当前位置:文档之家› 拉曼光纤放大器原理和性能分析与进展

拉曼光纤放大器原理和性能分析与进展

拉曼光纤放大器原理和性能分析与进展
拉曼光纤放大器原理和性能分析与进展

前言:随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。掺铒光纤放大器(EDFA)由于其增益平坦性等局限性,已经不能完全满足光通信系统发展的要求。而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。

拉曼现象早在1928年就被Chandrasekhara Raman所发现,在此之后就有人提出了利用这种效应来实现光的放大。但在很长时间内拉曼光纤放大器未能获得广泛应用,甚至在EDFA出现后一度销声匿迹,关键原因在于缺乏合适的大功率泵浦激光器。由于EDFA的广泛应用,它所用的1480nm大功率泵浦激光器得到了深入的研究和开发,这就使拉曼放大器成为可能。

总体上说解决RFA泵浦源共有3个解决方案:一是大功率LD及其组合,其特点是工作稳定、与光纤耦合效率高、体积小、易集成,是最佳的选择;二是拉曼光纤激光器;三是半导体泵浦固体激光器。但后二者都存在稳定性及与光纤耦合的问题。

受激拉曼散射原理:在一些非线性介质中,高能量(高频率)的泵浦光散射,将一部分能量转移给另一频率的光束上,频率的下移量是分子的振动模式决定的。用量子力学可以作如下解释:一个高能量的泵浦光子入射到介质中,被一个分子吸收。电子先从基态跃迁至虚能级,虚能级的大小是由泵浦光的能量决定的。然后,虚能级电子在信号光的感应作用下,回到振动态的高能级,同时发出一个和信号光相同频率,相同相位,相同方向的光,我们称之为斯托克斯光子。从而进行信号光的放大。

拉曼光纤放大器相对于掺铒光纤放大器有明显不同:(1)理论上只要有合适的拉曼泵浦源,就可以对光纤窗口内任一波长的信号进行放大,因此它具有很宽的增益谱;(2)可以利用传输光纤本身作增益介质,此特点使光纤拉曼放大器可以对光信号的放大构成分布式放大,实现长距离的无中继传输和远程泵浦,尤其适用于海底光缆通讯等不方便建立中继站的场合;(3)可以通过调整各个泵浦的功率来动态调整信号增益平坦度;(4)具有较低的等效噪声指数,此特点使其与常规的掺铒光纤放大器混合使用时可大大降低系统噪声指数。光纤拉曼放大器的性能决定了它在未来高速、大容量光纤通信系统中将发挥关键作用。

除了上述优点以外,拉曼光纤放大器也存在一些缺点,比如:所需的泵浦光功率高,分立式要几瓦到几十瓦,分布式要几百毫瓦;作用距离长,分布式作用距离要几十至上百千米,只适合于长途干线网的低噪声放大;泵浦效率低,一般为(10~20)%;增益不高,一般低于15dB;高功率泵浦输出很难精确控制;增益具有偏振相关特性;信道之间发生能量交换,引起串音。

拉曼光纤放大器主要应用

(1)提高系统容量。传输速率不变的情况下,可通过增加信道复用数来提高系统容量。开辟新的传输窗口是增加信道复用数的途径,拉曼光纤放大器的全波段放大恰好满足要求。分布式拉曼光纤放大器的低噪声特性可以减小信道间隔,提高光纤传输的复用程度,提高传输容量。

(2)拓展频谱利用率和提高传输系统速率。拉曼光纤大器的全波段放大特性使得它可以工作在光纤整个低损耗区,极大地拓展了频谱利用率,提高了传输系统速率。分布式拉曼光纤放大器是将现有系统的传输速率升级到40 Gbit/s的关键器件之一。拉曼光纤放大器已广泛应用于光纤传输系统中,特别是超长跨距的光纤传输系统,如跨海光缆,陆地长距离光纤干线等。

(3)增加无中继传输距离。无中继传输距离主要是由光传输系统信噪比决定的,分布式拉曼光纤放大器的等效噪声指数极低(-2~0dB),比EDFA的噪声指数低4.5dB,利用分布式拉曼光纤放大器作前置放大器可明显增大无中继传输距离。

(4)补偿色散补偿光纤(DCF)的损耗。DCF的损耗系数远比单模光纤和非零色散位移光纤要大,比拉曼增益系数也要大。采用DCF与拉曼光纤放大器相结合的方式,既可以进行色散和损耗的补偿,同时还可以提高信噪比。

(5)通信系统升级。在接收机性能不变的前提下,如果增加系统的传输速率,要保证接收端的误码率不变,就必须增加接收端的信噪比。采用与前置放大器相配合的拉曼光纤放大器来提高信噪比,是实现系统升级的方法之一。

拉曼光纤放大器由于具有全波段放大、低噪声、可以抑制非线性效应和能进行色散补偿等优点,近年引起人们广泛关注,现已逐步走向商用。拉曼光纤放大器主要用做分布式放大器,辅助EDFA进行信号放大,也可以单独使用,放大EDFA不能放大的波段,同时克服了EDFA级联噪声大及放大带宽有限等缺点。目前拉曼放大器在长距离骨干网和海底光缆中传输的地位已得到承认;在城域网中,拉曼光纤放大器也有其利用价值。通信波段扩展和密集波分复用技术的运用,给拉曼光纤放大器带来了广阔的应用前景。拉曼光纤放大器的一系列优点,使它有可能成为下一代光放大器的主流。

拉曼光纤放大器的优化设计

分类号:O437 U D C:D10621-408-(2015)0922-0 密级:公开编号:34 成都信息工程大学 学位论文 拉曼光纤放大器的优化设计 论文作者姓名:唐洪 申请学位专业:电子科学与技术 申请学位类别:工学学士 指导教师姓名(职称):何修军(副教授) 论文提交日期:2015年05月26日

拉曼光纤放大器的优化设计 摘要 拉曼光纤放大器(FRA)的工作原理是基于受激拉曼散射,是迄今为止唯一能在1270 nm到1670 nm的全波段上进行光放大的器件。本文主要介绍了FRA的发展历史和现状,受激拉曼散射效应基本原理,以及拉曼光纤放大器的工作原理。介绍了其系统构成,包括增益介质,泵浦源,无源器件,并且在其工作原理的基础上,对特性进行分析,包括增益,噪声,偏振相关性,温度等。根据对基本理论的的理解,运用optisystem软件优化仿真,对于优化仿真,本论文中做到的是通过对拉曼光纤放大器的阵列泵浦波长,泵浦功率,光纤有效作用面积,光纤长度的优化,达到增益的最大值。 关键词:拉曼光纤放大器;受激拉曼散射效应;优化仿真;阵列泵浦

Optimal Design of Raman Fiber Amplifier Abstract The Raman fiber amplifier's working principle is based on the stimulated Raman scattering, which is the only device that can be optically amplified in the full band of 1670 nm to 1270 nm. This paper introduced the history and current situation of the FRA, the basic principle of Raman scattering, and the working principle of Raman fiber amplifier. And its system structure, including the gain medium, pump source and passive components are introduced.On the basis of the working principle, the paper analyses its characteristics, including the gain, noise, polarization dependence, temperature, etc.According to the basic theory of the understanding,it is used optisystem software to optimize simulation. For optimize simulation, the paper is done by array pump's wavelength, power, the fiber area, fiber length optimized in order to achieve maximum gain. Key words: Raman fiber amplifier; stimulated Raman scattering; optimization simulation; array pump

拉曼光纤放大器原理和性能分析与进展

前言:随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。掺铒光纤放大器(EDFA)由于其增益平坦性等局限性,已经不能完全满足光通信系统发展的要求。而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。 拉曼现象早在1928年就被Chandrasekhara Raman所发现,在此之后就有人提出了利用这种效应来实现光的放大。但在很长时间内拉曼光纤放大器未能获得广泛应用,甚至在EDFA出现后一度销声匿迹,关键原因在于缺乏合适的大功率泵浦激光器。由于EDFA的广泛应用,它所用的1480nm大功率泵浦激光器得到了深入的研究和开发,这就使拉曼放大器成为可能。 总体上说解决RFA泵浦源共有3个解决方案:一是大功率LD及其组合,其特点是工作稳定、与光纤耦合效率高、体积小、易集成,是最佳的选择;二是拉曼光纤激光器;三是半导体泵浦固体激光器。但后二者都存在稳定性及与光纤耦合的问题。 受激拉曼散射原理:在一些非线性介质中,高能量(高频率)的泵浦光散射,将一部分能量转移给另一频率的光束上,频率的下移量是分子的振动模式决定的。用量子力学可以作如下解释:一个高能量的泵浦光子入射到介质中,被一个分子吸收。电子先从基态跃迁至虚能级,虚能级的大小是由泵浦光的能量决定的。然后,虚能级电子在信号光的感应作用下,回到振动态的高能级,同时发出一个和信号光相同频率,相同相位,相同方向的光,我们称之为斯托克斯光子。从而进行信号光的放大。 拉曼光纤放大器相对于掺铒光纤放大器有明显不同:(1)理论上只要有合适的拉曼泵浦源,就可以对光纤窗口内任一波长的信号进行放大,因此它具有很宽的增益谱;(2)可以利用传输光纤本身作增益介质,此特点使光纤拉曼放大器可以对光信号的放大构成分布式放大,实现长距离的无中继传输和远程泵浦,尤其适用于海底光缆通讯等不方便建立中继站的场合;(3)可以通过调整各个泵浦的功率来动态调整信号增益平坦度;(4)具有较低的等效噪声指数,此特点使其与常规的掺铒光纤放大器混合使用时可大大降低系统噪声指数。光纤拉曼放大器的性能决定了它在未来高速、大容量光纤通信系统中将发挥关键作用。 除了上述优点以外,拉曼光纤放大器也存在一些缺点,比如:所需的泵浦光功率高,分立式要几瓦到几十瓦,分布式要几百毫瓦;作用距离长,分布式作用距离要几十至上百千米,只适合于长途干线网的低噪声放大;泵浦效率低,一般为(10~20)%;增益不高,一般低于15dB;高功率泵浦输出很难精确控制;增益具有偏振相关特性;信道之间发生能量交换,引起串音。 拉曼光纤放大器主要应用 (1)提高系统容量。传输速率不变的情况下,可通过增加信道复用数来提高系统容量。开辟新的传输窗口是增加信道复用数的途径,拉曼光纤放大器的全波段放大恰好满足要求。分布式拉曼光纤放大器的低噪声特性可以减小信道间隔,提高光纤传输的复用程度,提高传输容量。 (2)拓展频谱利用率和提高传输系统速率。拉曼光纤大器的全波段放大特性使得它可以工作在光纤整个低损耗区,极大地拓展了频谱利用率,提高了传输系统速率。分布式拉曼光纤放大器是将现有系统的传输速率升级到40 Gbit/s的关键器件之一。拉曼光纤放大器已广泛应用于光纤传输系统中,特别是超长跨距的光纤传输系统,如跨海光缆,陆地长距离光纤干线等。 (3)增加无中继传输距离。无中继传输距离主要是由光传输系统信噪比决定的,分布式拉曼光纤放大器的等效噪声指数极低(-2~0dB),比EDFA的噪声指数低4.5dB,利用分布式拉曼光纤放大器作前置放大器可明显增大无中继传输距离。

几种常见的光放大器的比较

几种常见的光放大器的比较

————————————————————————————————作者: ————————————————————————————————日期:

对几类放大器的认识 在DWDM系统中,特别是超远距离的传输中,由于不可避免的存在光纤信号功率的损失和衰减,所以补偿是必要的。现在常用的放大器有掺铒光纤放大器(EDFA),拉曼放大器(FRA),半导体激光放大器(SOA),光纤参量放大器(OPA)。现就这几类放大器的工作原理和特殊情况做一下说明。 1)掺铒光纤放大器(EDFA) EDFA(Erbiur Doped Fiber Amplifer)是光纤放大器中具有代表性的一种。由于EDFA工作波长为1550nm,与光纤的低损耗波段一致且其技术已比较成熟,所以得到广泛应用。掺铒光纤是EDFA的核心原件,它以石英光纤作基质材料,并在其纤芯中掺入一定比例的稀土原素铒离子(Er3+)。当一定的泵浦光注入到掺铒光纤中时,Er3+从低能级被激发到高能级,由于Er3+在高能级上寿命很短,很快以非辐射跃迁形式到较高能级上,并在该能级和低能级间形成粒子数反转分布。由于这两个能级之间的能量差正好等于1550nm 光子的能量,所以只能发生1550nm光的受激辐射,也只能放大1550nm的光信号。 EDFA的组成: 工作原理图:

那么,EDFA的输出公路车是如何控制的呢? 一般来说,EDFA的输出功率与输入信号光强度,铒纤的长度以及泵浦光的强度。 在EDFA使用的过程中,一般要控制好EDFA的平坦增益,那么不平坦的增益和平坦增益有什么区别呢? 平坦的输出增益会使EDFA放大的输出功率得到一个稳定的信号增益。 如何控制增益?增益的控制室有2种选择的,一种是掺金属元素,另外一种是GFF定制,所谓的掺金属元素是值得是掺杂金属铝元素。

详解负反馈放大器电路

难点电路详解之负反馈放大器电路 1 负反馈放大器 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。 1.1 正反馈和负反馈概念 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。 ①反馈方框图 如图1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。 图1 反馈方框图 ②反馈种类 反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。 ③正反馈概念 正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。 如图2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,?这两个信号混合后是相加的关系,所以净输入放大器的信号UI?比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。

图2 正反馈方框图 在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。 ④负反馈概念 负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。 如图3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,?使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。 图3 负反馈方框图 ⑤反馈量 负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的增益在加入负反馈电路之后减小了。当负反馈电路造成的净输入信号愈小,即负反馈量愈大,负反馈放大器的增益愈小,反之负反馈量愈小,负反馈放大器的增益愈大。 正反馈也有同样的正反馈量问题。 1.2 全面了解负反馈电路种类 ①负反馈种类

拉曼放大器.doc

主要分析了泵浦光之间的受激拉曼散射,信号光之间的受激拉曼散射,泵浦光的个数,泵浦光功率以及泵浦光波长对拉曼增益曲线平坦度的影响。 一、受激拉曼散射对拉曼增益的影响 当泵浦光在光纤内传输时,不同的泵浦光之间会产生受激拉曼散射效应,即短波长泵浦光会对长波长泵浦光产生拉曼放大。因此,长波长泵浦光会从短波长泵浦光处获取能童,使得长波长信号光的拉曼增益明显增大。同样,在信号光之间也存在着受激拉曼散射作用,长波长信号光会吸收短波长信号光的能量而被放大。 建立如下图1所示的仿真模型,仿真分析了5路后向泵浦功率沿光纤的传输演化。在光纤的末端,每路泵浦光的入纤功率都是100mw,但是经过50km光纤传输后,各自功率的演化呈现不同的趋势。波长最长的泵浦(1495nm)得到了拉曼增益,而波长最短的泵浦(1420nm)衰减的最快。产生这一现象的原因就是受激拉曼散射导致能量由短波长泵浦向长波长泵浦发生传递。 在相同的泵浦参数下,考虑泵浦与泵浦之间和信号与信号之间的受激拉受散射效应后,拉曼增益曲线也会受到一定的影响。图2所示为5路泵浦光作用下对1556.78nm-1591.98nm波长范围内44路信号光进行放大时,泵浦间、信号间受激拉受散射对拉曼增益曲线的影响。 图1 仿真模型

(a)输入光纤前的泵浦光 (b)输入的44路信号光

(c)放大后的44路信号光 图2 输入的信号光、泵浦光和放大后的信号光波形图 二、泵浦源功率对拉曼增益的影响 对于给定的拉曼增益值,所需的泵浦功率与诸多因素有关,如拉曼增益系数、光纤的类型和长度、偏振的影响等。为了合理的比较功率分布对拉曼增益的影响,应该保证泵浦源的个数、波长、输入总功率以及其它参数均相同。我们选用波长分别为1420nm、1435mn、1450nm、1465nm和1495nm的5路后向泵浦光,总的泵浦输入功率为340mw,对不同泵浦输入功率的情况进行了模拟,如图3所示。合理配置泵浦功率后得到的增益曲线如图4所示,功率分别为60w、80w、 45mw、50mw和105mw。

负反馈放大电路分析要点

课程设计报告

课程设计题目:负反馈放大电路的设计 要求完成的内容:设计一个负反馈放大电路,保证输出电压稳定。指标条件如下:电压放大增益|Av|≥10,反馈深度≥10,输入电阻R i≥1KΩ,输出电阻R o≤100Ω, f L≤10HZ,f H≥1KHZ。所使用的元器件要求为:晶体管(9013或9014),电容(瓷片电容)、电阻(0.25瓦)等。 要求:(1)根据设计要求,确定电路的设计方案,估算并初步选取电路的元件参数。(2)选用熟悉的电路仿真软件,搭建电路模型进行仿真分析,由仿真结果进行参数调试、修改,直至满足设计要求。 (3)由选取的元件参数,精确计算和复核技术指标要求。 (4)满足设计要求后,认真按格式完成课程设计报告。

指导教师评语: 评定成绩为: 指导教师签名:年月日

负反馈放大电路的设计 一、 课程设计的目的 (1)初步了解和掌握负反馈放大器的设计、调试的过程。 (2)能进一步巩固课堂上学到的理论知识。 (3)了解负反馈放大器的工作原理。 (4)了解并掌握负反馈放大电路各项性能指标的测试方法。 (5)加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。 二、 设计方案论证 2.1框图及基本公式 图1 负反馈放大电路原理框图 图中X 表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号 与反馈信号是相减关系(负反馈),即放大电路的净输入信号为: id i f X X X =- 基本放大电路的增益(开环增益)为: /o id A X X = 反馈系数为: /f o F X X = 负反馈放大电路的增益(闭环增益)为: /f o i A X X = 2.2负反馈对放大器各项性能指标的影响 负反馈的电路形式很多,但就基本形式来说,可以分为4种:即电流串联负反馈;电压串联负反馈 ;电流并联负反馈;电压并联负反馈。一个放大器,加入了负反馈环节后,虽

拉曼光纤放大器的发展现状

拉曼光纤放大器的发展现状 拉曼光纤放大器是密集波分复用(DWDM)通信系统的重要组成部分,因此研究如何提升FRA的各项性能成为DWDM通信系统中的一项重要内容。综述了拉曼光纤放大器国内外的研究和发展现状,介绍了国内外多款光纤拉曼放大器的产品性能特点。最后,展望了光纤拉曼放大器的发展趋势。 标签:光纤拉曼放大器;密集波分复用;增益平坦;偏振相关增益;带宽 Abstract:Raman fiber amplifier is an important part of dense wavelength division multiplexing (DWDM)communication system,so how to improve the performance of FRA becomes an important part of DWDM communication system. The research and development of Raman fiber amplifiers at home and abroad are reviewed,and the performance characteristics of many kinds of optical Raman fiber amplifiers at home and abroad are introduced. Finally,the development trend of Raman fiber amplifier is prospected. Keywords:Raman fiber amplifier;dense wavelength division multiplexing;gain flatness;polarization dependent gain;bandwidth 引言 隨着全球网络化、社会信息化的快速发展,人们对光纤通信系统的传输速率和容量的需求越来越高,而密集波分复用(DWDM)技术以其能够更加充分地利用光纤的巨大资源的优势,从而得以快速发展。拉曼光纤放大器(Raman Fiber Amplifier,RFA)由于其具有任意工作波长、宽带增益、分布式放大等优良特性,已经成为了DWDM通信系统的关键技术和重要器件之一。为了保证WDM 系统的传输质量,波分复用系统中使用的光纤放大器应具备有足够的带宽、低噪声系数和高输出功率、低偏振相关以及能够控制放大器的增益平坦度等相关特性。因此,针对RFA的相关特性的研究也成为了近年来研究光纤拉曼放大器的热点和方向。基于上述技术背景,本文总结了近年来国内外光纤拉曼放大器的研究和发展,并介绍了国内外光纤拉曼放大器的产品以及其相关特性参数。 1 光纤拉曼放大器的发展和研究现状 拉曼光纤放大器的基本原理是利用光纤中的非线性效应(Raman散射效应)实现光信号的放大。与其他不同类型的光放大器相比,拉曼光纤放大器具有诸多优点:(1)和EDFA有很大不同,RFA不需要特殊的增益介质,只要普通的传输光纤即可实现光信号放大,这样便可以很好地实现分布式放大、对光纤放大系统进行直接扩容升级、合理地利用光纤的低损耗窗口等相关改善。(2)拉曼放大器的增益光波长取决于泵浦光的波长,理论上只要选择合适的泵浦光的波长,就可以放大任意光信号波段,进而实现全波段的拉曼放大。(3)光纤的拉曼增益具有比较宽的频带,如果采用多波长泵浦方式的光纤拉曼放大器,就可以获得大于

掺铒光纤放大器和拉曼光纤放大器分析和比较

掺铒光纤放大器和拉曼光纤放大器分析和比较摘要:光放大器技术是新一代光纤通信系统中一项必不可少的关键技术,目前几种主要的光放大器技术在工程应用中各有所长。此文介绍了光放大器技术的基本原理,并对现有主要几种光放大器技术在性能、应用和发展方向上进行了比较。 关键词:掺铒光纤放大器;光纤拉曼放大器 0、综述 20世纪90年代以来,Internet的普及发展和各种信息(如语音、图像、数据等)业务的快速增长,人们对现代通信系统提出了更高的要求。在市场需求的大力推动下,通信技术取得了长足的进步,其中光纤通信技术脱颖而出,以其高速优质的特点,一跃成为当今长距离、大容量传输干线的主流技术。但由于光纤损耗和非线性的影响,无中继传输距离成为制约系统容量和速率的瓶颈,而中继放大技术成了光通信领域的关键技术之一。传输系统中的光纤损耗使信号随传输距离呈指数衰减,极大地限制了通信传输跨距和网络的可扩展性,因此必须在通信线路上设置中继器对信号进行再生放大。在光放大器没有出现之前,光纤传输系统普遍采用光-电-光(OEO)的混合中继器,但这种中继方式存在“电子瓶颈”现象,在很大程度上限制了传输速率的提高,而且价格昂贵、结构复杂。20世纪80年代出现的光放大器技术具有对光信号进行实时、在线、宽带、高增益、低噪声、低功耗以及波长、速率和调制方式透明的直接放大功能,是新一代光纤通信系统中不可缺少的关键技术。此技术既解决了衰减对光网络传输距离的限制,又开创了1550nm波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑(1)。又由于此技术与调制形式和比特率无关,因而在光纤通信系统中得到了广泛应用。 1、光放大器分类及原理 光放大器(OA)一般由增益介质、泵浦光和输入输出耦合结构组成,其作用就是对复用后的光信号进行光放大,以延长无中继系统或无再生系统的光缆传输距离。一个好的光放大器应具有输出功率高、放大带宽宽、噪声系数低、增益谱平坦等特性。光放大器主要分为光纤型放大器(FA)和半导体放大器(SOA)两大类,其中光纤型放大器(FA)还可再分为掺稀土光纤放大器和常规光纤放大器,具体分类详见图1(2).本文中,仅对掺铒光纤放大器(EDFA)和光纤拉曼放大器(FRA)作以介绍和分析。

模电实验报告 七 负反馈放大电路

模电实验报告 实验七 负反馈放大电路 姓名: 学号: 班级: 院系: 指导老师: 2016年

目录 实验目的: (2) 实验器件与仪器: (2) 实验原理: (2) 实验内容: (4) 实验总结: (5) 实验:负反馈放大电路 实验目的: 1.进一步了解负反馈放大器性能的影响。 2.进一步掌握放大器性能指标的测量方法。 实验器件与仪器: 1. 实验原理: 放大器中采用负反馈,在降低放大倍数的同时,可以使放大器的某些性能大大改善。所谓负反馈,就是以某种方式从输出端取出信号,再以一定方式加到输入回路中。若所加入的信号极性与原输入信号极

性相反,则是负反馈。 根据取出信号极性与加入到输入回路的方式不同,反馈可分为四类:串联电压反馈、串联电流反馈、并联电压反馈与并联电流反馈。如图3-1所示。 从网络方框图来看,反馈的这四种分类使得基本放大网络与反馈网络的联接在输入、输出端互不相同。 从实际电路来看,反馈信号若直接加到输入端,是并联反馈,否则是串联反馈,反馈信号若直接取自输出电压,是电压反馈,否则是电流反馈。 1.负反馈时输入、输出阻抗的影响 负反馈对输入、输出阻抗的影响比较复杂,不同的反馈形式,对阻抗的影响也不一样,一般而言,凡是并联负反馈,其输入阻抗降低;凡是串联负反馈,其输入阻抗升高;设主网络的输入电阻为R i ,则串联负反馈的输入电阻为 R if =(1+FA V )R i 设主网络的输入电阻为R o ,电压负反馈放大器的输出电阻为 R of = F A R V O +1 可见,电压串联负反馈放大器的输入电阻增大(1+A V F )倍,而输出电阻则下降到1/(1+A V F )倍。 2.负反馈放大倍数和稳定度 负反馈使放大器的净输入信号有所减小,因而使放大器增益下降,但却改善了放大性能,提高了它的稳定性。 反馈放大倍数为 A vf = F A A V V +1(A v 为开环放大倍数) 反馈放大倍数稳定度与无反馈放大器放大倍数稳定度有如下关系: Vf Vf A A ?= V V A A ?? F A V +11 式中?A V f/A V f 称负反馈放大器放大倍数的稳定度。V V A A /?称无反

负反馈放大器原理分析

负反馈放大器原理分析及设计 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 1、框图、基本反馈方程式 负反馈电路类型很多,但根据反馈网络从基本放大电路输出取样方式(电压或电流)的不同可分为电压反馈和电流反馈:而根据反馈信号引回到输入端求和方式的不同,又分为串联反馈和关联反馈。综上所述,负反馈放大器分为四种类型,如图5.2-8所示,表5.2-8 示出它们的基本反馈方程式。 图5.2-8 四种类型负反馈放大方框图 A 电压并联负反馈 B电流串联负反馈 C 电压串联负反馈 D 电流关联负反馈

负反馈放大器的闭环增益A1,并环增益A和反馈系数B的基本关系式称基本关系式称基本反馈方程。 反馈深度是反映反馈强弱的重要物理量,其值越大负反馈越强。当反馈很深,即|AB|》1时,称为深度负反馈,则闭环增益 2、负反馈对放大器性能的影响 负反馈放大电路,以降低增益为代价,可改善许多性能。表5.2-9给出负反馈对输入电阻、输出电阻的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响;表5.2-10给出负反馈对放大器其他几项主要性能的影响。

光纤通信技术—光纤放大器概要

光纤通信技术—光纤放大器 光导纤维通信简称光纤通信,原理是利用光导纤维传输信号,以实现信息传递的一种通信方式。实际应用中的光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤放大器不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件。 名称:光纤放大器 关键字:光纤放大器 EDFA 半导体放大器光纤曼放大器 摘要:光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光弧子通信以及全光网络的发展。顾名思义,光放大器就是放大光信号。在此之前,传送信号的放大都是要实现光电变换及电光变换,即O/E/O变换。有了光放大器后就可直接实现光信号放大。光放大器主要有3种:光纤放大器、拉曼放大器、半导体光放大器。光纤放大器就是在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质。每一种掺杂剂的增益带宽是不同的;掺铥光纤放大器的增益带是S波段;掺镨光纤放大器的增益带在1310nm附近。而喇曼光放大器则是利用喇曼散射效应制作成的光放大器,即大功率的激光注入光纤后,会发生非线性效应?喇曼散射。在不断发生散射的过程中,把能量转交给信号光,从而使信号光得到放大。由此不难理解,喇曼放大是一个分布式的放大过程,即沿整个线路逐渐放大的。其工作带宽可以说是很宽的,几乎不受限制。这种光放大器已开始商品化了,不过相当昂贵。半导体光放大器(S0A)一般是指行波光放大器,工作原理与半导体激光器相类似。 1.引言 无线光通信是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通信方式。与微波通信相比,无线光通信所使用的激光频率高,方向性强(保密性好),可用的频谱宽,无需申请频率使用许可;与光纤通信相比,无线光通信造价低,施工简便、迅速。它结合了光纤通信和微波通信的优势,已成为一种新兴的宽带无线接人方式,受到了人们的广泛关注。但是,恶劣的天气情况,会对无线光通信系统的传播信号产生衰耗作用。空气中的散射粒子,会使光线在空问、时间和角度上产生不同程度的偏差。大气中的粒子还可能吸收激光的能量,使信号的功率衰减,在无线光通信系统中光纤通信系统低损耗的传播路径已不复存在。大气环境多变的客观性无法改变,要获得更好更快的传输效果,对在大气信道传输的光信号就提出了更高的要求,一般地,采用大功率的光信号可以得到更好的传输效果。随着光纤放大器(EDFA)的迅速发展,稳定可靠的大功率光源将在各种应用中满足无线光通信的要求。 2.光纤放大器的发展方向 由于超高速率、大容量、长距离光纤通信系统的发展,对作为光纤通信领域的关键器件——光纤放大器在功率、带宽和增益平坦方面提出了新的要

负反馈放大电路分析教案

教学设计 授课课题负反馈放大电路分析 授课时间第14周星期三第1节授课班级15机电授课教师 教学目标知识目标 1.了解反馈及反馈电路 2. 掌握如何判断是否存在反馈 3.掌握判别反馈类型的方法 情感目标 1、通过学生对电路的综合分析培养学生自信心和成就感 2、培养学 生实事求是精神和严谨的作风。 技能目标 1、培养学生独立分析电子电路的综合能力 2、培养学生发现问题和解 决问题的能力。 学情分析学生已掌握了反馈及反馈电路的基础上,本节内容进一步学习如何判断是否存在反馈、掌握判别反馈类型的方法,为后面技能实训奠定了基础 教学重点反馈类型及判别 教学难点正负反馈的判别 教学方法讲授、提问、归纳、练习等教学准备多媒体课件 教学过程教学内容 复习提问(教师讲解反馈放大器框图,提问学生反馈的定义,为本节内容学习做好铺垫)一.反馈及反馈电路的意义 反馈:从放大器的输出端把输出信号的一部份或全部通过一定的方式送回放大器输入端的过程,称为反馈。 反馈电路:由电阻或电容等元件组成的反馈信号传送电路,称为反馈电路。 图中vi 为输入信号, vo 为输出信号, vf 为反馈信号。 反馈放大器 框图

导入新课(用生活中的例子让同学们判断是否存在反馈?问题探索,引出本次教学内容)二、负反馈放大电路分析 1. 判别电路是否存在反馈 找出电路的反馈元件,一般来说,任何连接输出回路与输入回路之间的元件,都是反馈元件。 有反馈元件,电路就存在反馈。

讲授新课 一、引出本节课的重点(正反馈与负反馈) 二、讲解正负反馈的意义,为后面判断正负反馈奠定基础 三、详细讲解判别是正反馈还是负反馈(举一例子来分析正负反二.反馈的分类及判别方法 反馈一般有三种分类: 1.正反馈与负反馈 2.电压反馈与电流反馈 3.串联反馈与并联反馈 1.正反馈与负反馈 a.正负反馈的意义 正反馈:反馈信号起到增强输入信号的作用。 负反馈:反馈信号起到削弱输入信号的作用。 b.正负反馈判别方法: 若反馈信号与输入信号同相,则为正反馈。 若反馈信号与输入信号反相,则为负反馈。 2.判别是正反馈还是负反馈 采用瞬时极性法。先假定输入信号在某一瞬时的极性为正,分析放大电路各点相位的变化,最后看反馈到输入端的反馈信号的极性:如果反馈信号极性与输入信号极性相反,则为负反馈;如果反馈信号极性与输入信号极性相同,则为正反馈。 反馈放大器框图 假设输入信号在某一时刻的极 性为“+”,由于信号从集成运放的 反相输入端输入,则集成运放输出

负反馈放大器电路详解

负反馈放大器电路详解 负反馈放大器 在放大器中采用负反馈电路,其目的是为了改善放大器的工作性能,提高放大器的输出信号质量。在引入负反馈电路之后,放大器的增益要比没有负反馈时的增益小,但是可以改善放大器的许多性能,主要有四项:减小放大器的非线性失真、扩宽放大器的频带、降低放大器的噪声和稳定放大器的工作状态。 正反馈和负反馈概念 放大器的信号传输都是从放大器的输入端传输到放大器输出端,但是反馈过程则不同,它是从放大器输出端取出一部分输出信号作为反馈信号,再加到放大器的输入端,与原放大器输入信号进行混合,这一过程称为反馈。 1.反馈方框图 如图4-1所示是反馈方框图。从图中可以看出,输入信号Ui从输入端加到放大器中进行放大,放大后的输出信号Uo其中的一部分加到下一级放大器中,另有一部分信号经过反馈电路作为反馈信号UF,与输入信号Ui合并,作为净输入信号VI加到放大器中。 图1 反馈方框图

2.反馈种类 反馈电路有两种:正反馈电路和负反馈电路。这两种反馈的结果(指对输出信号的影响)完全相反。 3.正反馈概念 正反馈可以举一个例子来说明,吃某种食品,由于它很可可,所以在吃了之后更想吃,这是正反过程。 如图4-2所示正反馈方框图,当反馈信号UF与输入信号Ui是同相位时,?这两个信号混合后是相加的关系,所以净输入放大器的信号UI?比输入信号Ui更大,而放大器的放大倍数没有变化,这样放大器的输出信号Uo比不加入反馈电路时的大,这种反馈称为正反馈。 图2 正反馈方框图

在加入正反馈之后的放大器,输出信号愈反馈愈大(当然不会无限制地增大,这一点在后面的振荡器电路中介绍),这是正反馈的特点。正反馈电路在放大器电路中通常不用,它只是用于振荡器中。 4.负反馈概念 负反馈也可以举一例说明,一盆开水,当手指不小心接触到热水时,手指很快缩回,而不是继续向里面伸,手指的回缩过程就是负反馈过程。 如图4-3所示是负反馈方框图,当反馈信号UF相位和输入信号Ui的相位相反时,它们混合的结果是相减,结果净输入放大器的信号UI比输入信号Ui要小,?使放大器的输出信号Uo减小,引起放大器电路这种反馈过程的电路称为负反馈电路。 图3 负反馈方框图 5.反馈量 负反馈的结果使净输入放大器的信号变小,放大器的输出信号减小,这等效成放大器的增益在加入负反馈电路之后减小了。当负反馈电路造成的净输入信号愈小,即

DWDM系统拉曼放大器的原理及应用

DWDM系统拉曼放大器的原理及应用 华为技术有限公司 版权所有侵权必究

修订记录

目录 1前言 (5) 2拉曼放大器原理 (5) 2.1受激拉曼散射概念 (5) 2.2受激拉曼散射的应用 (5) 2.3拉曼放大器的分类 (6) 2.4拉曼放大器的特点 (7) 3拉曼放大器的应用 (8) 3.1拉曼放大器的特性 (8) 3.1.1 2.2 拉曼放大器在DWDM中的应用 (9) 4工程中应用注意事项 (10) 4.1端面要保持清洁 (10) 4.2光缆性能保证 (11) 4.3其他注意事项 (11)

关键词: 拉曼放大器 摘要: 本资料详细描述了拉曼放大器基本理论及在DWDM系统中的应用。缩略语清单: 无。 参考资料清单: 无。

DWDM系统拉曼放大器的原理及应用 1 前言 近年来,随着数据通信和INTERNET的发展,密集波分复用通信系统的带宽 需求不断提高,拉曼放大器作为DWDM系统中的关键技术,已经成为光纤通 信领域研究的热点。由于其具有极宽的增益带宽,极低的噪声系数,拉曼放 大器在超大容量高速长距离DWDM系统中得到广泛的应用,可以大幅度提升 现有光纤系统的容量,增加无电再生中继的传输距离,降低系统的成本。EDFA 和拉曼放大器的有机结合,是目前的通信系统中比较成熟的一种方式。 2 拉曼放大器原理 2.1 受激拉曼散射概念 在常规光纤传输系统中,由于光功率并不大,因此光纤主要呈现线性传输特 性。然而随着光纤放大器的应用,光纤在一定条件下开始呈现出非线性特性, 并最终成为限制系统性能的因素之一。受激拉曼散射就是非线性效应中的一 种。 当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射 光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频 边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克 斯频率的光波同时入射到光纤时,低频波将获得光增益;高频波将衰减,其 能量转移到低频段上,这就是受激拉曼散射(SRS)。 由于受激拉曼散射SRS激发的是光频支声子,其产生的拉曼频移量一般在 100GHz~200GHz,且门限值较大,在1550nm处约为27dBm,一般情况下 不会发生。但对于WDM系统,随着传输距离的增长和复用的波数的增加, EDFA放大输出的光信号功率会接近27dBm,SRS产生的机率会增加。 2.2 受激拉曼散射的应用 高强度电磁场中任何电介质对光的响应都会变成非线性,光纤也不例外。受 激拉曼散射(SRS)是光纤中一个很重要的三阶非线性过程。它可以看作是 介质中分子振动对入射光(泵浦光)的调制,从而对入射光产生散射作用。 假设入射光的频率为ωl,介质的分子振动频率为ωv,则散射光的频率为:

拉曼光纤放大器

拉曼光纤放大器 学号:11007990831 姓名:杨帆 摘要:拉曼光纤放大器因其特有的在线、宽带、低噪声等特点而越来越被人们关注,是一种非常适合下一代超大容量、超长距离密集波分复用系统(DWDM)的光纤放大器。介绍拉曼光纤放大器的原理,分析拉曼光纤放大器应用和最新进展,并探讨拉曼光纤放大器研究两个方面。 关键词:光纤放大器;受激拉曼散射;研究进展 引言 随着通信业务需求的飞速增长,对光纤传输系统的容量和无中继传输距离的要求越来越高。密集波分复用(DWDM)通信系统的速率和带宽不断提升,以10Gbit/s甚至更高速率为基础的密集波分复用系统必然成为主流的光传输系统。掺铒光纤放大器(EDFA)由于其增益平坦性等局限性,已经不能完全满足光通信系统发展的要求。而相对于掺铒光纤放大器,光纤拉曼放大器具有更大的增益带宽、灵活的增益谱区、温度稳定性好以及放大器自发辐射噪声低等优点,光纤拉曼放大器是唯一能在1292~1660nm的光谱上进行放大的器件。并且,拉曼散射效应在所有类型的光纤上都存在,与各类光纤系统具有良好的兼容性,包括已铺设和新建的各种光纤链路。 拉曼现象早在1928年就被Chandrasekhara Raman所发现,在此之后就有人提出了利用这种效应来实现光的放大。但在很长时间内拉曼光纤放大器未能获得广泛应用,甚至在EDFA出现后一度销声匿迹,关键原因在于缺乏合适的大功率泵浦激光器。由于EDFA的广泛应用,它所用的1480nm大功率泵浦激光器得到了深入的研究和开发,这就使拉曼放大器成为可能。 拉曼光纤放大器原理 拉曼光纤放大器的工作原理是基于石英光纤中的受激拉曼散射效应,在形式上表现为处于泵浦光的拉曼增益带宽内的弱信号与强泵浦光波同时在光纤中传输,从而使弱信号光即得到放大。其工作原理示意如图1所示。 泵浦光子入射到光纤,光纤中电子受激并从基态跃迁到虚能级,然后

光纤放大器的调节方法

光纤放大器的调节方法 无线光通信是以激光作为信息载体,是一种不需要任何有线信道作为传输媒介的通信方式。与微波通信相比,无线光通信所使用的激光频率高,方向性强(保密性好),可用的频谱宽,无需申请频率使用许可;与光纤通信相比,无线光通信造价低,施工简便、迅速。它结合了光纤通信和微波通信的优势,已成为一种新兴的宽带无线接人方式,受到了人们的广泛关注。但是,恶劣的天气情况,会对无线光通信系统的传播信号产生衰耗作用。空气中的散射粒子,会使光线在空间、时间和角度上产生不同程度的偏差。大气中的粒子还可能吸收激光的能量,使信号的功率衰减,在无线光通信系统中光纤通信系统低损耗的传播路径已不复存在。大气环境多变的客观性无法改变,要获得更好更快的传输效果,对在大气信道传输的光信号就提出了更高的要求,一般地,采用大功率的光信号可以得到更好的传输效果。随着光纤放大器(EDFA)的迅速发展,稳定可靠的大功率光源将在各种应用中满足无线光通信的要求。 1 、EDFA的原理及结构 掺铒光纤放大器(EDFA)具有增益高、噪声低、频带宽、输出功率高、连接损耗低和偏振不敏感等优点,直接对光信号进行放大,无需转换成电信号,能够保证光信号在最小失真情况下得到稳定的功率放大。 1.1、EDFA的原理 在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er3+离子抽运到激发态,处于激发态的Er3+离子又迅速无辐射地转移到亚稳态。由于Er3+离子在亚稳态能级上寿命较长,因此很容易在亚稳态与基态之间形成粒子数反转。当信号光子通过掺铒光纤时,与处于亚稳态的Er3+离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺铒光纤传输的信号光子迅速增多,产生信号放大作用。Er3+离子处于亚稳态时,除了发生受激辐射和受激吸收以外,还要产生自发辐射(ASE),它造成EDFA的噪声。 1.2、EDFA的结构 典型的EDFA结构主要由掺铒光纤(EDF)、泵浦光源、耦合器、隔离器等组成。掺铒光纤是EDFA的核心部件。它以石英光纤作为基质,在纤芯中掺人固体激光工作物质铒离子,在几米至几十米的掺铒光纤内,光与物质相互作用而被放大、增强。光隔离器的作用是抑制光反射,以确保放大器工作稳定,它必须是插入损耗低,与偏振无关,隔离度优于40 dB。 1.3 、EDFA的特性及性能指标 增益特性表示了放大器的放大能力,其定义为输出功率与输入功率之比: 式中:Pout,Pin分别表示放大器输出端与输入端的连续信号功率。增益系数是指从泵浦光源输入1 mW 泵浦光功率通过光纤放大器所获得的增益,其单位为dB/mW:

光纤通信原理论文

光纤通信原理论文

浅谈掺铒光纤放大器 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。 光纤放大器是光纤通信系统对光信号直接进行放大的光放大器件。在使用光纤的通信系统中,不需将光信号转换为电信号,直接对光信号进行放大的一种技术。 掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 + 的光信号放大器)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。掺铒光纤放大器的工作原理: 掺铒光纤放大器主要是由一段掺铒光纤(长约10-30m)和泵浦光源组成。其工作原理是:掺铒光纤在泵浦光源(波长980nm或1480nm)的作用下产生受激辐射,而且所辐射的光随着输入光信号的变化而变化,这就相当于对输入光信号进行了放大。研究表明,掺铒光纤放大器通常可得到15-40db的增益,中继距离可以在原来的基础上提高100km以上。那么,人们不禁要问:科学家们为什么会想到在光纤放大器中利用掺杂铒元素来提高光波的强度呢?我们知道,铒是稀土元素的一种,而稀土元素又有其特殊的结构特点。长期以来,人们就一直利用在我学器件中掺杂稀土元素的方法,来改善光学器件的性能,所以这并不是一个偶然的因素。另外,为什么泵浦光源的波长选在980nm或1480nm呢?其实,泵浦光源的波长可以是520nm、650nm、980nm、和1480nm,但实践证明波长980nm的泵浦光源激光效率最高,次之是波长1480nm的泵浦光源。 掺铒光纤放大器的基本结构: EDFA的基本结构,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。信号光与泵浦光在铒光纤内可以在同一方向(同向泵浦)、相反方向(反向泵浦)或两个方向(双向泵浦)传播。当信号光与泵光同时注入到铒光纤中时,铒离子在泵光作用下激发到高能级上,三能级系统),并很快衰变到亚稳态能级上,在入射信号光作用下回到基态时发射对应于信号光的光子,使信号得到放大。其放大的自发发射(ASE)谱,带宽很大(达20-40nm),且有两个峰值,分别对应于1530nm和1550nm。 掺铒光纤放大器的优点: 1.掺铒光纤的放大区域恰好与单模光纤的最低损耗区域相重合。那么,被掺铒光纤放大器放大的光在光纤中的传输损耗小,能传输比较远的距离。 2.对数字信号的格式及数据率“透明”。 单模光纤损耗谱和掺饵光纤放大器的增益谱 3.放大频带宽,能在同一根光纤中传输几十甚至上百个信道。 4.噪声指数低,接近量子极限,意味着可级联多个放大器。 5.增益饱和的恢复时间长,各个信道间的串扰极小。 掺铒光纤放大器的分类:

相关主题
文本预览
相关文档 最新文档