当前位置:文档之家› 高压电力电容器用放电线圈

高压电力电容器用放电线圈

高压电力电容器用放电线圈
高压电力电容器用放电线圈

高压带电显示器说明书

DXN8D户内高压带电显示装置安装使用说明书 1 适用范围 1.1 DXN8D户内高压带电显示装置(以下简称装置),适用于额定电压为3.6、7.2、12、24、40.5kV和额定频率为50Hz的户内高压电气设备中,用以提示带电状况和强制闭锁开关柜网门,是保证安全的重要措施之一。 1.2 传感器:可以与各种类型高压开关柜、隔离开关、接地开关等配套使用。 1.3 提示型显示器:用以提示高压带电回路的带电状况,起防误与安全的提示作用。 1.4 强制型显示器:除具有提示型显示器功能外,还可与电磁锁配合实现强制闭锁开关柜操作手柄及网门,达到防止带电合接地开关,防止误入带电间隔,提高开关设备防误性能。1.5 带核相型显示器:为方便用户现场双电源核相,显示器面板设置了相位测试端。 1.6 使用环境条件 1.6.1 周围环境温度:+40℃~-25℃。 1.6.2 海拔高度: 1000m及以下地区;1000~3000m地区。 1.6.3 户内环境相对湿度:日平均湿度不大于95%,月平均湿度不大于90%,产品应考虑凝露、雨、温度骤变及日照等的影响。 1.6.4 适用于Ⅱ级污秽环境。 2 型号 2.1 装置型号 功能:T—提示型、Q—强制型 加强绝缘型(Q) 额定电压(kV) 设计序号 户内 显示装置 高压 2.2 传感器型号 上嵌件安装孔形式 高度尺寸(mm) 加强绝缘型(Q) 额定电压(kV) 设计序号 传感器

2.3 显示器型号 类型:Ⅰ型、Ⅱ型、Ⅲ型、Ⅳ型、Ⅴ型 功能:T —提示型、Q —强制型 设计序号 显示器 3 技术参数 装置的基本技术参数,参见表1。 表1 DXN8系列户内高压带电显示装置技术参数表 4 分类 4.1 传感器 4.1.1 按电压等级分:3.6、7.2、12、24、40.5kV 。 4.1.2 按传感器的绝缘水平分:普通型;加强绝缘型(即全工况型)。 4.1.3 按传感器的外形尺寸、安装尺寸分:参见表2。 表2 传感器型号规格技术性能表

关于大容量电力电容器极间交流耐压试验的意见

关于大容量电力电容器极间交流耐压试验的意见 摘要:根据绝缘结构分析和实践经验证明尽快执行用交流极间耐压代替直流耐压的新标准的必要性、紧迫性和可行性。 关键词:电力电容器交流极间耐压 Abstract:Based on the analysis of insulation structure and experience, it is proved that to use AC voltage withstand test is stead of DC voltage withstand test is n ecessary and possible. Key words:electric power capaciterACvoltage withstand between terminal s 0前言 长期以来交流电力电容器现场安装后的交接试验都以简单易行的极间直流耐压试验作为主绝缘性能是否良好的一种检验手段。近年来,纸膜绝缘或全膜绝缘电力电容器日益增多,单台电容器的容量越做越大并出现了大容量集合式电力电容器,而现场交接验收仍然袭用直流耐压试验,投运后电力电容器发生损坏的情况屡有所闻,且以集合型的为多。下面对有关问题提出讨论和意见。 1电力电容器极间交流耐压的必要性 ①直流面耐压试验不能反映设备实际工况下的电场分布,难以正确发现电容器的内部缺陷。 直流电压下电力电容器元件上的电压按电阻分布;而在交流电压下则是按介电常数分布的,它反映运行的实际情况。全膜或纸膜电容器的固体介质电阻率可高达1~100 EΩm,当某电容元件的绝缘薄膜绝缘不良时,其电阻率可大幅度下降至原电阻率的几分之一。直流耐压时,电阻率高的良好的电容元件上承受的

变压器局部放电试验

变压器局部放电试验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

变压器局部放电试验 试验及标准 国家标准GB1094-85《电力变压器》中规定的变压器局部放电试验的加压时间步骤,如图5所示。其试验步骤为:首先试验电压升到U 2下进行测量,保持5min ;然后试验电压升到U 1,保持5s ;最后电压降到U 2下再进行测量,保持30min 。U 1、 U 2的电压值规定及允许的放电量为 U U 2153=.m 电压下允许放电量Q <500pC 或 U U 213 3=.m 电压下允许放电量Q <300pC 式中 U m ——设备最高工作电压。 试验前,记录所有测量电路上的背景噪声水平,其值应低于规定的视在放电量的50%。 测量应在所有分级绝缘绕组的线端进行。对于自耦连接的一对较高电压、较低电压绕组的线端,也应同时测量,并分别用校准方波进行校准。 在电压升至U 2及由U 2再下降的过程中,应记下起始、熄灭放电电压。 在整个试验时间内应连续观察放电波形,并按一定的时间间隔记录放电量Q 。放电量的读取,以相对稳定的最高重复脉冲为准,偶尔发生的较高的脉冲可忽略,但应作好记录备查。整个试验期间试品不发生击穿;在U 2的第二阶段的30min 内,所有测量端子测得的放电量Q ,连续地维持在允许的限值内,并无明显地、不断地向允许的限值内增长的趋势,则试品合格。 如果放电量曾超出允许限值,但之后又下降并低于允许的限值,则试验应继续进行,直到此后30min 的期间内局部放电量不超过允许的限值,试品才合格。利用变压器套管电容作为耦合电容C k ,并在其末屏端子对地串接测量阻抗Z k 。

电 容 器 试 验

电容器试验 电力系统中常用的电容器有电力电容器、耦合电容器、断路器均压电容以及电容式电压互感器的电容分压器。电力电容器在系统中一般用作补偿功率因数和用于发电机的过电压保护。耦合电容器主要用于电力系统载波通信及高频保护。均压电容器并联在断路器断口,起均压及增加断路器断流容量的作用。其结构域耦合电容器基本一样。 耦合电容器与电力电容器的构造材料均为油浸纸绝缘电容器。电容元件由铝箔极板和电容器纸卷制而成,一台电容器由数个乃至数十个、数百个这样的电容元件串并联组成。电力电容器一般电容量较大(μF级),额定电压多为35kv及以下,其结构特点是将串并联电容元件密封在铁壳中,充以绝缘油,引线由瓷套管引出,供连接之用。耦合电容器一般电容量为3000~15000PF,额定电压在35kv及以上。其结构特点是将串并联电容元件密封在瓷套中,高压端接带阻波器的高压引线,另一端由底部的小套管引出,接结合滤波器。 耦合电容器和电容式电压互感器的电容分压器的试验项目及标准如表所示。 电力电容器的试验项目、周期和标准《规程》也做了规定,在交接试验时对电力电容器一般做以下项目试验: (1)测量两级对外壳的绝缘电阻; (2)测量极间电容值; (3)渗漏油检查; (4)交流耐压试验; (5)冲击合闸试验; (6)并联电阻测量。

测量绝缘电阻 测量绝缘电阻的目的主要是初步判断耦合电容器的两级及电力电容器两极对外壳之间的绝缘状况,测量时用2500v兆欧表。摇测耦合电容器小套管对地绝缘电阻时用1000V兆欧表。测量接线如图所示 测量结果应与历次测量值及经验值比较,进行分析判断,测量时应注意: ○1测量前后对电容器两级之间,两极与地之间,均应充分放电,尤其对电力电容器应直接从两个引出端上直接放电,而不应尽在连接板上对地放电。因为大多数电力电容器两极与连接板连接时均串有熔断器,若某电力电容器上熔断器熔断,在连接板上放电不一定能将该电力电容器上所储存电荷放完。 ○2应按大容量试品的绝缘电阻测量方法摇测电容器,在摇测过程中,应在未断开兆欧表以前,不停止摇动手柄,防止反充电损坏兆欧表。 ○3不允许长时间摇测电力电容器两极之间的绝缘电阻。因电力电容器电容量较大,储存电荷也多,长时间摇测时若操作不慎易造成人身及设备事故。有些单位在摇测电力电容器两极绝缘状况时,一般先将兆欧表轻摇几转,一般不超过5转,然后通过电容器两极放电的放电声及放电火花来判断绝缘状况。若有清脆的放电声及明显的放电火花,则认为电容器两极绝缘状况良好;若无放电声及火花,则认为电容器内部绝缘受潮老化或者两极与电容之间引线断开。用这种方法应注意,对两极放电的放电引线两端应接在短绝缘棒上,人身不要直接接触放电引线,放电引线应采用裸铜导线。

高压并联电容使用说明

产品名称:高电压并联电容器出品单位:西安华超电力电容器有限公司 1 产品用途 本产品适用于频率50Hz电力系统,提高功率因数用的并联电容器。主要用于改善交流电力系统的功率因数,降低线路损耗,提高网路末端电压质量,增大变压器的有功输出。 2 特点 2.1该产品以粗化聚丙烯薄膜及苄基甲苯做介质,电子、电力电容器专用铝箔 为电极,采用无感卷制方式,为扁形元件,元件内部场强分布均匀,容量无衰减、比特性小、寿命长以及优良的电气性能等特点。 2.2采用高真空干燥浸渍技术除去电容器中全部残余水分和空气,填注苄基甲 苯浸渍剂(法国C101)。具有不易导磁、过流大、损耗小等特点,有良 好的耐低温特性。 2.3采用不锈钢外壳封装。两侧带有固定架,陶瓷绝缘子。以及科学合理的引出方式。 3 产品型号及含义

4 技术参数 4.1主要参数 4.1.1额定频率:50Hz 4.1.2端子间试验电压:交流试验电压2.15Un或直流试验电压4.3Un。 4.1.3损耗角正切值:小于0.0009。 4.1.4相数:单相。 4.1.5绝缘水平: 电容器的高压端子与地之间应能承受表1规定的耐受电压。工频耐受电压施加的时间为1min。 表1 绝缘水平(kV) 4.1.6放电电阻:电容器内部装有内放电电阻,从电网断开后,端子上的电压在10分钟内可降至75V以下。 4.1.7电容偏差:±5% 4.1.8电容器组三相最大电容量与最小电容量之比不大于1.01。 4.1.9执行标准:GB/11024-2001《标称电压1kV以上交流电力系统用并联电容器》 4.2过负载 4.2.1电容器可在表2的电压水平下运行。 表2

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

并联电容器通用使用说明书西安西电电力电容器新样本

目录 内容 1、电容器名称和型号…………………………………………….…. 2、主要技术参数及主要技术性能指标…………………………….. 3、主要结构………………………………………………………….. 4、吊运、验收、保存及安装……………………………………….. 5、使用前的试验…………………………………………………….. 6、保护……………………………………………………………….. 7、接通和断开……………………………………………………….. 8、电容器的放电…………………………………………………….. 9、使用中的维护保养及故障排除………………………………… 10、电容器安装容量的确定…………………………………………..

本说明书适用于频率50Hz或60Hz、额定电压1kV以上交流电力系统用并联电容器, 该种电容器主要为工频交流电力系统提供无功功率, 用来提高电网功率因数, 降低损耗, 改进电压质量, 充分发挥发电、供电设备的效率。 西安西电电力电容器有限责任公司( 以下简称西容公司) 高压并联电容器产品性能优良, 质量可靠。电容器开发、设计、制造及试验严格执行IEC60871-1.1997国际电工委员会标准、 GB/T11024- 国家标准和DL/T840- 电力行业标准要求, 某些参数高于标准要求。 1电容器的名称和型号 1.1电容器的名称—高压并联电容器 1.2电容器型号表示方法 其中—以大写的汉语拼音字母表示 —以阿拉伯数字表示 1.2.1系列代号: B—并联电容器 1.2.2介质代号 FM—二芳基乙烷(S油)或苯基乙苯基乙烷( PEPE油) 浸全膜介质 AM—苄基甲苯( C101油) 浸全膜介质 1.2.3第一特征号: 表示额定电压, 以kV为单位。 1.2.4第二特征号: 表示额定容量, 以kvar为单位。 1.2.5第三特征号: 表示相数: 1为单相, 3为三相( 内部星接) , 1×3W为单相连接, 三相独立。

高压带电显示器说明书

DXN8[户内高压带电显示装置安装使用说明书 1适用范围 1.1 DXN8D 户内高压带电显示装置(以下简称装置),适用于额定电压为3.6、7.2、12、 24、40.5kV 和额定频率为50Hz 的户内高压电气设备中,用以提示带电状况和强制闭锁开 关柜网门,是保证安全的重要措施之一。 1.2 传感器:可以与各种类型高压开关柜、隔离开关、接地开关等配套使用。 1.3 提示型显示器:用以提示高压带电回路的带电状况,起防误与安全的提示作用。 1.4 强制型显示器:除具有提示型显示器功能外,还可与电磁锁配合实现强制闭锁开关 柜操作手柄及网门,达到防止带电合接地开关,防止误入带电间隔,提高开关设备防误性 1.5 带核相型显示器:为方便用户现场双电源核相,显示器面板设置了相位测试端。 1.6 使用环境条件 1.6.1 周围环境温度:+40C ?-25C 。 1.6.2 海拔高度:1000m 及以下地区;1000?3000m 地区。 1.6.3 户内环境相对湿度:日平均湿度不大于 95%月平均湿度不大于90%产品应考虑 凝露、雨、温度骤变及日照等的影响。 1.6.4 适用于U 级污秽环境。 2型号 2.1 装置型号 功能:T —提示 型、 户内 显示装置 咼压 高度尺寸(mm 上嵌件安装孔形式 加强绝缘型(Q ) 额定电压(kV ) 设计序号 C —强制 型

---------------- 加强绝缘型(Q ) ------------------------ 额定电压(kV ) ------------------------ 设计序号 --------------------------- 传感器 2.3 显示器型号 3技术参数 装置的基本技术参数,参见表1 4 分类 4.1 传感器 4.1.1 按电压等级分:3.6、7.2、12、24、40.5kV 4.1.2 按传感器的绝缘水平分:普通型;加强绝缘型(即全工况型) ZS 8- □ / □ 川型、W 型、V 型 C —强制型

10KV电容器资料

10kV无功补偿装置 技术规范书 2008年7月 1总则 1.1本技术协议适用于山西地电股份公司110kV变电站新建工程。它提出了对该无功补偿

设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2需方在本技术协议中提出的是最低限度的技术要求,并未对一切技术细节作出规定, 也未充分引述有关标准和规范的条文,供方应提供符合本协议和工业标准并经鉴定合格的优质产品。 1.3如果供方没有以书面形式对本技术协议的条文提出异议,则表示供方提供的设备完全 符合本技术协议的要求。如有异议,不管是多么微小,都应以书面形式在投标文件中提交需方。 2技术要求 2.1设备制造应满足下列规范和标准,但并不仅限于此: GB311《高压输变电设备的绝缘配合》 GB270《交流高压电器动热稳定试验方法》 GB763《交流高压电器在长期工作时的发热》 GB5582《高压电力设备外绝缘污秽等级》 GB273《变压器、高压电器和套管的接线端子》 高压并联电容器装置技术标准----国家电网公司 DL/T604—1996高压并联电容器装置订货技术条件》 GB3983 2 —89《交流高压并联电容器》 DL462-91《高压并联电容器用串联电抗器订货技术条件》以上标准均执行最新版本。2.2使用环境条件: 2.2.1 户外/户内:户外 最高温度:37 C 最低温度:-23.3 C 最大风速:23m/s 环境湿度:月平均相对湿度不大于90%日平均相对湿度不大于95% 污秽等级:川级 海拔高度:< 1000m 地震烈度:7度 2.系统运行条件 2.1系统标称电压10 kV 2.2最高运行电压11 kV

局部放电试验理论与实际应用

局部放电试验理论与实际应用 1 基本概念 1.1局部放电的产生和放电过程 采用固体绝缘的电工产品,如塑料电缆、电机、胶纸套管以及浇注变压器等,都难免在绝缘结构中含有气隙,产生气隙的原因很多,有的是在产品制造中就残留在绝缘结构中;有的是在使用中有机材料进一步固化或裂解而放出气体形成的;有的是在使用中承受机械力如震动、热胀冷缩等造成的局部开裂。这些气隙在电场作用下就会产生局部放电。 最简单的情况是在介质内部含有一个气隙,如图1所示。 图中c代表气隙,b是与气隙串联部分的介质,a是除了b之外其他部分的介质。假定这一介质是处于平行板电极之中,在交流电场作用下,气隙和介质中的电过程可以用图2所示的等效电路来分析。 从等效电路图可见,在工频电场中气隙的电场强度比介质中电场强度高,而另

一方面气体的击穿场强即气隙发生击穿时的电场强度一般都比固体的击穿场强低。因此,在外加电压足够高时,气隙首先被击穿,而周围的介质仍然保持其绝缘特性,电极之间并没有形成贯穿性的通道,这种现象就称为局部放电。 在液体和固体的组合绝缘结构中,如油纸电容套管、油纸电缆、油浸式流变、压变、油纸电容器(耦合电容器)、油浸变压器等等,由于在制造中采取了真空干燥浸渍等工艺,可以使绝缘体中基本上不含有气隙,但却不可避免地存在着充满绝缘油的气隙。这些油的介电常数通常也比固体介质为小,而击穿场强又比固体介质低,因此,在油隙中也会发生局部放电,不过与气隙相比要在高得多的电场强度下才会发生。 还应当注意的是,即使在介质中不含有气隙或油隙,只要是介质中的电场分布是极不均匀的,也就可能发生局部放电。例如埋在介质中的针尖电极或电极表面上的毛刺,或其他金属屑等异物附近的电场强度,要比介质中其他部位的电场强度高得多。当局部的电场强度达到介质的本征击穿场强时,介质局部击穿而形成了局部放电。 如果外施电压是正弦交流电压,当电压瞬时值上升使得气隙上的电压Uc达到气隙的击穿电压Ucb时,气隙发生击穿放电。由于放电的时间极短,可以看作气隙上的电压由于放电而在瞬间下降了ΔUc,于是气隙上的实际电压低于气隙的击穿电压,放电暂停。此后气隙上的电压又随外加电压瞬时值的上升而上升,直到气隙上的电压又回升到气隙的击穿电压Ucb时,气隙又发生击穿放电,此时气隙上的电压又下降ΔUc,于是放电又暂停。假定气隙表面电阻很高,前一次放电产生的空间电荷没有泄漏掉,则这时气隙中的放电电荷建立的反向电压为-2ΔUc。依此类推,如果在外加电压的瞬时值达到峰值之前发生了n次放电,每次产生的电荷都量相等的,则在气隙中放电电荷建立的电压为-nΔUc。在外加电压过峰值后,气隙上的外加电 压分量U 外逐渐减小,当U 外 =∣-nΔUc∣时,气隙上的实际电压为零。 外施电压的瞬时值继续下降,当∣U 外 -nΔUc∣=Ucb时,即气隙上实际的电压 达到击穿电压时,气隙又发生放电,不过放电电荷移动的方向决定于在此以前放电 电荷所建立的电场E 内 ,于是减少了原来放电所积累的电荷,使气隙上的实际电压 为∣U 外 -(n-1)ΔUc∣<Ucb于是放电暂停。此后随外施电压继续下降到负半周, 当重新达到∣-U 外 -(n-1)ΔUc∣=Ucb时,气隙又发生放电,放电后气隙上的电压

全浇注干式放电线圈说明书

FDGE型高压并联电容器用全浇注干式放电线圈 使 用 说 明 书

FDGE型高压并联电容器用 全浇注干式放电线圈使用说明书 1.用途及适用范围 FDGE型放电线圈用于电力系统中与高压并联电容器组并联连接,使电容器组从电力系统切除后的剩余电荷能快速泄放,电容器的剩余电压在规定的时间内达到要求值,防止在再次合闸时,由于电容器组仍带有电荷而产生危及设备安全的合闸过电压和过电流,确保检修人员的安全。 FDGE型放电线圈带有二次线圈,供测量和保护用。 2.产品特点 2.1 采用环氧树脂真空浇注结构,实现了无油化; 2.2 完全免除了油渗漏、污染环境和易燃等缺点; 2.3 产品结构简单,安装使用方便; 2.4 加强的内外绝缘使产品有极高的安全性; 2.5 产品维护简单,只需在停电时擦去表面灰尘即可; 2.6 产品坚固可靠,机械强度高。 3.使用条件 3.1.安装地点 3.1.1 安装位置:户内或户外; 3.1.2 环境温度:-40~+45℃; 3.1.3 海拔:不超过1000米; 3.2 安装使用环境 3.2.1 无腐蚀性气体、蒸汽,无导电性或爆炸性尘埃;

3.2.2 安装场所无剧烈的机械振动; 3.2.3 最大风速:35m/s; 3.2.4 放电线圈能在1.1倍额定电压下长期运行。 4.主要技术数据

(c) (b)(a)5. 型号及说明 6. 与电容器线的连接方法 7. 包装、运输及贮存 7.1放电线圈必须使用包装箱包装;并在包装箱中固定,箱外要有型号和搬运禁忌标志。 7.2放电线圈应保存在防雨雪、没有腐蚀性气体、相对湿度不大于95%的地方。

高压并联电容器装置说明书

高压并联电容器装置说明书 一.概述 1.1产品适用范围与用途 TBB型高压并联电容器装置(以下简称装置),主要用于3~ 110kV,频率为50Hz的三相交流电力系统中,用以提高功率因数,调整网络电压,降低线路损耗,改善供电质量,提高供配电设备的使用效率的容性无功补偿装置。 1.2型号、规格 及外形尺寸

1.2.1型号说明 装置的保护方式通常与电容器组的接线方式有关系,一般的有AK、AC、AQ和BC、BL之分。 1.2.2执行标准 GB 50227 标称电压1kV以上交流电力系统用并联电容器 GB 10229 电抗器 GB 311.1 高压输变电设备的绝缘配合 GB 50060 3~110kV高压配电装置设计规范 JB/T 5346 串联电抗器 JB/T 7111 高压并联电容器装置 DL/T 840 高压并联电容器使用技术条件 其它现行国家标准。 DL/T 604 高压并联电容器装置订货技术条件

1.2.3产品规格与外形尺寸 常用的产品规格与柜体外形尺寸如表1~5所示。装置的外形和基础的示意图分如图1、图2所示。 产品规格与外形尺寸 注:以下尺寸仅供参考,实际尺寸根据用户情况而定。以单台电容额定电压11/3kV 表格 1 卧式-阻尼电抗后置 单位:mm 序 号型号规格额定容量L1 L2 H 额定电 流 (A) 1 TBB10-600/100A K 600 1200 2800 2600 94.5 2 TBB10-900/100A K 900 1200 3100 2600 141.7 3 TBB10-1000/334A K 1000 1200 2100 2600 157.5 4 TBB10-2000/334A K 2000 1200 2800 2600 315 5 TBB10-2400/200A K 2400 1200 3400 2600 378

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

电力电容器和一般电子元件电容器有何区别

电力电容器和一般电子元件电容器有何区别? 电力电容器是用于电力系统和电工设备的电容器。特点是大功率、高电压、低频率,所以体积巨大。1926年电力电容器开始工厂化生产,并正式在电力系统中应用。随着大电厂和远距离输电系统的建立、新兴科学技术领域的发展,电力电容器的品种和容量得到了迅速的发展。50年代初,并联电容器的最大单台容量为25~50千乏,到1978年生产出的最大单台容量已达6667千乏,80年代已达到单台容量1万千乏。 电力电容器种类很多,按其安装方式可分为户内和户外式两种;按其运行的额定电压可分为低压和高压两类;按其相数可分为单相和三相两种,除低压并联电容器外,其余均为单相;按其外壳材料可分为金属外壳、瓷绝缘外壳、胶木筒外壳等;按其用途又可分为以下8种。 ①并联电容器:原称移相电容器。主要用来补偿电力系统感性负荷的无功功率,以提高功率因数,改善电压质量,降低线路损耗。单相并联电容器主要由心子、外壳和出线结构等几部分组成。用金属箔(作为极板)与绝缘纸或塑料薄膜叠起来一起卷绕,由若干元件、绝缘件和紧固件经过压装而构成电容心子,并浸渍绝缘油。电容极板的引线经串、并联后引至出线瓷套管下端的出线连接片。电容器的金属外壳内充以绝缘介质油。 ②串联电容器:串联于工频高压输、配电线路中,用以补偿线路的分布感抗,提高系统的静、动态稳定性,改善线路的电压质量,加长送电距离和增大输送能力。其基本结构与并联电容器相似。 ③耦合电容器:主要用于高压电力线路的高频通信、测量、控制、保护以及在抽取电能的装置中作部件用。耦合电容器的高压端接于输电线上,低压端经过耦合线圈接地,使高频载波装置在低电压下与高压线路耦合。耦合电容器外壳由瓷套和钢板制成的底和盖构成。外壳内装有薄钢板制成的扩张器,以补偿浸渍剂体积随温度的变化。 ④断路器电容器:原称均压电容器。主要用于并联在超高压断路器的断口上起均压作用,使各断口间的电压在分断过程中和断开时均匀、并可改善断路器的灭弧特性,提高分断能力。常用的断路器电容器的结构与耦合电容器相似。随着高压陶瓷电容器的发展,已有采用陶瓷电容器作为电容元件,再装入瓷套和钢板制成的外壳中制成的断路器电容器。 ⑤电热电容器:用于频率为40~24000赫的电热设备系统中,以提高功率因数、改善回路的电压或频率等特性。电热电容器因发热量较大,必须保证其散热良好,通常极板采用水冷却。适用于4000赫以上的电热电容器,其外壳用黄铜板焊接而成。 ⑥脉冲电容器:主要起贮能作用,在较长的时间内由功率不大的电源充电,然后在很短的时间内进行振荡或不振荡地放电,可得到很大的冲击功率。脉冲电容器用途很广,如作为冲击电压发生器、冲击电流发生器、断路器试验用振荡回路等基本(贮能)元件。 ⑦直流和滤波电容器:用于高压直流装置和高压整流滤波装置中。交流滤波电容器可用以滤去工频电流中的高次谐波分量。 ⑧标准电容器:用于工频高压测量介质损耗回路中,作为标准电容或用作测量高电压的电容分压装置。标准电容器要求电容值准确而稳定,因此常采用气体介质及双屏蔽同轴圆筒形和同心球形极板系统。

变压器局部放电试验基础与原理

变压器试验基础与原理 1.概述 随着电力系统电压等级的不断提高,为使输变电设备和输电线路的建设和使用更加经济可靠,就必须改进限制过电压的措施,从而降低系统中过电压(雷电冲击电压和操作冲击电压)的水平。这样,长期工作电压对设备绝缘的影响相对地显得越来越重要。 电力产品出厂时进行的高电压绝缘试验(如:工频电压、雷电冲击电压、操作冲击电压等试验),其所施加的试验电压值,只是考核了产品能否经受住长期运行中所可能受到的各种过电压的作用。但是,考虑这种过电压值的试验与运行中长期工作电压的作用之间并没有固定的关系,特别对于超高电压系统,工作电压的影响更加突出。所以,经受住了过电压试验的产品能否在长期工作电压作用下保证安全运行就成为一个问题。为了解决这个问题,即为了考核产品绝缘长期运行的性能,就要有新的检验方法。带有局部放电测量的感应耐压试验(ACSD 和ACLD)就是用于这个目的的一种试验。 2.局部放电的产生 对于电气设备的某一绝缘结构,其中多少可能存在着一些绝缘弱点,它在-定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性的击穿。这种导体间绝缘仅被局部桥接的电气放电被称为局部放电。这种放电可以在导体附近发生也可以不在导体附近发生(GB/T 7354-2003《局部放电测量》)。 注1:局放一般是由于绝缘体内部或绝缘表面局部电场特别集中而引起的。通常这种放电表现为持续时间小于1微秒的脉冲。 注2:“电晕”是局放的一种形式,她通常发生在远离固体或液体绝缘的导体周围的气体中。 注3:局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。 高压电气设备的绝缘内部常存在着气隙。另外,变压器油中可能存在着微量的水份及杂质。在电场的作用下,杂质会形成小桥,泄漏电流的通过会使该处发热严重,促使水份汽化形成气泡;同时也会使该处的油发生裂解产生气体。绝缘内部存在的这些气隙(气泡),其介电常数比绝缘材料的介电常数要小,故气隙上承受的电场强度比邻近的绝缘材料上的电场强度要高。另外,气体(特别是空气)的绝缘强度却比绝缘材料低。这样,当外施电压达到某一数值时,绝缘内部

放电线圈检修试验作业指导书

放电线圈检修试验作业指导书 1 适用范围 本作业指导书适用于我段牵引变电所GZ-27.5/2放电线圈检修试验,温度不低于+5℃,空气相对湿度一般不高于80%的检修试验,检修周期3年。 2 规范性引用文件 下列文件对于本作业指导书的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本作业指导书。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本作业指导书。 《铁路电力安全工作规程》 《牵引变电所安全工作规程》《牵引变电所运行检修规程》 《牵引变电所安全工作规程和牵引变电所运行检修规程实施细则》 《铁路局营业线施工安全管理实施细则(试行)》 4 放电线圈检修试验 4.1 准备工作

4.1.1 人员准备 作业人员2-4人,其中工作领导人1人,作业人员必须经过专业培训并取得电气安全合格证。 4.1.2 工具、材料 序号名称规格型号单位数量 1 绝缘电阻表2500v、1000v 块各1 2 试验导线 2.5 mm2若干 3 温度计0℃-100℃个 1 4 湿度计个 1 5 万用表块 1 6 呆扳手把≥2 7 活扳手250mm 把≥2 (平口及梅 8 螺丝刀 把各1 花) 9 油桶个 1 10 保险丝及白布带若干 11 12

4.2 作业流程及标准

4.3 必要时试验 放电线圈可单独或全部进行下列试验项目,但耐压试验前必须先测量试品绝缘,合格后方可进行耐压。序号试验项目标准及要求 1绝缘电阻1.一次绕组用2500V兆欧表,二次绕组用1000V兆欧表。 2.绝缘电阻不低于1000MΩ。 2绕组的tgδ1.绕组绝缘tgδ(%)不应大于下表中数值: 温度℃510203040 35kV及以 下 大修后 1.5 2.5 3.0 5.07.0 运行中 2.0 2.5 3.5 5.58.0 35kV以上 大修后 1.0 1.5 2.0 3.5 5.0 运行中 1.5 2.0 2.5 4.0 5.5 2.支架绝缘tgδ一般不大于6%. 3交流耐压试验1. 用感应耐压法。 2.试验电压为出厂试验电压的85%。 4绝缘油击穿电压运行油:设备电压等级15~35kV的不小于30kV。5一次绕组直流电阻与上次测量值相比无明显差异 6电压比符合制造厂规定

带验电核项的高压带电显示装置说明书

ZR-DXN 高压带电显示装置

ZR-DXN 高压带电显示装置〃使用说明书 高压带电显示器 高压带电传感器 1、概述 ZR-DXN 系列高压带电显示装置,适用于额定电压6~35kV ,频率为50Hz 的户内高压柜内,用以反映高压回路的带电状况。 装置设有验电和自检按钮,提高了指示器的可靠性。不管高压侧是否带电,当二次工作电源接通,按下自检按钮,显示高压带电的A 、B 、C 指示灯被点亮,同时闭锁继电器动作,闭锁灯点亮;高压侧带电的情况下,按下验电按钮,带电相指示灯点亮,不带电相指示灯不亮。 ZR-DXNQ 增加了核相测试孔:为方便用户现场双电源核相,显示器面板设置了相位测试端。 装置符合DL/T538-93《高压带电显示装置技术条件》,可与各类电磁锁配套使用实行强制闭锁,防止误入带电间隔,提高配套产品的安全性。 2、型号说明

ZR-DXN高压带电显示装置〃使用说明书 3、技术参数 3.1 环境温度:-10℃~85℃; 3.2 相对湿度:≤95%RH; 3.3 系统额定电压:6~35kV; 3.4 LED启辉电压(kV):母线电压×0.15;3.5 闭锁启控电压(kV):母线电压×0.65; 3.6 高压带电传感器: 工频耐受电压:30kV,42kV,95kV; 雷电冲击耐受峰值电压:60kV,75kV,200kV; 最高工作电压:7.2kV,12kV,40.5kV。 4 注:闭锁起控电压(kV):母线电压×0.65。

ZR-DXN 高压带电显示装置〃使用说明书 AC(DC)-+1 J C 2345678 B A 5、尺寸图 6、端子定义 ZR-DXN 端子定义 外形尺寸:48×96×97mm (高×宽×深) 开孔尺寸:45×93mm (高×宽)

高压电力电容器说明书

1 、概述 1.1本说明书使用于频率50HZ或60HZ交流电力系统用并联电容器(以下简称电容器),该种电容器主要用来提高电网功率因数,降低线损, 改善电压质量,节约电费,提高变压器效率,充分发挥发电,供电设备的效率。 1.2电容器有GMKP/BFF型、GMKP/BFM型、GMKP/BAM型等系列,常用为GMKP/BFM型(全膜二芳基乙烷),其型号意义如下: GMKP/------- 包括法兰克公司系列代号,液体介质代号,固体介质代号,设计代号第一特征号,第二特征号,第三特征号,尾注号。 例如:(1)GMKP/BFM6.3-50-1,6.3Kv,50Kvar,单相,浸二芳基乙烷,全膜. (2 ) GMKP/BFMr11-100-3W,11Kv,100Kvar,三相,浸二芳基乙烷,全膜. (3 ) GMKP/BAMr11/√3-200-1Wh,11/√3Kv,200Kvar,单相,横放型,浸苄基甲苯,全膜. 1.2.1系列代号B:表示并联电容器。 1.2.2液体介质代号F:表示二芳基乙烷,A:表示苄基甲苯(适用寒冷低温地区)。 1.2.3固体介质代号F:表示膜纸复合介质,M:表示全膜介质。 1.2.4设计代号R:表示放电电阻,r:表示内熔丝。 1.2.5第一特征代号(额定电压)6.3:表示额定电压6.3Kv,11:表示额定电压11Kv 1.2.6第二特征代号(额定容量)50:表示额定容量50Kvar,100:表示额定容量100Kvar。 1.2.7第三特征代号(相数)1:表示单相,3:表示三相。 1.2.8尾注号W:表示户外式(不表示户内式),H:表示横放。 2、主要性能指标 2.1电容器安装运行地区环境温度范围为-40℃~+45℃,其中GMKP/BFF、GMKP/BFM型电容器为-25℃~+45℃。其余为-40℃~ +45℃。 海拔高度不超过1000米。对安装地点高度超过1000米的电容器,订货时应特别加以说明。 2.2电容器的主要技术数据和外形尺寸见表5和附图。 2.3电容器极间介质应能承受下列二种试验电压之一,历时10S。

10KV电容器(110、35kv站)

10kV无功补偿装置技术规范书 2008年7月

1 总则 1.1 本技术协议适用于山西地电股份公司110kV变电站新建工程。它提出了对该无功 补偿设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 需方在本技术协议中提出的是最低限度的技术要求,并未对一切技术细节作出 规定,也未充分引述有关标准和规范的条文,供方应提供符合本协议和工业标准并经鉴定合格的优质产品。 1.3 如果供方没有以书面形式对本技术协议的条文提出异议,则表示供方提供的设 备完全符合本技术协议的要求。如有异议,不管是多么微小,都应以书面形式在投标文件中提交需方。 2技术要求 2.1 设备制造应满足下列规范和标准,但并不仅限于此: GB311《高压输变电设备的绝缘配合》 GB270《交流高压电器动热稳定试验方法》 GB763《交流高压电器在长期工作时的发热》 GB5582《高压电力设备外绝缘污秽等级》 GB273《变压器、高压电器和套管的接线端子》 高压并联电容器装置技术标准----国家电网公司 DL/T604—1996 高压并联电容器装置订货技术条件》 GB3983.2—89《交流高压并联电容器》 DL462—91《高压并联电容器用串联电抗器订货技术条件》 以上标准均执行最新版本。 2.2 使用环境条件: 2.2.1 户外/户内:户外 最高温度: 37℃ 最低温度: -23.3℃ 最大风速: 23m/s 环境湿度:月平均相对湿度不大于90%,日平均相对湿度不大于95% 污秽等级:Ⅲ级 海拔高度:≤1000m 地震烈度: 7度 2. 系统运行条件

2.1 系统标称电压 10 kV 2.2 最高运行电压 11 kV 2.3 额定频率 50 Hz 2.4 中性点接地方式非有效接地 2.5 电容器组接线方式星形 2.6电容器分组数 2X3 2.7串联电抗器安装位置户外 3. 设备主要参数 3.1框架式并联电容器基本技术参数: 3.1.1 电容器额定电压 11 kV 3.1.2 电容器额定容量整组容量 3000+1800 kvar 可在1800、3000、4800三 个位置自动投切。 3.1.3 额定频率 50 Hz 3.2 串联电抗器主要参数 3.2.1配套电容器额定容量 3000+1800 kvar 3.2.2额定电压 3.2.3额定电抗率 6 % 3.2.4额定频率 50 Hz 3.3 放电线圈主要参数 3.3.1 3.3.2 3.3.3 二次额定负荷及准确级 100 VA 0.5 级 3.3.4 额定频率 50 Hz 3.4电容器单台保护用熔断器 额定容性开断电流为熔丝额定电流的20倍到50倍。 3.5避雷器主要参数 3.5.1 YH5WR-17/45 4、技术要求 4.1电容器采用两组,可灵活分组投切。 4.2电容器应能在不超过1.1U n电压和 1.30I n的稳态过电流下连续运行。 4.3电容器单元的电容偏差应不超过其额定值的-5%~+5%。三相电容器的任意两相实 测电容值中最大值与最小值之比C max/C min≤1.002。 4.4在额定电压下、环境温度20℃时测得的介质损耗因数tgδ≤0.05% 。

局部放电试验

局部放电测量指导书 一、适用范围 本指导书适用于电力设备在交流电压下进行局部放电试验,包括测量在某一定电压下的局部放电量、设备局部放电的起始电压和熄灭电压。 二、测量基本方法与步骤 2.1试验方法:根据接线方式可分为并联法、串联法,即检测阻抗与被试品串联进行测量,称为串联法;检测阻抗与被试品并联进行测量,称为并联法,此时,需加测量用耦合电容器。对于变压器来说,一般通过套管末屏处测量,类似并联法。 (1)并联法: 2.2试验步骤: 2.2.1试验接线:应根据被试品的特点完成接线,检查试验加压回路、测量系统回路;

2.2.2试验回路校准:在加压前应对测试回路中的仪器进行例行校正,以确定接入试品时测试回路的刻度系数,该系数受回路特性及试品电容量的影响。在已校正的回路灵敏度下,观察未接通高压电源及接通高压电源后是否存在较大的干扰,如果有干扰应设法排除。 2.2.3试验前试品应按有关规定进行预处理: (1)使试品表面保持清洁、干燥,以防绝缘表面潮气或污染引起局放。 (2)在无特殊要求情况下,试验期间试品应处于环境温度。 (3)试品在前一次机械、热或电气作用以后,应静放一段时间再进行试验,以减少上述因素对本次试验结果的影响。 2.2.4测定局放起始电压和熄灭电压 拆除校准装置,其他接线不变,在试验电压波形符合要求的情况下,电压从远低于预期的局放起始电压加起,按规定速度升压直至放电量达到某一规定值(一般为局放仪在测量时可观测到的设备放电)时,此时的电压即为局放起始电压。其后电压再增加10%,然后降压直到放电量等于上述规定值,对应的电压即为局放熄灭电压。测量时,不允许所加电压超过试品的额定耐受电压,另外,重复施加接近于它的电压也有可能损坏试品。 2.2.5测定局部放电量 (1)无预加电压的测量 试验时试品上的电压从较低值起逐渐增加到规定值,保持一定 时间再测量局放量,然后降低电压,切断电源。有时在电压升

相关主题
文本预览
相关文档 最新文档