当前位置:文档之家› Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术
Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术

随着嵌入式Linux系统的广泛应用,对系统的可靠性提出了更高的要求,尤其是涉及到生命财产等重要领域,要求系统达到安全完整性等级3级以上[1],故障率(每小时出现危险故障的可能性)为10-7以下,相当于系统的平均故障间隔时间(MTBF)至少要达到1141年以上,因此提高系统可靠性已成为一项艰巨的任务。对某公司在工业领域14 878个控制器系统的应用调查表明,从2004年初到2007年9月底,随着硬软件的不断改进,根据错误报告统计的故障率已降低到2004年的五分之一以下,但查找错误的时间却增加到原来的3倍以上。

这种解决问题所需时间呈上升的趋势固然有软件问题,但缺乏必要的手段以辅助解决问题才是主要的原因。通过对故障的统计跟踪发现,难以解决的软件错误和从发现到解决耗时较长的软件错误都集中在操作系统的核心部分,这其中又有很大比例集中在驱动程序部分[2]。因此,错误跟踪技术被看成是提高系统安全完整性等级的一个重要措施[1],大多数现代操作系统均为发展提供了操作系统内核“崩溃转储”机制,即在软件系统宕机时,将内存内容保存到磁盘[3],或者通过网络发送到故障服务器[3],或者直接启动内核调试器[4]等,以供事后分析改进。

基于Linux操作系统内核的崩溃转储机制近年来有以下几种:

(1) LKCD(Linux Kernel Crash Dump)机制[3];

(2) KDUMP(Linux Kernel Dump)机制[4];

(3) KDB机制[5];

(4) KGDB机制[6]。

综合上述几种机制可以发现,这四种机制之间有以下三个共同点:

(1) 适用于为运算资源丰富、存储空间充足的应用场合;

(2) 发生系统崩溃后恢复时间无严格要求;

(3) 主要针对较通用的硬件平台,如X86平台。

在嵌入式应用场合想要直接使用上列机制中的某一种,却遇到以下三个难点无法解决:

(1) 存储空间不足

嵌入式系统一般采用Flash作为存储器,而Flash容量有限,且可能远远小于嵌入式系统中的内存容量。因此将全部内存内容保存到Flash不可行。

(2) 记录时间要求尽量短

嵌入式系统一般有复位响应时间尽量短的要求,有的嵌入式操作系统复位重启时间不超过2s,而上述几种可用于Linux系统的内核崩溃转储机制耗时均不可能在30s内。写Flash的操作也很耗时间,实验显示,写2MB数据到Flash 耗时达到400ms之多。

(3) 要求能够支持特定的硬件平台

嵌入式系统的硬件多种多样,上面提到的四种机制均是针对X86平台提供了较好的支持,而对于其他体系的硬件支持均不成熟。

由于这些难点的存在,要将上述四种内核崩溃转储机制中的一种移植到特定的嵌入式应用平台是十分困难的。因此,针对上述嵌入式系统的三个特点,本文介绍一种基于特定平台的嵌入式Linux内核崩溃信息记录机制LCRT(Linux Crash Record and Trace),为定位嵌入式Linux系统中软件故障和解决软件故障提供辅助手段。

1 Linux内核崩溃的分析

分析Linux内核对于运行期间各种“陷阱”的处理可以得知,Linux内核对于应用程序导致的错误可以予以监控,在应用程序发生除零、内存访问越界、缓冲区溢出等错误时,Linux内核的异常处理例程可以对这些由应用程序引起的异常情况予以处理。当应用程序产生不可恢复的错误时,Linux内核可以仅仅终止产生错误的应用程序,其他应用程序仍然可以正常运行。

如果Linux内核本身或者新开发的Linux内核模块存在bug,产生了“除零”,“内存访问越界”、“缓冲区溢出”等错误,同样会由Linux内核的异常处理例程来处理。Linux内核通过在异常处理程序中判断,如果发现是“严重的不可恢复”的内核异常,则会导致“内核恐慌”(kernel panic),即Linux 内核崩溃。图1所示为Linux内核对异常情况的处理流程。

2 LCRT机制的设计与实现

通过对Linux内核代码的分析可知,Linux内核本身提供了一种“内核通知机制”[7-8],并预定义了“内核事件通知链”,使得Linux内核扩展开发人员可以通过这些预定义的内核事件通知链在特定的内核事件发生时执行附加的处理流程。通过对Linux内核源代码的研究发现,对于上文中提到的“严重不可恢复的内核异常”,预定义了一个通知链和通知点,使得在发生Linux内核崩溃之后,可以在Linux内核的panic函数中预定义的一个“内核崩溃通知链”[7]上挂接LCRT机制来获得Linux内核崩溃现场的一些信息并记录到非易失性存储器中,以便分析引起Linux内核崩溃的原因。

2.1 设计要点

LCRT机制的设计和实现基于如下特定的机制:

(1) 编译器选项与内核依赖

Linux内核及相应的驱动程序都采用GNU[9]的开源编译器GCC[9]编译,为

了结合LCRT机制方便地提取信息和记录信息,需要采用特定的GCC编译器选项来编译Linux内核和相关的驱动程序以及应用程序。用到的选项为:

-mpoke-function-name[9]。使用这个选项编译出的二进制程序中可以包含C语言函数名称的信息,以方便函数调用链回溯时记录信息的可读性。

(2) Linux内核notify_chain机制[8]

Linux内核提供“通知链”功能,并预定义了一个内核崩溃通知链,在Linux 内核的异常处理例程中判断出系统进入“不可恢复”状态时,会沿预定义的通知链顺序调用注册到相应链中的通知函数。

(3) 函数调用的栈布局

Linux内核的绝大部分由C语言实现,而且C语言也多用来进行Linux内核开发。Linux内核及使用LKM扩展而加入Linux内核执行环境的代码是有规律可循的,这些代码在执行过程中产生的栈布局和这些规律的代码相关联。例如,这些函数在执行函数之前会保存本函数调用后的返回地址、本函数被调用时传递过来的参数及调用本函数的函数所拥有的栈帧的栈底。

2.2 LCRT机制的设计思想

LCRT机制分为Linux内核模块[8]部分和Linux用户程序部分。内核模块部分的设计采用了Linux内核模块的模式而不是直接修改Linux内核。这样的设计降低了Linux内核和LCRT机制之间的耦合度,同时满足了Linux内核和LCRT

机制独立升级完善的便利性。用户程序部分完成从非易失性存储器中读取、清除LCRT机制保存的信息等相关功能。

在LCRT机制的设计中,针对嵌入式系统的特点,其设计决策有:

(1) 将对于解决和定位问题最具辅助意义的函数调用关系链记录下来。

(2) 为了不占用过多的存储空间,有选择性地将函数调用序列上的函数各自用到的栈内容保存起来,而不是保存全部内容。

(3) 将记录的信息保存到非易失性存储器中,这样既达到了掉电保存的目的、又缩短了写入时间。

LCRT机制的设计包括以下五个方面。

(1) 设计Linux内核模块、动态地加载LCRT机制、尽量少地修改Linux内

核代码。

(2)在相应、预定义的Linux内核通知链上挂接LCRT的通知函数。

(3) 在LCRT机制的通知处理函数中进行堆栈回溯得到函数调用信息。

(4) 记录回溯到的函数调用信息和堆栈空间内容到非易失性存储器。

(5) 开发用户空间的工具,可以从非易失性存储器中读取保存的信息。

2.3 LCRT机制的实现

LCRT机制的实现可参照2.2节的设计思想,分步予以实现。限于篇幅,本文不过多涉及Linux内核模块的原理和实现相关的细节,仅仅给出LCRT机制的内核模块实现伪代码。用伪代码描述LCRT机制的加载函数如下:

int lcrt_init(void)

{

printk("Registering my__panic notifier. ");

bt_nvram_ptr=(volatile unsigned char*)ioremap_

nocache (BT_NVRAM_BASE,BT_NVRAM_LENGTH);

bt_nvram_index+=sizeof(struct bt_info);

*)bt_nvram_ptr,BT_NVRAM_LENGTH);

notifier_chain_register(&panic_notifier_list,&my_

panic_block);

return 0;

}

LCRT机制的通知处理函数完成函数调用关系回溯、得到函数名称、函数栈内容等工作,限于篇幅,在这里用下面伪代码说明:

void ll_bt_information(struct pt_regs *pr)

{

变量定义等初始化工作

do {

reglist=*(unsigned long *)(*myfp-8);

//从函数栈帧的顶部获取函数开始执行时保存的寄存器信息

//从函数的代码区中取得函数的名称

//从函数的栈帧里取出函数执行函数体代码之前保存的函数参数信息

//从本函数的栈帧中得到调用本函数的代码所在位置和调用本函数的函数栈帧的栈底

}while(直到函数调用链的链头);

//取得函数调用栈帧的内容

//填充信息记录的记录头部

//将上面的循环中取得的信息保存到非易失性存储器中

write_to_nvram((void

*)bt_nvram_ptr,&bt_record_header,sizeof(bt_info_t));

}

3 验证评估LCRT机制

3.1 部署LCRT机制

部署LCRT机制,使LCRT机制发挥作用前需要做的相关工作有:

(1)针对目标Linux内核编译LCRT机制的Linux内核模块部分;

(2) 将LCRT机制的内核模块部分载入Linux内核。

3.2 实验结果

为了实验LCRT机制的作用效果,构造一个会造成Linux内核崩溃的设备驱动模块,记这个内核驱动模块为bugguy.ko,列出如下所示的bugguy.ko中会引起Linux内核崩溃的代码如下所示:

my_timer_interrupt(int irq,void *dev_id,struct pt_regs* regs)

{

确认硬件状态并清除中断状态

if(ujiffies > 5000) {

void * ill_pointer=NULL;

*(unsigned long *)ill_pointer=0;

}

else {

ujiffies++;

}

return IRQ_HANDLED;

}

说明:用黑体标出的代码即为产生bug的代码

从上面的代码可以看出,这个错误是对空指针进行解析而造成的。在一个中断处理函数中如果发生对空指针的解析,将会引起Linux内核的崩溃。在部署完成LCRT机制的嵌入式linux系统上将这个bugguy.ko载入Linux内核,使得会引起Linux内核崩溃的中断处理程序得以运行,LCRT机制可以将相关的信息保

存到非易失性存储器中,在系统复位后,通过LCRT机制的用户空间工具,可以将保存的信息读取出来。实验结果显示,可以得到如图2所示的函数调用链信息。

图2标注即为会引起Linux内核崩溃的错误代码的中断处理函数即真正引起系统宕机的“罪魁祸首”。而记录下的所有信息仅仅占用了不到1KB的存储空间,写入非易失性存储器所耗用的时间控制在50ms以内。在使用少量空间和少量时间的情况下,所记录下的信息对于查找问题和解决问题都有较大的帮助。

实验结果表明,在LCRT机制的作用下,可以快速地定位到嵌入式Linux系统中隐藏的可能会导致系统宕机的软件缺陷。这就为后续的故障解决和软件完善提供了关键的辅助信息。对嵌入式Linux内核而言,即是为提高Linux内核的稳定性和可靠性提供了帮助。

在基于ARM的嵌入式Linux应用中,开发LCRT机制来记录系统内核发生崩溃时引起崩溃的函数调用链和栈信息到非易失性存储器中,截至目前为止,LCRT 机制可以记录基于ARM的嵌入式Linux内核发生崩溃时的函数调用链信息,可直接得到函数名称、函数调用链中单个函数被调用时的参数信息以及函数调用链中的函数各自的栈帧信息。这些记录下来的信息对于完善和发展基于ARM的嵌入式Linux应用具有重要的辅助意义。

Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术 随着嵌入式Linux系统的广泛应用,对系统的可靠性提出了更高的要求,尤其是涉及到生命财产等重要领域,要求系统达到安全完整性等级3级以上[1],故障率(每小时出现危险故障的可能性)为10-7以下,相当于系统的平均故障间隔时间(MTBF)至少要达到1141年以上,因此提高系统可靠性已成为一项艰巨的任务。对某公司在工业领域14 878个控制器系统的应用调查表明,从2004年初到2007年9月底,随着硬软件的不断改进,根据错误报告统计的故障率已降低到2004年的五分之一以下,但查找错误的时间却增加到原来的3倍以上。 这种解决问题所需时间呈上升的趋势固然有软件问题,但缺乏必要的手段以辅助解决问题才是主要的原因。通过对故障的统计跟踪发现,难以解决的软件错误和从发现到解决耗时较长的软件错误都集中在操作系统的核心部分,这其中又有很大比例集中在驱动程序部分[2]。因此,错误跟踪技术被看成是提高系统安全完整性等级的一个重要措施[1],大多数现代操作系统均为发展提供了操作系统内核“崩溃转储”机制,即在软件系统宕机时,将内存内容保存到磁盘[3],或者通过网络发送到故障服务器[3],或者直接启动内核调试器[4]等,以供事后分析改进。 基于Linux操作系统内核的崩溃转储机制近年来有以下几种: (1) LKCD(Linux Kernel Crash Dump)机制[3]; (2) KDUMP(Linux Kernel Dump)机制[4]; (3) KDB机制[5]; (4) KGDB机制[6]。 综合上述几种机制可以发现,这四种机制之间有以下三个共同点: (1) 适用于为运算资源丰富、存储空间充足的应用场合; (2) 发生系统崩溃后恢复时间无严格要求; (3) 主要针对较通用的硬件平台,如X86平台。 在嵌入式应用场合想要直接使用上列机制中的某一种,却遇到以下三个难点无法解决: (1) 存储空间不足 嵌入式系统一般采用Flash作为存储器,而Flash容量有限,且可能远远小于嵌入式系统中的内存容量。因此将全部内存内容保存到Flash不可行。

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.doczj.com/doc/0f8214688.html, 红联Linux论坛: https://www.doczj.com/doc/0f8214688.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.doczj.com/doc/0f8214688.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.doczj.com/doc/0f8214688.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

Linux操作系统源代码详细分析

linux源代码分析:Linux操作系统源代码详细分析 疯狂代码 https://www.doczj.com/doc/0f8214688.html,/ ?:http:/https://www.doczj.com/doc/0f8214688.html,/Linux/Article28378.html 内容介绍: Linux 拥有现代操作系统所有功能如真正抢先式多任务处理、支持多用户内存保护虚拟内存支持SMP、UP符合POSIX标准联网、图形用户接口和桌面环境具有快速性、稳定性等特点本书通过分析Linux内核源代码充分揭示了Linux作为操作系统内核是如何完成保证系统正常运行、协调多个并发进程、管理内存等工作现实中能让人自由获取系统源代码并不多通过本书学习将大大有助于读者编写自己新 第部分 Linux 内核源代码 arch/i386/kernel/entry.S 2 arch/i386/kernel/init_task.c 8 arch/i386/kernel/irq.c 8 arch/i386/kernel/irq.h 19 arch/i386/kernel/process.c 22 arch/i386/kernel/signal.c 30 arch/i386/kernel/smp.c 38 arch/i386/kernel/time.c 58 arch/i386/kernel/traps.c 65 arch/i386/lib/delay.c 73 arch/i386/mm/fault.c 74 arch/i386/mm/init.c 76 fs/binfmt-elf.c 82 fs/binfmt_java.c 96 fs/exec.c 98 /asm-generic/smplock.h 107 /asm-i386/atomic.h 108 /asm- i386/current.h 109 /asm-i386/dma.h 109 /asm-i386/elf.h 113 /asm-i386/hardirq.h 114 /asm- i386/page.h 114 /asm-i386/pgtable.h 115 /asm-i386/ptrace.h 122 /asm-i386/semaphore.h 123 /asm-i386/shmparam.h 124 /asm-i386/sigcontext.h 125 /asm-i386/siginfo.h 125 /asm-i386/signal.h 127 /asm-i386/smp.h 130 /asm-i386/softirq.h 132 /asm-i386/spinlock.h 133 /asm-i386/system.h 137 /asm-i386/uaccess.h 139 //binfmts.h 146 //capability.h 147 /linux/elf.h 150 /linux/elfcore.h 156 /linux/errupt.h 157 /linux/kernel.h 158 /linux/kernel_stat.h 159 /linux/limits.h 160 /linux/mm.h 160 /linux/module.h 164 /linux/msg.h 168 /linux/personality.h 169 /linux/reboot.h 169 /linux/resource.h 170 /linux/sched.h 171 /linux/sem.h 179 /linux/shm.h 180 /linux/signal.h 181 /linux/slab.h 184 /linux/smp.h 184 /linux/smp_lock.h 185 /linux/swap.h 185 /linux/swapctl.h 187 /linux/sysctl.h 188 /linux/tasks.h 194 /linux/time.h 194 /linux/timer.h 195 /linux/times.h 196 /linux/tqueue.h 196 /linux/wait.h 198 init/.c 198 init/version.c 212 ipc/msg.c 213 ipc/sem.c 218 ipc/shm.c 227 ipc/util.c 236 kernel/capability.c 237 kernel/dma.c 240 kernel/exec_do.c 241 kernel/exit.c 242 kernel/fork.c 248 kernel/info.c 255 kernel/itimer.c 255 kernel/kmod.c 257 kernel/module.c 259 kernel/panic.c 270 kernel/prk.c 271 kernel/sched.c 275 kernel/signal.c 295 kernel/softirq.c 307 kernel/sys.c 307 kernel/sysctl.c 318 kernel/time.c 330 mm/memory.c 335 mm/mlock.c 345 mm/mmap.c 348 mm/mprotect.c 358 mm/mremap.c 361 mm/page_alloc.c 363 mm/page_io.c 368 mm/slab.c 372 mm/swap.c 394 mm/swap_state.c 395 mm/swapfile.c 398 mm/vmalloc.c 406 mm/vmscan.c 409

关于Linux 内核中五个主要子系统的介绍

关于Linux 内核中五个主要子系统的介绍 发布时间:2008.01.02 06:23来源:赛迪网作者:sixth 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.doczj.com/doc/0f8214688.html, 来源: https://www.doczj.com/doc/0f8214688.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

pc104 linux定制

基于PC/104平台嵌入式Linux系统核心定制方法 2007-10-26 嵌入式在线收藏| 打印 基于PC/104平台的嵌入式Linux技术在海洋自动观测系统中具有广泛的应用前景,Linux核心定制方法的研究是嵌入式Linux系统研制的关键工作。本文结合PC/104平台嵌入式Linux系统的研制,详细论述了Linux内核和文件系统的定制方法。 本文就如何对Linux系统的核心实现定制进行论述,主要内容包括Linux内核部分和文件系统,系统定制的硬件平台是PC/104单片机。之所以将Linux内核定制、文件系统定制单独讨论,是因为在基于任何平台的Linux系统定制过程中,其内核和文件系统的定制工作都具有相似的特征和相似的过程。 在基于PC/104平台的嵌入式Linux研制过程中,进行核心定制的主要目的是从需求出发使系统最大程度地满足应用的需要、最大程度地适应系统硬件平台、最优化地支持系统外围设备和应用程序,并且尽量减少对系统资源的占用、减少系统功耗,增强系统的安全性、稳定性、可靠性,另外使系统真正地实现产权自主化。 内核定制 一般操作系统的内核从体系结构角度可以划分为两种:微内核体系结构、单内核体系结构。微内核体系结构只在内核中包括了一些基本的内核功能,其它部分在用户内存空间运行,这种结构需要在各层之间进行调用,因此会有一定的消耗,使执行效率不如单内核体系结构。Linux采用单内核体系结构,内核的所有部分都集中在一起,这样能使系统的各部分直接沟通,有效地缩短任务之间的切换时间,提高了系统的响应速度,实时性好并提高了CPU的利用率,但在系统比较大的时候体积也比较大,与嵌入式系统容量小、资源有限的特点不符合,因此需要进行非常精细的定制以适应嵌入式系统的需要。 内核版本 Linux的源程序是完全公开的,任何人只要遵循GPL,就可以对内核加以修改并发布给他人使用。Linux的开发采用的是双树系统。一个树是稳定树(stable tree),另一个树是非稳定树(unstable tree)或称开发树(development tree)。一些新特性、实验性改进等都将首先在开发树中进行,如果在开发树中所做的改进也可以应用于稳定树,那么在开发树中经过测试以后,在稳定树中将进行相同的改进。 一旦开发树经过了足够的发展,开发树就会成为新的稳定树。开发树就体现在源程序的版本号中;源程序版本号的形式为x.y.z,对于稳定树来说,y是偶数;对于开发树来说,y 比相应的稳定树大一(是奇数)。到目前为止,稳定树的最高版本是2.4.21,开发树的最新版

读Linux内核源代码

Linux内核分析方法 Linux的最大的好处之一就是它的源码公开。同时,公开的核心源码也吸引着无数的电脑爱好者和程序员;他们把解读和分析Linux的核心源码作为自己的最大兴趣,把修改Linux源码和改造Linux系统作为自己对计算机技术追求的最大目标。 Linux内核源码是很具吸引力的,特别是当你弄懂了一个分析了好久都没搞懂的问题;或者是被你修改过了的内核,顺利通过编译,一切运行正常的时候。那种成就感真是油然而生!而且,对内核的分析,除了出自对技术的狂热追求之外,这种令人生畏的劳动所带来的回报也是非常令人着迷的,这也正是它拥有众多追随者的主要原因: ?首先,你可以从中学到很多的计算机的底层知识,如后面将讲到的系统的引导和硬件提供的中断机制等;其它,象虚拟存储的实现机制,多任务机制,系统保护机制等等,这些都是非都源码不能体会的。 ?同时,你还将从操作系统的整体结构中,体会整体设计在软件设计中的份量和作用,以及一些宏观设计的方法和技巧:Linux的内核为上层应用提供一个与具体硬件不相关的平台; 同时在内核内部,它又把代码分为与体系结构和硬件相关的部分,和可移植的部分;再例如,Linux虽然不是微内核的,但他把大部分的设备驱动处理成相对独立的内核模块,这样减小了内核运行的开销,增强了内核代码的模块独立性。 ?而且你还能从对内核源码的分析中,体会到它在解决某个具体细节问题时,方法的巧妙:如后面将分析到了的Linux通过Botoom_half机制来加快系统对中断的处理。 ?最重要的是:在源码的分析过程中,你将会被一点一点地、潜移默化地专业化。一个专业的程序员,总是把代码的清晰性,兼容性,可移植性放在很重要的位置。他们总是通过定义大量的宏,来增强代码的清晰度和可读性,而又不增加编译后的代码长度和代码的运行效率; 他们总是在编码的同时,就考虑到了以后的代码维护和升级。甚至,只要分析百分之一的代码后,你就会深刻地体会到,什么样的代码才是一个专业的程序员写的,什么样的代码是一个业余爱好者写的。而这一点是任何没有真正分析过标准代码的人都无法体会到的。 然而,由于内核代码的冗长,和内核体系结构的庞杂,所以分析内核也是一个很艰难,很需要毅力的事;在缺乏指导和交流的情况下,尤其如此。只有方法正确,才能事半功倍。正是基于这种考虑,作者希望通过此文能给大家一些借鉴和启迪。 由于本人所进行的分析都是基于2.2.5版本的内核;所以,如果没有特别说明,以下分析都是基于i386单处理器的2.2.5版本的Linux内核。所有源文件均是相对于目录/usr/src/linux的。 方法之一:从何入手 要分析Linux内核源码,首先必须找到各个模块的位置,也即要弄懂源码的文件组织形式。虽然对于有经验的高手而言,这个不是很难;但对于很多初级的Linux爱好者,和那些对源码分析很

(完整版)linux内核技术

一、教学目的 SMP、多核系统、高性能浮点处理器和新型总线等创新技术,带动操作系统不断发展。本课程使硕士生了解linux的基本原理和结构特征,提高应用现代操作系统的水平、能开发特定的内核功能、设备驱动程序和复杂应用软件的能力。 二、教学内容与要求 1掌握处理器在进程地址空间上的三种运行位置,了解内核编程不能使用C库函数和FPU,以及可能产生内存故障、核心栈溢出和四种内核竞争情形的原因。(2学时)2熟悉进程描述符的组织,进程上下文和进程状态转换,和fork,exec,wait,exit,clone,linux线程和内核线程的实现原理和应用。了解COW和避免出现孤儿进程技术。 (4小时) 3介绍支持SMP的O(1)调度,用户和内核抢占和进程上下文切换,了解优先级复算,睡眠和唤醒机制,SMP的负载均衡。(4小时) 4掌握在x86体系结构上系统调用的具体实现原理,接口参数传递,用户地址空间和核心地址空间之间的数据传输,和增加新的系统功能的方法。(2小时)5熟悉在x86体系结构上Linux中断和异常的处理原理,中断注册、共享、控制,和中断上下文的意义,中断和设备驱动程序的关系,以及设备驱动程序结构和用户接口。 (4小时) 6中断处理程序被分解为top half和bottom half的原因,介绍linux的softirq,tasklet,ksoftirqd和work queue,分析进程与top half,bottom half的竞争情形和同步。(4小时)7掌握内核同步原理和方法:原子操作,自旋锁,(读—写)信号量,完成变量,bkl,seqlock和延迟内核抢占。了解指令“路障”。(4小时) 8介绍系统时钟和硬件定时器,单处理器和多处理器上的linux计时体系结构,定时的时间插补原理,单处理器和多处理器上的时钟中断处理,动态定时器的数据结构和算法原理,定时器竞争情形,延迟函数。Time,gettimeofday,adjtimex,setitimer,alarm 的实现原理和应用。(4小时) 9熟悉进程地址空间的区和页,分配和释放物理页,物理地址与逻辑地址、虚地址之间的映射,slub分配原理和方法,高端物理内存的映射。(4小时) 10介绍VFS原理,超级块,inode结构和方法,dentry结构和方法,file结构和方法,以及进程打开文件表,linux中的文件系统。(2小时) 11讲解块设备缓冲,bio结构,I/O请求队列,和有最终期限的块I/O调度算法。(2小时) 12熟悉进程地址空间的分区,mm_struct结构,vm_area_struct结构和操作,,进程的页表文件映射接口mmap原理和方法。(2小时) 13熟悉页cache和radix_tree,缓冲区cache,和pdflush内核线程原理。(2小时) 三、教学方式 教学方式:课堂讲授 考试方式:堂上考试、考查都采用笔试。

Linux内核源代码阅读与工具介绍

Linux的内核源代码可以从很多途径得到。一般来讲,在安装的linux系统下,/usr/src/linux 目录下的东西就是内核源代码。另外还可以从互连网上下载,解压缩后文件一般也都位于linux目录下。内核源代码有很多版本,目前最新的版本是2.2.14。 许多人对于阅读Linux内核有一种恐惧感,其实大可不必。当然,象Linux内核这样大而复杂的系统代码,阅读起来确实有很多困难,但是也不象想象的那么高不可攀。只要有恒心,困难都是可以克服的。任何事情做起来都需要有方法和工具。正确的方法可以指导工作,良好的工具可以事半功倍。对于Linux内核源代码的阅读也同样如此。下面我就把自己阅读内核源代码的一点经验介绍一下,最后介绍Window平台下的一种阅读工具。 对于源代码的阅读,要想比较顺利,事先最好对源代码的知识背景有一定的了解。对于linux内核源代码来讲,基本要求是:⑴操作系统的基本知识;⑵对C语言比较熟悉,最好要有汇编语言的知识和GNU C对标准C的扩展的知识的了解。另外在阅读之前,还应该知道Linux内核源代码的整体分布情况。我们知道现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序、网络等组成。看一下Linux内核源代码就可看出,各个目录大致对应了这些方面。Linux内核源代码的组成如下(假设相对于linux目录): arch这个子目录包含了此核心源代码所支持的硬件体系结构相关的核心代码。如对于X86平台就是i386。 include这个目录包括了核心的大多数include文件。另外对于每种支持的体系结构分别有一个子目录。 init此目录包含核心启动代码。 mm此目录包含了所有的内存管理代码。与具体硬件体系结构相关的内存管理代码位于arch/*/mm目录下,如对应于X86的就是arch/i386/mm/fault.c。 drivers系统中所有的设备驱动都位于此目录中。它又进一步划分成几类设备驱动,每一种也有对应的子目录,如声卡的驱动对应于drivers/sound。 ipc此目录包含了核心的进程间通讯代码。 modules此目录包含已建好可动态加载的模块。 fs Linux支持的文件系统代码。不同的文件系统有不同的子目录对应,如ext2文件系统对应的就是ext2子目录。 kernel主要核心代码。同时与处理器结构相关代码都放在arch/*/kernel目录下。 net核心的网络部分代码。里面的每个子目录对应于网络的一个方面。 lib此目录包含了核心的库代码。与处理器结构相关库代码被放在arch/*/lib/目录下。

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.doczj.com/doc/0f8214688.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.doczj.com/doc/0f8214688.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.doczj.com/doc/0f8214688.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.doczj.com/doc/0f8214688.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.doczj.com/doc/0f8214688.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.doczj.com/doc/0f8214688.html,/guestbook留下你的邮箱,我给你发过去)

linux源代码分析实验报告格式

linux源代码分析实验报告格式

Linux的fork、exec、wait代码的分析 指导老师:景建笃 组员:王步月 张少恒 完成日期:2005-12-16

一、 设计目的 1.通过对Linux 的fork 、exec 、wait 代码的分析,了解一个操作系统进程的创建、 执行、等待、退出的过程,锻炼学生分析大型软件代码的能力; 2.通过与同组同学的合作,锻炼学生的合作能力。 二、准备知识 由于我们选的是题目二,所以为了明确分工,我们必须明白进程的定义。经过 查阅资料,我们得知进程必须具备以下四个要素: 1、有一段程序供其执行。这段程序不一定是进程专有,可以与其他进程共用。 2、有起码的“私有财产”,这就是进程专用的系统堆栈空间 3、有“户口”,这就是在内核中有一个task_struct 结构,操作系统称为“进程控制 块”。有了这个结构,进程才能成为内核调度的一个基本单位。同时,这个结构又 是进程的“财产登记卡”,记录着进程所占用的各项资源。 4、有独立的存储空间,意味着拥有专有的用户空间:进一步,还意味着除前述的 系统空间堆栈外,还有其专用的用户空间堆栈。系统为每个进程分配了一个 task_struct 结构,实际分配了两个连续的物理页面(共8192字节),其图如下: Struct task_struct (大约1K) 系统空间堆栈 (大约7KB )两个 连续 的物 理页 面 对这些基本的知识有了初步了解之后,我们按老师的建议,商量分工。如下: 四、 小组成员以及任务分配 1、王步月:分析进程的创建函数fork.c ,其中包含了get_pid 和do_fork get_pid, 写出代码分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作 比例35%。 2、张少恒:分析进程的执行函数exec.c,其中包含了do_execve 。写出代码分析结 果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例35% 。 3、余波:分析进程的退出函数exit.c,其中包含了do_exit 、sys_wait4。写出代码 分析结果,并画出流程图来表示相关函数之间的相互调用关系。所占工作比例30% 。 五、各模块分析: 1、fork.c 一)、概述 进程大多数是由FORK 系统调用创建的.fork 能满足非常高效的生灭机制.除了 0进程等少数一,两个进程外,几乎所有的进程都是被另一个进程执行fork 系统调 用创建的.调用fork 的进程是父进程,由fork 创建的程是子进程.每个进程都有一

Linux源代码分析_存储管理

文章编号:1004-485X (2003)03-0030-04 收稿日期:2003-05-10 作者简介:王艳春,女(1964 ),副教授,主要从事操作系统、中文信息处理等方面的研究工作。 Linux 源代码分析 存储管理 王艳春 陈 毓 葛明霞 (长春理工大学计算机科学技术学院,吉林长春130022) 摘 要:本文剖析了Linux 操作系统的存储管理机制。给出了Linux 存储管理的特点、虚存的实现方法,以及主要数据结构之间的关系。 关键词:Linux 操作系统;存储管理;虚拟存储中图分类号:T P316 81 文献标识码:A Linux 操作系统是一种能运行于多种平台、源代码公开、免费、功能强大、与Unix 兼容的操作系统。自其诞生以来,发展非常迅速,在我国也受到政府、企业、科研单位、大专院校的重视。我们自2000年开始对Linux 源代码(版本号是Linux 2 2 16)进行分析,首先剖析了进程管理和存储管理部分,本文是有关存储管理的一部分。主要介绍了Linux 虚存管理所用到的数据结构及其相互间的关系,据此可以更好地理解其存储管理机制,也可以在此基础上对其进行改进或在此后的研究中提供借鉴作用。作为一种功能强大的操作系统,Linux 实现了以虚拟内存为主的内存管理机制。即能够克服物理内存的局限,使用户进程在透明方式下,拥有比实际物理内存大得多的内存。本文主要阐述了Linux 虚存管理的基本特点和主要实现技术,并分析了Linux 虚存管理的主要数据结构及其相互关系。 1 Lin ux 虚存管理概述 Linux 的内存管理采用虚拟页式管理,使用多级页表,动态地址变换。进程在运行过程中可以动态浮动和扩展,为用户提供了透明的、灵活有效的内存使用方式。 1)32 bit 虚拟地址 在Linux 中,进程的4GB 虚存需通过32 bit 地址进行寻址。Linux 中虚拟地址与线性地址为同一概念,虚拟地址被分成3个子位段,而大小为4k,如图1所示。 2)Linux 的多级页表结构 图1 32位虚拟地址 标准的Linux 的虚存页表为三级页表,依次为页目录(Pag e Directory PGD)、中间页目录(Pag e Middle Directory PMD )、页表(Page Table PT E )。在i386机器上Linux 的页表结构实际为两级,PGD 和PMD 页表是合二为一的。所有有关PMD 的操作关际上是对PGD 的操作。所以源代码中形如*_pgd _*()和*_pmd_*()函数实现的功能也是一样的。 页目录(PGD)是一个大小为4K 的表,每一个进程只有一个页目录,以4字节为一个表项,分成1024个表项(或称入口点),表项的索引即为32位虚拟地址的页目录,该表项的值为所指页表的起始地址。页表(PTE)的每一个入口点的值为此表项所指的一页框(page frame),页表项的索引即为32位虚拟地址中的页号。页框(page reame)并不是物理页,它指的是虚存的一个地址空间。 3) 页表项的格式 图2 Linux 中页目录项和页表项格式 4)动态地址映射 Linux 虚存采用动态地址映射方式,即进程的地址空间和存储空间的对应关系是在程序的执行过 第26卷第3期长春理工大学学报 Vol 26N o 32003年9月 Journal of Changchun University of Science and T echnology Sep.2003

linux内核是什么意思

千锋教育https://www.doczj.com/doc/0f8214688.html, 精品课程 全程面授 千锋教育-中国IT 职业教育领先品牌 linux 培训学院哪家好 Linux 是常常用来形容整个基于Linux 内核,并且使用工程各种工具和数据库的操作系统。 很受欢迎,使用非常广泛。到了云时代,Linux 炙手可热,掌握。 知识和技能,能找到非常有前景的工作。 既然要学习,最重要的是找到一家好的培训机构。师资,费用,教学质量,这些都要考虑。 2017年5月26日上午,“千锋Linux 云计算运维及开发课程2017版”新品发布会在千锋互联科技有限公司总部北京隆重举行 届时,千锋教育总部的各位领导、千锋教育分校区的校长及网络咨询部、网络运营部代表等各界人士一起出席了“千锋Linux 云计算运维及开发课程2017版”新品发布会。 千锋Linux 云计算课程总监(中国第29位红帽认证架构师,以下简称:杨老师)向各位出席此次发布会的代表详细介绍了“千锋Linux 云计算运维及开发课程2017版”的课程设置体系内容及本年度首期开班招生计划要求。 职业教育领先品牌 千锋教育 linux 培训学院哪家好 ?千锋Linux 云计算培训课程,全方位培养运维工程师 Linux 与微软的“战争”持续已久,谁也不能抢占各自的用户。不过,全球200万名Linux 工程师终于等到了这一天,是时候对微软说“不”了,因为“云计算”时代即将来临,以及廉价的、超小型笔记本电脑正在快速普及。Linux 工程师等待已久了的“云计算”时代。 日前,百资信息科技公司创办人及执行人林政道和香港Linux 商会会长简锦源在广州信息产业周上指出,由于手机、超小型笔记本等移动互联网终端的出现,这种移动终端设备采用Linux 平台作为操作系统已经成为IT 业界的一种发展趋势。因为中国是全球的PC 制造基地和最大的消费市场,其已成为全球推动Linux 发展的最重要的力量之一。 在云计算的初级阶段,我们一定要把握先机,好好学习云计算的相关知识。为此,千锋推出Linux 云计算培训。千锋Linux 云计算培训课程实行免费试学两周,不花一分钱,满意后再报名的政策,全心全意为学员提供服务。讲师方面,千锋Linux 讲师均是拥有多年经验的老师,并特聘一线名企作为技术顾问;课程体系方面,千锋Linux 课程体系是最贴合企业需求的面授课程,并有名企技术顾问定期进行调整;学员福利方面,千锋Linux 为首期报名学员减免1000元学费,并赠送5个月阿里云ECS 云主机。2017年7月17日,千锋Linux 云计算培训等你来战

基于Linux内核定制X86平台的微操作系统(很完整详尽文章)

基于Linux内核定制X86平台的微操作系统摘要:1 0 前言2 0.1 Linux系统简介2 0.2 Linux的基本思想2 0.3 Linux内核2 0.4 Linux内核版本命名3 0.5 Linux文件系统3 0.6Linux内核引导4 0.7Linux系统组成4 1 平台的搭建4 1.1 硬件平台4 1.2 软件平台4 1.2.1 Ubuntu系统的下载4 1.2.2 Ubuntu系统的安装4 1.2.3 Ubuntu系统的配置4 2 Linux内核的编译5 2.1 内核的下载5 2.2 内核的定制5 2.3 内核的编译5 2.4 内核的制作6 3 BusyBox的编译6 3.1 BusyBox的下载6 3.2 BusyBox的配置6 3.3 BusyBox的编译7 4 Linux文件系统的制作7 4.1 文件系统的制作7 4.2 文件系统的配置9 4.3 文件系统的压缩7 5 Linux引导程序配置10 5.1 ISOLINUX的下载10 5.2 ISOLINUX的配置10 6 LinuxCD-ROM的制作10 7 Linux定制系统的运行11 7.1 VirtualBox下的运行11 7.2 U盘引导在X86平台下的运行12 8定制系统过程中的问题12 8.1 平台搭建中的问题12 8.2 内核编译中的问题12

8.3 BusyBox编译中的问题12 8.4 文件系统制作中的问题12 8.5 引导程序制作中的问题12 8.6 CD-ROM制作中的问题13 8.7 定制系统运行的问题13 参考13 基于Linux内核定制X86平台的微操作系统 王林强 (河南大学物理与电子学院通信专业,河南开封,475004) 摘要: Linux是一种自由和开放,用C语言和汇编语言写成,并符合POSIX标准的类Unix操作系统。并且由于其可定制、可裁剪的特性,不仅在桌面操作系统中有重要的地位,而且在手机、平板电脑、路由器和视频游戏控制台等嵌入式设备有其巨大的优势。 为了更好、更深入的了解及掌握Linux系统。本文详细的讲述并实践,如何从Linux内核源码,经过定制、裁剪、编译、制作文件系统、内核引导,iso光盘制作到最终完整的基于Linux内核定制的微操作系统。 通过基于Linux内核定制的微操作系统的制作,深入的理解Linux内核的工作原理、文件系统结构、内核引导等,从而精通嵌入式开发。 关键词: Linux;定制;嵌入式;微系统 An implementation of micro-operating system based on the x86 platform Linux kernel customization Wang Lin-qiang (School of Physics and Electronics, Henan University, Henan Kaifeng 475004, China) Abstract: Linux is a free and open, and POSIX-compliant Unix-like operating system written in C and assembly language. And can be cut because of its customizable features, not only in the desktop o perating system in an important position, and its huge advantage in the embedded devices, mobile phones, tablet PCs, routers, and video game consoles. In order to better and deeper understanding of and master Linux system. This article tells in d etail and practice, from the Linux kernel source code has been customized, cutting, compiling, pro

相关主题
文本预览
相关文档 最新文档