电解质,这些物质会腐蚀产品,使材料电解、老化,引起短路甚至电气失效()。

可靠性与安全性的辩证关系及一些可靠性重要概念和问题

安全技术在现代生产生活中的应用 结课论文 学院:管理科学与工程学院 姓名:王坤云 专业:质量与可靠性工程 学号:100510128 课时:一至八周周日一二节

可靠性与安全性辩证关系及一些可靠性重要概念 摘要:可靠性是规定任务过程中不发生不能完成规定功能故障的概率,而维修性是故障以后通过维修而恢复规定功能的概率,安全性是不发生机毁人亡事故的概率,这3个指标内涵的主体没有重叠。而可用性则是在具有一定保障资源的前提下可靠性与维修性两者的综合指标,保障性实质上是突出强调完备保障资源的可用性指标。因此可靠性、维修性、安全性乃是互相独立的3个基本指标。由于可靠性、维修性都是产品使用效能的决定性因素,因此将可靠性与维修性综合而成可用性,可获得适用于可修系统的广义指标。有时为了强调某方面的要求,提出新名称的指标。例如为突出强调保障资源完备性而提出保障性指标,但是这并不意味着就此改变新指标与原指标之间原有的从属关系,因而将新指标就此从原指标中分立出去视做独立指标是错误的。 关键词:可靠性、维修性、可用性、安全性、辩证关系 我很高兴能在能在我大三之际接触到这样一门让我打心底感到有作用的公选课,安全技术是一门大学问,上网搜索了一下不少高校都有安全技术这门学科。可以说安全技术是伴随着事故和人们对安全的重视度越来越大而产生的,没有对人类生命财产的重视就不会产生这门科学技术。经过这门课的教育,我了解到安全技术可以应用在生产生活的方方面面,小到微不足道的细节,大到一个重要工程项目,比如说我们所了解的民用核工程项目、大型民用客机项目、重大水利水电项目等。作为可靠性工程科班学生我很幸运有机会去学习一些产

系统可靠性和安全性区别和计算公式

2.1 概述 2.1.1 安全性和可靠性概念 [10] 安全性是指不发生事故的能力,是判断、评价系统性能的一个重要指标。它表明系 统在规定的条件下,在规定的时间内不发生事故的情况下,完成规定功能的性能。其中事故指的是使一项正常进行的活动中断,并造成人员伤亡、职业病、财产损失或损害环境的意外事件。 可靠性是指无故障工作的能力,也是判断、评价系统性能的一个重要指标。它表明 系统在规定的条件下,在规定的时间内完成规定功能的性能。系统或系统中的一部分不能完成预定功能的事件或状态称为故障或失效。系统的可靠性越高,发生故障的可能性越小,完成规定功能的可能性越大。当系统很容易发生故障时,则系统很不可靠。 2.1.2 安全性和可靠性的联系与区别 [10] 在许多情况下,系统不可靠会导致系统不安全。当系统发生故障时,不仅影响系统 功能的实现,而且有时会导致事故,造成人员伤亡或财产损失。例如,飞机的发动机发生故障时,不仅影响飞机正常飞行,而且可能使飞机失去动力而坠落,造成机毁人亡的后果。故障是可靠性和安全性的联结点,在防止故障发生这一点上,可靠性和安全性是一致的。因此,采取提高系统可靠性的措施,既可以保证实现系统的功能,又可以提高系统的安全性。 但是,可靠性还不完全等同于安全性。它们的着眼点不同:可靠性着眼于维持系统 功能的发挥,实现系统目标;安全性着眼于防止事故发生,避免人员伤亡和财产损失。可靠性研究故障发生以前直到故障发生为止的系统状态;安全性则侧重于故障发生后故障对系统的影响。 由于系统可靠性与系统安全性之间有着密切的关联,所以在系统安全性研究中广泛 利用、借鉴了可靠性研究中的一些理论和方法。系统安全性分析就是以系统可靠性分析为基础的。 2.1.3 系统安全性评估 系统安全性评估是一种从系统研制初期的论证阶段开始进行,并贯穿工程研制、生 产阶段的系统性检查、研究和分析危险的技术方法。它用于检查系统或设备在每种使用模式中的工作状态,确定潜在的危险,预计这些危险对人员伤害或对设备损坏的可能性,并确定消除或减少危险的方法,以便能够在事故发生之前消除或尽量减少事故发生的可能性或降低事故有害影响的程度 [11] 。 系统安全性评估主要是分析危险、识别危险,以便在寿命周期的所有阶段中能够消 除、控制或减少这些危险。它还可以提供用其它方法所不能获得的有关系统或设备的设计、使用和维修规程的信息,确定系统设计的不安全状态,以及纠正这些不安全状态的7方法。如果危险消除不了,系统安全性评估可以指出控制危险的最佳方法和减轻未能控制的危险所产生的有害影响的方法。此外,系统安全性评估还可以用来验证设计是否符合规范、标准或其他文件规定的要求,验证系统是否重复以前的系统中存在的缺陷,确定与危险有关的系统接口。 从广义上说,系统安全性评估解决下列问题: 1、什么功能出现错误? 2、它潜在的危害是什么?

相关主题
文本预览
相关文档 最新文档