当前位置:文档之家› 概率论与数理统计-数学期望

概率论与数理统计-数学期望

在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分

布,那么X 的全部概率特征也就知道了.

f (x )

x

o x P(x) o

然而,在实际问题中,概率分布一般是较难确定的. 而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了.

某型号电视机的平均寿命

18000小时±200小时

因此,在对随机变量的研究中,确定某些数字特征是重要的 .

在这些数字特征中,最常用的是

期望和方差

我们先介绍随机变量的数学期望.

随机变量的数学期望是概率论中最重要的概念之一. 它的定义来自习惯上的平均概念.

我们从离散型随机变量的数学期望开始.

一、离散型随机变量的数学期望

1、概念的引入:

某车间对工人的生产情况

进行考察. 车工小张每天生产

的废品数X是一个随机变量. 如

何定义X的平均值呢?

某电话交换台每天8:00-9:00收到的呼叫数X是一个随机变量. 如何定义X的平均值即该交换台每天8:00-9:00收到的平均呼叫数呢?

我们来看第一个问题.

若统计100天, 例1 某车间对工人的生产情况进行考察. 车工小张每天生产的废品数X 是一个随机变量. 如何定义X 的平均值呢?

32天没有出废品;

30天每天出一件废品;

17天每天出两件废品; 21天每天出三件废品;

27.1100

213100172100301100320=?+?+?+?可以得到这100天中 每天的平均废品数为

这个数能否作为

X 的平均值呢?

可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27. n 0天没有出废品; n 1天每天出一件废品;

n 2天每天出两件废品;

n 3天每天出三件废品.

n

n n n n n n n 32103210?+?+?+?可以得到n 天中每天的平均废品数为

(假定小张每天至多出三件废品) 一般来说,若统计n 天,

这是 以频率为权的加权平均 n n n n n n n n 32103210?+?+?+?由频率和概率的关系

不难想到,在求废品数X

的平均值时,用概率代替 频率,得平均值为 3

2103210p p p p ?+?+?+?这是

以概率为权的加权平均 这样得到一个确定的数. 我们就用这个数作为随机变量X 的平均值 .

这样做是否合理呢?

不妨把小张生产中出废品的情形

用一个球箱模型来描述:

2 2

3 0

0 0 3 1 1 1 2 2 0 0 0 3 3

1 1 1 有一个箱子,里面装有10个

大小,形状完全相同的球,

号码如图. 规定从箱中任意取出一个球,

记下球上的号码,然后把球放

回箱中为一次试验.

记X 为所取出的球的号码(对应废品数) . X 为随机变量,X 的概率函数为

???

? ??2.02.03.03.03210~X 2 2 3 0

0 0 3 1 1 1

n

n n n n n n n n M 32103210)(?+?+?+?=对试验次数(即天数)n ,及小张的生产情况进行统计,统计他不出废品,出一件、二件、三件废品的天数n 0,n 1,n 2,n 3 , 并计算

与 3

2103210p p p p ?+?+?+?进行比较. 2 2 3 0

0 0 3 1 1 1

则对X 作一系列观察(试验),所得X 的试验值的平均值也是随机的.

由此引入离散型r.vX 的数学期望的定义如下:

∑∞=1k k

k p x

对于一个随机变量,若它可能取的值是X 1, X 2, …, 相应的概率为 p 1, p 2, …,

但是,如果试验次数很大,出现X k 的频率会接近于p k ,于是可期望试验值的平均值接近

定义1 设X 是离散型随机变量,它的概率函数是: P (X =X k )=p k , k =1,2,…

也就是说,离散型随机变量的数学期望是一个绝对收敛的级数的和.

∑∞

==1)(k k

k p x X E ∑∞

=1||k k k p x 如果 有限,定义X 的数学期望

例1某人的一串钥匙上有n把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开门. 若每把钥匙试开一次后除去,求打开门时试开次数的数学期望.

解: 设试开次数为X,

P(X=k)= 1/n , k=1,2,…,n

E(X) ∑

=?

=

n

k

n

k

1

1

2

)

1(

1n

n

n

+

?

=

2

1

+

=

n

于是

二、连续型随机变量的数学期望

设X 是连续型随机变量,其密度函数为f (x ),在数轴上取很密的分点x 0

?+1

)(i i x x dx x f i

i x x f ?=)(小区间[x i , x i+1)

阴影面积 近似为 i

i x x f ?)()

)((1i i i x x x f -≈+

小区间[X i , X i+1)

由于x i 与x i +1很接近, 所以区间[x i , x i +1)中的值可以用x i 来近似代替.

∑?i i

i

i x x f x )(这正是 ?∞

∞-dx x f x )(的渐近和式. 阴影面积 近似为 i

i x x f ?)(近似, i i x x f ?)(因此X 与以概率 取值x i 的离散型r.v

该离散型r.v 的数学期望是

由此启发我们引进如下定义.

定义2设X是连续型随机变量,其密度函数为f (x),如果

?∞∞-dx

|

|

(

x

f

x)

有限,定义X的数学期望为

?∞∞-=dx

(

(

)

E)

x

X

f

x

也就是说,连续型随机变量的数学期望是一个绝对收敛的积分.

2

)(b a X E +=若X ~U (a ,b ),即X 服从( a ,b )上的均匀分布,则

μ

=)(X E 若X 服从 则),,(2

σμN λ

=)(X E 若X 服从参数为 的泊松分布,则

λ由随机变量数学期望的定义,不难计算得:

这意味着,若从该地

区抽查很多个成年男子,

分别测量他们的身高,那

么,这些身高的平均值近

似是1.68.

68

.1)(==μX E 已知某地区成年男子身高X ~ ),,.(2

681σN

三、随机变量函数的数学期望

1. 问题的提出:

设已知随机变量X的分布,我们需要计算的不是X的期望,而是X的某个函数的期望,比如说g(X)的期望. 那么应该如何计算呢?

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习 一、单选题(共16题;共32分) 1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是() A. , B. , C. , D. , 2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=() A. 0.683 B. 0.853 C. 0.954 D. 0.977 3.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=() A. B. C. D. 4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=() A. 0.6826 B. 0.3413 C. 0.4603 D. 0.9207 5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是() A. B. C. D. 6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是() A. B. C. D. 7.下面说法中正确的是() A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值 B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平 C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平 D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值 8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为() A. B. C. D. 9.已知随机变量,则() A. B. C. D. 10.设随机变量的分布列为,,则等于() A. B. C. D. 11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率分布与数学期望

概率分布与数学期望

例谈离数型随机变量概率分布与数学期望 数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。 一、定义法求解概率分布与数学期望 定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。 可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。此类题型解题思路明确,利用定义法求解,其方法容易掌握。

例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1 ;从袋中任意摸出2个球,得到黑球的概率是2 5 . 个球,至少得到1个白球的概率是7 9 (1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ. (2)求证:从袋中任意摸出2个球,至少得到1 .并指出袋中哪种颜色的个黑球的概率不大于7 10 球个数最少. 分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。 解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为 9 7,又∵P(A)一个白球的事件为A,则P(A)= 9

对概率论与数理统计的认识

对概率论与数理统计的认识

————————————————————————————————作者: ————————————————————————————————日期: ?

对概率论与数理统计的认识 院系数学与信息工 程系 专业数学与应用数学 姓名刘建丽

对概率论与数理统计的认识 摘要 概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。这是当前课程改革的大势所趋。加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。 关键字:概率论实践解决问题 一,学科历史 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大。 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。数学家们“参与”赌博。参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成果,终于将此定理证实。1713年,雅可布的著作《猜度术》出版。遗憾的是在他的大作问世之时,雅可布已谢世

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

《数学期望与方差》习题解答

概率论《数学期望与方差》 习题参考解答 1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为 ξ 0 1 P 1/3 2/3 因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3 2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示: 而求出的周长ζ的分布律如下表所示: 长的分布计算. 解: 由长和宽的分布率可以算得 E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9 E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×(29.9+20)=99.8 而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质. 4. 连续型随机变量ξ的概率密度为 ?? ?><<=其它 )0,(10)(a k x kx x a ? 又知E ξ=0.75, 求k 和a 的值。 解: 由性质?+∞ ∞ -=1)(dx x ? 得11 1 )(| 10 1 1 =+= += =++∞ ∞ -??a k x a k dx kx dx x a a ?

即k =a +1 (1) 又知 75.02 2 )(| 10 2 1 1 =+= += = = +++∞ ∞ -?? a k x a k dx kx dx x x E a a ?ξ 得k =0.75a +1.5 (2) 由(1)与(2)解得 0.25a =0.5, 即a =2, k =3 6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较. 解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为 (10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17 7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值(计算时以组中值为代表). E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959 8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有 E ξi =10, D ξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此 ∑== 100 1 i i ξ ξ,则ξ的数学期望和标准差为

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

期望与方差例题选讲有详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ.

浙大版概率论与数理统计答案---第六章

第六章 统计量与抽样分布 注意: 这是第一稿(存在一些错误) 1、解:易知的X 期望为μ,方差为2n σ ,则 ()0,1X N μσ-近似地 , 所以,( ) (0.10.10.909X P X P μσ μσσ? ? - ? -<=<≈Φ= ? ? ??? 。 2、解 (1)由题意得: 2 2 2 2211111()()()()n n i i i i E X D X E X D X E X n n n σμ==??=+=+=+ ???∑∑ ()2211111111 ()()n n i i i i E X X E X X E X X n n n σμ==?=?==+∑∑ (2)1X X -服从正态分布,其中: 1()0E X X -=,22 1122111()( )()()n n n D X X D X D X n n n σ----=+= 从而 2 11~(0,)n X X N n σ-- 由于 ~(0,1)i X N μ σ -,1,2, i n =,且相互独立,因此: () ()2 22 1 ~n i i X n μχσ=-∑ ~(0,1)X N μ -,所以( ) ()2 22 ~1n X μ χσ- 由于 ()2 22 (1)~1n S n χσ--,所以 () () ()2 2 2 2 22 (1)/~1,1(1) n X n X n S F n n S μ μ σσ---=-- (3)由于 () 2 /2 2 1 ~(/2)n i i X n μχσ =-∑ ,以及 () 2 2 1/2 ~(/2)n i i n X n μχσ =+-∑ ,因此有:

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

数学期望与分布列专题

离散型随机变量的数学期望 称E(X)= 切七+…曲+…7竹为随机变帚K 的均 侑或数学期犁,它反映了离散型随机变最取值的士均 水平. A.丄 B. 1 C. — D.— 18 9 9 20 鱸析由分布列的件质, 可得2x+3x+7x+2x+3r^x=l f 几芹=/. A E(X)=0X2xHX 3E 2 X 7x+3 X 2工+4 X 3JT +5JC 20 =40x= — 9 2.已知某一随机变量占的槪率分布列如F, M 日门= 电3, !(|陆的值为 (C ) J B.6 C. 7 D.B 解析 由分布列性虞知,0?&+O.1+U 0. 4. :? E? 4X0.5+aX0. 1+9X0, 4-6,3, :,a-l. 某中学组建了 A 、B 、C 、D 、E 五个不同 的社团组织,为培养学生的兴趣爱好 必须参加,且只能参加一个社团 ?假定某班级的甲、乙、丙三名学生对这五个社团的选择是 ,要求每个学生

等可能的. (1) 求甲、乙、丙三名学生参加五个社团 的所有选法种数; (2) 求甲、乙、丙三人中至少有两人参加同一社团的 概率; (3) 设随机变量E为甲、乙、丙这三名学生参加A社 团的人数,求E的分布列与数学期望. 有一批产品,其中有12件正品和4件次品,从中任取3件,若E表示取到次品的个 数 E(E )=_ 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量E 选出的志 表示愿者中女生的人数,则数学期望E(E)=_ 袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当 两种颜色的球都被摸到时,即停止摸球,记随机变量E为此时已摸球的次数,求: (1)随机变量E的概率分布列; (2)随机变量E的数学期望与方差

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

相关主题
文本预览
相关文档 最新文档