当前位置:文档之家› 神经元.

神经元.

神经元.
神经元.

一、神经元

(一)神经元的形态结构神经元由胞体和突起两部分组成。胞体包括细胞膜、细胞质和细胞核三部分,突起分树突和轴突(图2-21)。

1.胞体是神经元的营养和代谢中心,形态多样化,有圆形、锥体形、梭形和星形等,胞体主要位于大脑和小脑的皮质、脑干和脊髓的灰质以及神经节内。①细胞膜:为单位膜,具有感受刺激、处理信息、产生和传导神经冲动的功能。②细胞质:除一般细胞器外,还有尼氏体和神经原纤维两种特有的结构。尼氏体(Nissl body):为强嗜碱性的斑状或颗粒状,轴丘处无尼氏体。神经原纤维(neurofibril )在HE染色片上不能分辨,在镀银染色片中,神经原纤维被染成棕黑色,呈细丝状,交错排列成网,并伸入到树突和轴突内。

图2-21 神经元的模式图图图2-22 各类神经元的形态结构模式图

它们除了构成神经元的细胞骨架外,还与营养物质、神经递质及离子运输有关。③细胞核:大而圆,位于细胞中央,核仁明显。

2.突起为胞体局部胞膜和胞质向表面伸展形成突起,可分为树突和轴突两种。①树突:每个神经元有一至数个树突,较粗短,形如树枝状,树突内的胞质结构与胞体相似,在其分支上又有许多短小的突起,称树突棘。树突的功能主要是接受刺激。树突和树突棘极大地扩大了神经元的表面积。②轴突:每个神经元只有一个轴突,细而长,长者可达1米以上。胞体

发出轴突的部位常呈圆锥形,称轴丘。轴丘及轴突内无尼氏体。轴突末端分支较多,形成轴突终末。轴突的功能主要是传导神经冲动和释放神经递质。

(二)神经元的分类神经元数量宠大,形态和功能各不相同,一般按其形态及功能分类如下:

1.按神经元突起的数量分类(图2-22)

(1)多极神经元从胞体发出一个轴突和多个树突,是人体中最多的一种神经元,如脊髓前角的运动神经元。(2)双极神经元:从胞体两端分别发出一个树突和一个轴突,如视网膜内的双极神经元。(3)假单极神经元:从胞体发生一个突起,但在离胞体不远处即分为两支,一支伸向中枢神经系统,称中枢突(相当于轴突),另一支伸向周围组织和器官内的感受器,称周围突(相当于树突)。

2. 按神经元的功能分类(1)感觉神经元:又称传入神经元,多为假单极神经元,分布于脑神经节、脊神经节内。(2)中间神经元:又称联络神经元,主要为多极神经元,介于感觉神经元和运动神经元之间。(3)运动神经元:又称传出神经元,多为多极神经元,主要分布于大脑皮质和脊髓前角。

镜像神经元综述

镜像神经元概述 41108132 徐海明 东南大学医学院 摘要:镜像神经元是今年来国外认知神经科学研究的热点,通过一系列最新的技术,人们确立了人体内存在镜像神经系统的观点。镜像神经系统在语言进化、动作识别与理解、行为模仿等方面都起着重要的作用。本文就镜像神经系统的研究做一概述。 关键词:镜像神经元;语言进化;动作理解 Summary of mirror neuron 41108132 Xuhaiming Medical Deparment of SEU Abstract: Mirror neuron system plays important roles in language evolution, action recognition and understanding, behavior imitation and so on. Recent progresses indicate the existence of mirror neuron system in both prmates and human. This paper reviewed on past works of mirror neuron research. Key:words: mirror neuron; language evolution; action understanding 1、镜像神经元的概念 在生活中,看到别人在干什么,就好像自己也在干同样的事情一样:看到别人在吃东西,自己的口水就来了;看到别人打球,你就浑身是劲……为何会有这样潜移默化的作用?科学家发现,原来都是一种叫做镜像神经元的细胞在起作用。 脑中的神经元网络,一般相信是储存特定记忆的所在;而镜像神经元组则储存了特定行为模式的编码。这种特性不单让我们可以想都不用想,就能执行基本的动作,同时也让我们在看到别人进行同样的动作时,不用细想就能够心领神会。由于有镜像神经元的存在,人类才能学习新知、与人交往,因为人类的认知能力、模仿能力都建立在镜像神经元的功能之上。 2、镜像神经元的发现及发展 1996年里佐拉蒂和同事们发现,恒河猴的前运动皮质F5区域的神经元不但在它做出动作时产生兴奋,而且看到别的猴子或人做相似的动作时也会兴奋。他们把这类神经元命名为镜像神经元。 1998年里佐拉蒂根据经颅磁刺激技术和正电子断层扫描技术得到的证据提出,人类也具有镜像神经元,而且有一部分存在于大脑皮层的Broca区(控制说话、动作和对语言的理解的区域)。他进一步提出,人类正是凭借这个镜像神经元系统来理解别人的动作意图,同时与别人交流。 1999年亚科博尼等人发现,镜像神经元系统会在动作模仿和模仿性学习中起作

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

神经元.

一、神经元 (一)神经元的形态结构神经元由胞体和突起两部分组成。胞体包括细胞膜、细胞质和细胞核三部分,突起分树突和轴突(图2-21)。 1.胞体是神经元的营养和代谢中心,形态多样化,有圆形、锥体形、梭形和星形等,胞体主要位于大脑和小脑的皮质、脑干和脊髓的灰质以及神经节内。①细胞膜:为单位膜,具有感受刺激、处理信息、产生和传导神经冲动的功能。②细胞质:除一般细胞器外,还有尼氏体和神经原纤维两种特有的结构。尼氏体(Nissl body):为强嗜碱性的斑状或颗粒状,轴丘处无尼氏体。神经原纤维(neurofibril )在HE染色片上不能分辨,在镀银染色片中,神经原纤维被染成棕黑色,呈细丝状,交错排列成网,并伸入到树突和轴突内。 图2-21 神经元的模式图图图2-22 各类神经元的形态结构模式图 它们除了构成神经元的细胞骨架外,还与营养物质、神经递质及离子运输有关。③细胞核:大而圆,位于细胞中央,核仁明显。 2.突起为胞体局部胞膜和胞质向表面伸展形成突起,可分为树突和轴突两种。①树突:每个神经元有一至数个树突,较粗短,形如树枝状,树突内的胞质结构与胞体相似,在其分支上又有许多短小的突起,称树突棘。树突的功能主要是接受刺激。树突和树突棘极大地扩大了神经元的表面积。②轴突:每个神经元只有一个轴突,细而长,长者可达1米以上。胞体

发出轴突的部位常呈圆锥形,称轴丘。轴丘及轴突内无尼氏体。轴突末端分支较多,形成轴突终末。轴突的功能主要是传导神经冲动和释放神经递质。 (二)神经元的分类神经元数量宠大,形态和功能各不相同,一般按其形态及功能分类如下: 1.按神经元突起的数量分类(图2-22) (1)多极神经元从胞体发出一个轴突和多个树突,是人体中最多的一种神经元,如脊髓前角的运动神经元。(2)双极神经元:从胞体两端分别发出一个树突和一个轴突,如视网膜内的双极神经元。(3)假单极神经元:从胞体发生一个突起,但在离胞体不远处即分为两支,一支伸向中枢神经系统,称中枢突(相当于轴突),另一支伸向周围组织和器官内的感受器,称周围突(相当于树突)。 2. 按神经元的功能分类(1)感觉神经元:又称传入神经元,多为假单极神经元,分布于脑神经节、脊神经节内。(2)中间神经元:又称联络神经元,主要为多极神经元,介于感觉神经元和运动神经元之间。(3)运动神经元:又称传出神经元,多为多极神经元,主要分布于大脑皮质和脊髓前角。

单神经元PID控制

基于单神经元的PID控制 1神经元 单神经元作为构成神经网络的基本单位,具有自学习和自适应能力,且结构简单响应速度快。这里将单个神经元与传统PID 控制器结合起来,一定程度上解决了传统PID 调节器不易在线实时整定参数,难以对复杂过程和时变系统参数进行有效控制等问题。人工神经元模型如图1 所示,可以看出神经元是一个多输入单输出且具有阈值、权值的非线性处理元件。神经元突触可与其他神经元相连接,或反映外界环境信息,也可以反馈自身信息,通过调整权值得到新的输出。 2 单神经元PID控制 2.1 单神经元PID控制器的设计 用单个神经元实现的自适应PID 控制的结构框图如图所示。 图2 单神经元PID 控制原理图 x t i=作为神经元输入的图中Yr为设定值,Y为给定值,通过状态转换器得到()(1,2,3) i

三个状态量,通过学习调节神经元权值()(1,2,3)i w t i = 最终得到输出。神经元的输入输出关系描述为: 3 1i i i I w x ==∑ (2-1) ()y f I = (2-2) 由PID 控制器的增量算式: []()()(1)()[()2(1)(2)]P I D u k K e k e k K e k K e k e k e k ?=--++--+- (2-3) 若取123()(1),(),()2(1)(2)X e k e k X e k X e k e k e k =--==--+-,则式(2-4) 变为: 123()[()(1)]()[()2(1)(2)]u k w e k e k w e k w e k e k e k ?=--++--+- (2-4) 比较式(2-3) 和(2-4) 形式完全相同,所不同的只是式(2-4) 中的系数()(1,2,3)i w t i =可以通过神经元的自学习功能来进行自适应调整,而式(2-3) 中的参数,,P I D K K K 是预先确定好且不变的。正是由于i w 能进行自适应调整,故可大大提高控制器的鲁棒性能。与常规PID 控制器相比较,无需进行精确的系统建模,对具有不确定性因素的系统,其控制品质明显优于常规PID 控制器。从后面的仿真分析中可以验证这一结论。其中,神经元的学习功能是通过改变权系数i w 来实现的,学习算法即是如何调整i w 规则,它是神经元控制的核心,反映了学习方式与学习功能。神经网络的工作过程主要由两个阶段组成,一个阶段是工作期,此时,各连接权值固定,计算单元的状态变化,以求达到稳定状态。另一个阶段是学习期,此时可以对连接权值进行修改。 2.2 神经元PID 学习算法 神经元的学习功能是通过改变权系数w 来实现的,学习算法即是如何调整w 的规则,它是神经元控制器的核心,反映了学习方式和学习能力。如何调整w 对整个控制系统抗干扰能力和自适应性能都有很大的影响。 权值()i w k 的修改学习规则如下: 1112223 33(1)()()()()(1)()()()()(1)()()()()P I D w k w k u k e k x k w k w k u k e k x k w k w k u k e k x k ηηη+=+??+=+??+=+? (2-5) 为了保证学习算法的收敛性和控制的鲁棒性,对上述算法进行规范化处理后可得如下的

孤独症与心理理论

课程名称:心理卫生学 论文题目:孤独症与心理理论教师评语: 2014年 6月

孤独症与心理理论 摘要文章首先介绍了孤独症的定义和其临床表现,然后介绍了关于孤独症的成因中的一种假说——心理理论假说,心理理论假说认为孤独症儿童的症状是由于心理理论能力的缺陷。并且介绍了心理理论假说的临床应用以及对其的质疑。 关键词孤独症,心理理论,范式,临床应用,质疑。 1 孤独症的定义 孤独症(autism,又称孤独症),是一种由于神经心理功能缺陷而导致交流、社会交往与行为三方面同时出现严重障碍的综合征,是一种发育障碍。孤独症的患病率报道不一致,但一般认为约为儿童人口数的2~5/万人,男女比例约为3比1到4比1,女孩的症状一般比男孩严重。 1.1 孤独症的临床表现 孤独症的症状涉及层面极为广泛,包括情感、认知、社交及适应行为在内等多方面异常。并且,症状的轻重程度差异很大。症状轻者的社会交往、语言及行为等的异常都不明显,有时甚至很难被认为是疾病,更像是性格问题。症状重者出现多种心理功能的损害,但一般不会出现妄想、幻觉以及思维散漫等精神分裂症症状。 孤独症患者与他人(包括他的父母)不够亲密,并且对人情温暖,甚至母爱,反应冷漠。患者的言语及非言语的理解能力差。语言表达能力缺乏,常有模仿性言语并且语意不清,无法正确理解词性,并且错用代词、名词或动词。症状严重者的语言能力发育明显的迟滞,有的甚至不发育,语义形成的能力低下,有些患者甚至会使用仅有其本人才懂得的词汇。在行为举止方面,经常出现刻板行为、奇异行为、仪式样动作、自伤、自残性等行为。患者有时会对某一特定的物体表现出特殊的依恋,甚至不许其他人触及。患者通常情感淡漠,但是有时候也会情绪反应过度,尤其是别人动了他所不许动的东西的时候,情绪可能会异常冲动。患者认知功能存在障碍,表现为抽象能力、整合能力及衔接概念的损害。患者还多出现神经功能受损的症状,如嗅觉、触觉和味觉的异常,以及听觉或视觉加工能力发育不全。此外,有15%~50%的孤独症儿童伴有癫发作。一般来说,大多数孤独症儿童智商都很低,但也有些患者却在计算、音乐、绘画等方面有着超常的能力,这类患者被称为“高功能孤独症患者”。 孤独症发病于3岁以前,在婴儿早期已经有症状,只是症状不易被察觉,家长们往往不能及早发现。其症状随着年龄增长可渐渐地自行改善,但是其病程发展并无规律性。患者通过系统的特殊教育和行为训练,有2%~15%的患者认知能力和适应能力可接近于常人,生活能自理,但却仍存在一些言语表达障碍刻和板行为等表现;此外,不愿与人接触、性格孤僻

自身认知和镜像神经元

自身认知和镜像神经元 先来说一下自身认知,自身认知也称作为自我认知,是个体对自己存在的觉察,包括对自己的行为和心理状态的认知。自我认知(self-cognition)是对自己的洞察和理解,包括自我观察和自我评价。自我观察是指对自己的感知、思维和意向等方面的觉察;自我评价是指对自己的想法、期望、行为及人格特征的判断与评估,这是自我调节的重要条件。个体对自我的觉察,或者说意识的形成来源于个体对外界环境刺激经由记忆和思想的反应。因此,在形成记忆之前的个体是不会有自我意识的。个体对于自我的存在,行为和心理的认知会有一个发展过程。刚开始是比较模糊的,所以小孩子会让经常出于好奇心而做一些危险的行为和事情。这个时候他们的自我意识是比较朦胧的。在经过不断地试错和加深记忆以及思考学习后,对于自我肌体的存在就渐渐成熟。随后才会对自己的行为有意识,会区分那些危险和安全的行为,然后决定是否要做。最后才是对于自我心理的认知。一般来说,这需要一个人的思维和想象力达到一定程度后才会具备这种察觉自我心理变化的能力。 接着说一下镜像神经元。人类有一群被称为“镜像神经元”的神经细胞,激励我们的原始祖先逐步脱离猿类。它的功能正是反映他人的行为,使人们学会从简单模仿到更复杂的模仿,由此逐渐发展了语言、音乐、艺术、使用工具等等。这是人类进步的最伟大之处之一。由于有镜像神经元的存在,人类才能学习新知、与人交往,因为人类的认知能力、模仿能力都建立在镜像神经元的功能之上。人脑中存在的镜像神经元,具有视觉思维和直观本质的特性,它对于理解人类思维能力的起源、理解人类文化的进化等重大问题有重要意义。人类大脑有若干镜像神经系统来专门传输和了解别人的行动和意图,以及别人行为的社会意义和他们的情绪。镜像神经元不是通过概念推理,而是通过直接模仿来让我们领会别人的意思。通过感觉而非思想。 接下来谈谈镜像神经元的主要案例 (一)儿童爱模仿的原因 镜像神经元也为人们观察儿童学习的过程提供了线索。华盛顿大学的安德鲁·梅尔索夫教授通过研究发现,刚刚出生仅几分钟的婴儿,在看到大人伸出舌头时,就能做出同样的动作。和其他灵长类动物一样,人类儿童都喜欢模仿。安德鲁教授说,儿童的镜像神经元使他们能够观察其他人的动作,并模仿看到的东西。婴儿出生后没有对自我的觉察,或者说意识的形成来源于个体对外界环境刺激经由记忆和思想的反应。因此,在形成记忆之前婴儿是不会有自我意识的。他不能判断自己的行为是否正确,因而对于别人的行为进行一个模仿,当婴儿长大后有了一定的自我意识之后,他对自己的行为进行一个判断,可以进行选择性的模仿,这样就好解释了为何人年龄越大,人们学习东西就越难,随着人的年龄变大,对于外界的认识和理解也就越多,生活经验变得丰富,这时候人就会思考哪些东西是有利的,哪些东西是没有用的,是有害的。而作为小孩子,他们对于世界的认识还远远不够,生活经验不足,对于一个人的行为,他只会单纯的去模仿,去接受,而不是去进行一个价值的判断。这也是小孩子为何学习的比成年人快的原因。 (二)围观世界杯,球迷为何会集体“癫狂” 世界杯中,球迷们会为自己的球队胜利集体起舞狂欢,也会为自己的球队失败而集体哭泣宣泄。奥地利研究人员日前发表研究公报称,镜像神经元在其中发挥着重要作用。 当人们观察到的场景与自身的过往经历越相似,镜像神经元就越活跃,尤其是当这些场景与运动神经的活动相关的时候。所以,球迷往往会有下意识的“从众”行为:球队赢了就集体狂欢,输了就集体哭泣。这时候球迷其实是无意识的,是不会对自己进行一个自身认识的,这时候人往往做出一些过激的行为,而这种行为仅仅是为了宣泄自己心中某种情绪,这种情绪是由外界的刺激所做出的思想和行为的表现。人这时候会根据别人的行为进行模仿,传输自己的行为别人的意图和表达自己的情绪。

单神经元自适应PID控制算法

单神经元自适应PID 控制算法 一、单神经元PID 算法思想 神经元网络是智能控制的一个重要分支,神经元网络是以大脑生理研究成果为基础,模拟大脑的某些机理与机制,由人工建立的以有向图为拓扑结构的网络,它通过对连续或断续的输入做状态响应而进行信息处理;神经元网络是本质性的并行结构,并且可以用硬件实现,它在处理对实时性要求很高的自动控制问题显示出很大的优越性;神经元网络是本质性的非线性系统,多层神经元网络具有逼近任意函数的能力,它给非线性系统的描述带来了统一的模型;神经元网络具有很强的信息综合能力,它能同时处理大量不同类型的输入信息,能很好地解决输入信息之间的冗余问题,能恰当地协调互相矛盾的输入信息,可以处理那些难以用模型或规则描述的系统信息。神经元网络在复杂系统的控制方面具有明显的优势,神经元网络控制和辨识的研究已经成为智能控制研究的主流。单神经元自适应PID 控制算法在总体上优于传统的PID 控制算法,它有利于控制系统控制品质的提高,受环境的影响较小,具有较强的控制鲁棒性,是一种很有发展前景的控制器。 二、单神经元自适应PID 算法模型 单神经元作为构成神经网络的基本单位,具有自学习和自适应能力,且结构简单而易于计算。传统的PID 则具有结构简单、调整方便和参数整定与工程指标联系紧密等特点。将二者结合,可以在一定程度上解决传统PID 调节器不易在线实时整定参数,难以对一些复杂过程和参数时变、非线性、强耦合系统进行有效控制的不足。 2.1单神经元模型 对人脑神经元进行抽象简化后得到一种称为McCulloch-Pitts 模型的人工神经元,如图2-1所示。对于第i 个神经元,12N x x x 、、……、是神经元接收到的信息,12i i iN ωωω、、……、为连接强度,称之为权。利用某种运算把输入信号的作用结合起来,给它们的总效果,称之为“净输入”,用i net 来表示。根据不同的运算

镜像神经元与自闭症

镜像神经元与自闭症 《环球科学》:镜像神经元,大脑中的魔镜 概述 ◆当人类和猴子在执行某个动作或观看其他个体执行同样的动作时,大脑中的一部分神经元就会有所反应。 ◆由“镜像神经元”产生的直接的内在体验,让我们能够理解他人的行为、意图或情感 ◆镜像神经元也许是模仿他人动作以及学习能力的基础,从而使得镜像机制成为人与人之间进行多层面交流与联系的桥梁 约翰看见玛丽的手向一朵花伸去。约翰知道玛丽要做什么——她要摘花,可是她为什么要这样做?玛丽朝着约翰莞尔一笑,他猜她要把这朵花送给自己。这个简单的场景转瞬即逝,约翰却能立即领会玛丽的意图。为什么他能毫不费力地理解玛丽的行为和意图? 10年前,大多数神经学家和心理学家都认为,我们对他人行为,特别是他人意图的理解,是通过一个快速的推理过程完成的。这个推理过程类似于逻辑推理。也就是说,约翰大脑中有一些复杂的认知结构,它们能详尽分析感官采集的信息,并把这些信息与先前储存的经历相比较,约翰就知道了玛丽在做什么,以及她为什么要这样做。 尽管在某些情况下(特别是当某人的行为难以理解的时候),这种复杂的推导过程或许确实存在,但当我们看到简单的行为时,往往马上就能作出判断,这是不是意味着还有更简单更直接的理解机制?20

世纪90年代初,在意大利帕尔马大学,我们的研究小组偶然发现,这个问题的答案隐藏在一群神奇的神经元之中。当猴子有目的地做出某个动作时(例如摘水果),它大脑中的这种神经元就会处于激活状态。不过更让我们吃惊的是,当这只猴子看到同伴做出同样的动作时,这些神经元也会被激活。这类刚刚进入人们视野的细胞似乎就像一面镜子,能直接在观察者的大脑中映射别人的动作,所以我们称它们为镜像神经元(mirror neuron)。 与大脑中储存记忆的神经回路相似,镜像神经元似乎也为特定的行为“编写模板”。有了镜像神经元的这种特性,我们就可以不假思索地做出基本动作,在看到这些动作时,也能迅速理解,而不需要复杂的推理过程。约翰之所以能够领会玛丽的行为,是因为这些动作不仅发生在他眼前,而且也在他的大脑中实时模仿着。很久以前,有哲学家就认为,一个人要真正理解一件事,就必须亲身经历。对于神经学家来说,在镜像神经元中为这种哲学观点找到物质基础,代表了我们对理解过程的认识有了巨大的变化。 发现镜像神经元 在猴子、人类的大脑中,都存在镜像神经元。不论是自己做出动作,还是看到别人做出同样的动作,镜像神经元都会被激活,也许这就是我们理解他人行为的基础。 我们的研究小组发现镜像神经元其实纯属意外。当时,我们正在研究大脑的运动皮质(motor cortex),特别是其中的F5区域,这一

单神经元自适应PID控制器实验报告

单神经元自适应PID控制器仿真实验报告 一、实验目的 1、熟悉单神经元PID控制器的原理。 2、通过实验进一步掌握有监督的Hebb学习规则及其算法仿真。 二、实验内容 利用单神经元实现自适应PID控制器,对二阶对象和正弦对象进行控制,在MATLAB环境中进行仿真。 被控对象为y(k)=0.3y(k-1)+0.2y(k-2)+0.1u(k-1)+0.6u(k-2) 三、实验原理 1、单神经元模型: 图1 人工神经元模型图 图2 Sigmoid人工神经元活化函数 单神经元的McCulloch—Pitts模型如图1,图2所示。x1,x2,x3…xn是神经元接收的信息,w1,w2,…为连接权值。利用简单的线性加权求和运算把输入信号的作

用结合起来构成净输入input=w j x j?θ。此作用引起神经元的状态变化,而神经元的输出v是其当前状态的激活函数。 2、神经经网络的有监督Hebb学习规则 学习规则是修改神经元之间连接强度或加权系数的算法,使获得的知识结构适应周围环境的变化。两个神经元同时处于兴奋状态或同时处理抑制状态时,它们之间的连接强度将得到加强,当一个神经元兴奋而另一个抑制时,它们之间的连接强度就应该减弱。这一论述的数学描述被称为Hebb学习规则。在学习过程中,网络根据实际输出与期望输出的比较,进行联接权系数的调整,将期望输出称导师信号是评价学习的标准。这样,就得到了有监督的Hebb学习规则如果用oi表示单元i的输出,oj表示单元j的输出Wij表示单元j到单元i的连接加权系数,di表示网络期望目标输出,η为学习速率,则神经网络有监督的Hebb学习规则下式所示。 ?w ij k=η[di k?oi(k)]oi(k)oj(k)(1) 3.基于单神经元的PID控制 单神经元控制系统的结构如图3所示。图中转换器的输人为设定值r(k)和输出y(k),转换器的输出为神经元学习所需要的状态量x1,x2,x3,K为神经元的比例系数。 图3 单神经元自适应控制器结构图 单神经元自适应控制器是通过对加权系数的调整来实现自适应、自组织功能的,权系数的调整是按有监督的Hebb规则实现的。 控制及其学习算法如下:

环球科学:大脑中的魔镜

《环球科学》: 镜像神经元,大脑中的魔镜 概述 ◆当人类和猴子在执行某个动作或观看其他个体执行同样的动作时,大脑中的一部分神经元就会有所反应。 ◆由“镜像神经元”产生的直接的内在体验,让我们能够理解他人的行为、意图或情感。 ◆镜像神经元也许是模仿他人动作以及学习能力的基础,从而使得镜像机制成为人与人之间进行多层面交流与联系的桥梁。 约翰看见玛丽的手向一朵花伸去。约翰知道玛丽要做什么——她要摘花,可是她为什么要这样做?玛丽朝着约翰莞尔一笑,他猜她要把这朵花送给自己。这个简单的场景转瞬即逝,约翰却能立即领会玛丽的意图。为什么他能毫不费力地理解玛丽的行为和意图? 10年前,大多数神经学家和心理学家都认为,我们对他人行为,特别是他人意图的理解,是通过一个快速的推理过程完成的。这个推理过程类似于逻辑推理。也就是说,约翰大脑中有一些复杂的认知结构,它们能详尽分析感官采集的信息,并把这些信息与先前储存的经历相比较,约翰就知道了玛丽在做什么,以及她为什么要这样做。 尽管在某些情况下(特别是当某人的行为难以理解的时候),这种复杂的推导过程或许确实存在,但当我们看到简单的行为时,往往马上就能作出判断,这是不是意味着还有更简单更直接的理解机制?20世纪90年代初,在意大利帕尔马大学,我们的研究小组偶然发现,这个问题的答案隐藏在一群神奇的神经元之中。当猴子有目的地做出某个动作时(例如摘水果),它大脑中的这种神经元就会处于激活状态。不过更让我们吃惊的是,当这只猴子看到同伴做出同样的动作时,这些神经元也会被激活。这类刚刚进入人们视野的细胞似乎就像一面镜子,能直接在观察者的大脑中映射别人的动作,所以我们称它们为镜像神经元(mirrorneuron)。

神经元的分类和识别

2010年全国研究生数学建模竞赛C题 神经元的形态分类和识别 大脑是生物体内结构和功能最复杂的组织,其中包含上千亿个神经细胞(神经元)。人 类脑计划(Human Brain Project, HBP)的目的是要对全世界的神经信息学数据库建立共 同的标准,多学科整合分析大量数据,加速人类对脑的认识。 作为大脑构造的基本单位,神经元的结构和功能包含很多因素,其中神经元的几何形态 特征和电学物理特性是两个重要方面。其中电学特性包含神经元不同的电位发放模式;几何 形态特征主要包括神经元的空间构象,具体包含接受信息的树突,处理信息的胞体和传出信 息的轴突三部分结构。由于树突,轴突的的生长变化,神经元的几何形态千变万化。电学特 性和空间形态等多个因素一起,综合表达神经元的信息传递功能。 (1a) (1b) (1c) 图1,(1a) 鼠中海马的CA1锥体神经元. (1b) 关键位置: D, 树突; S, 胞体; AH, 轴突的开始阶段轴丘; A,轴突; T,轴突末端. 树突的类型: e, 单个树突的等价圆柱体; a, 树突顶端; b, 树突基端; o, 树突倾斜. 树突的水平: (p)最近端, (m) 中间端, 和(d) 最远端-相对细胞胞体. (1c)神经元局部形态的简单几何特征:D树干直径,T顶端直径,L树干长度,△A树干锥度,R分支比例(前后分支的长度关系),ν分支幂律(前后分支的直径关系),α分支角度.

对神经元特性的认识,最基本问题是神经元的分类。目前,关于神经元的简单分类法主要有:(1)根据突起的多少可将神经元分为多极神经元;双极神经元和单极神经元。(2)根据神经元的功能又可分为主神经元,感觉神经元,运动神经元和中间神经元等。主神经元的主要功能是输出神经回路的信息。例如大脑皮层的锥体神经元,小脑皮层中的普肯野神经元等。感觉神经元,它们接受刺激并将之转变为神经冲动。中间神经元,是介于感觉神经元与运动神经元之间起联络作用的。运动神经元,它们将中枢发出的冲动传导到肌肉等活动器官。不同组织位置,中间神经元的类别和形态,变化很大。动物越进化,中间神经元越多,构成的中枢神经系统的网络越复杂。 如何识别区分不同类别的神经元,这个问题目前科学上仍没有解决。生物解剖区别神经元主要通过几何形态和电位发放两个因素。神经元的几何形态主要通过染色技术得到,电位发放通过微电极穿刺胞内记录得到。利用神经元的电位发放模式区分神经元的类别比较复杂,主要涉及神经元的Hodgkin-Huxley模型和Rall 电缆模型的离散形式(神经元的房室模型)。本问题只考虑神经元的几何形态,研究如何利用神经元的空间几何特征,通过数学建模给出神经元的一个空间形态分类方法,将神经元根据几何形态比较准确地分类识别。 神经元的空间几何形态的研究是人类脑计划中一个重要项目, https://www.doczj.com/doc/0f17298356.html,包含大量神经元的几何形态数据等,现在仍然在不断增加,在那里你们可以得到大量的神经元空间形态数据,例如附录A和附录C。对于神经元几何形态的特征研究这个热点问题,不同专家侧重用不同的指标去刻画神经元的形态特征,例如图1、下面给出的神经元的粗略空间刻画以及附录A和附录C用标准的A.SWC 格式给出的刻画。你们需要完成的任务是:(1)利用附录A中和附录C样本神经元的空间几何数据,寻找出附录C中5类神经元的几何特征(中间神经元可以又细分3类),给出一个神经元空间形态分类的方法。

PID神经元网络解耦控制算法-多变量系统控制

%% 清空环境变量 clc clear %% 网络结构初始化 rate1=0.006;rate2=0.001; %学习率 k=0.3;K=3; y_1=zeros(3,1);y_2=y_1;y_3=y_2; %输出值 u_1=zeros(3,1);u_2=u_1;u_3=u_2; %控制率 h1i=zeros(3,1);h1i_1=h1i; %第一个控制量 h2i=zeros(3,1);h2i_1=h2i; %第二控制量 h3i=zeros(3,1);h3i_1=h3i; %第三个空置量 x1i=zeros(3,1);x2i=x1i;x3i=x2i;x1i_1=x1i;x2i_1=x2i;x3i_1=x3i; %隐含层输出 %权值初始化 k0=0.03; %第一层权值 w11=k0*rand(3,2); w12=k0*rand(3,2); w13=k0*rand(3,2); %第二层权值 w21=k0*rand(1,9); w22=k0*rand(1,9); w23=k0*rand(1,9); %值限定 ynmax=1;ynmin=-1; %系统输出值限定 xpmax=1;xpmin=-1; %P节点输出限定 qimax=1;qimin=-1; %I节点输出限定 qdmax=1;qdmin=-1; %D节点输出限定 uhmax=1;uhmin=-1; %输出结果限定 %% 网络迭代优化 for k=1:1:200 %% 控制量输出计算 %--------------------------------网络前向计算-------------------------- %系统输出 y1(k)=(0.4*y_1(1)+u_1(1)/(1+u_1(1)^2)+0.2*u_1(1)^3+0.5*u_1(2))+0.3*y_1(2); y2(k)=(0.2*y_1(2)+u_1(2)/(1+u_1(2)^2)+0.4*u_1(2)^3+0.2*u_1(1))+0.3*y_1(3); y3(k)=(0.3*y_1(3)+u_1(3)/(1+u_1(3)^2)+0.4*u_1(3)^3+0.4*u_1(2))+0.3*y_1(1);

2016年公务员考试判断推理历年真题与答案解析每日一练(3月12日)

2016年公务员考试判断推理历年真题与答案解析每日一练(3月12日) 一、单选题(每题1分,以下备选项中,只有一项符合题目要求,不选、错选均不得分) 1、中国历代统治者对户口的管理都极为重视,他们将户口多寡作为国力盛衰与社会治乱的标志,建立了从中央至州、县、乡的完备户籍管理体系,但究其原因,是将户籍作为调派劳役、征收赋税的主要依据,以此维护建立在小农经济基础上的特权。这是一种源远流长的文化烙印,纵使历史的车轮滚滚向前,但那道印痕仍难以抹去。 这段文字主要介绍了() A.户籍管理体系的文化背景 B.户籍制度存在的历史根源 C.中国古代户籍管理体系的构建方式 D.户籍制度对维护政治统治的深远影响 2、根据生产要素在各产业中的相对密集度,可以将产业划分为不同类型。下列对应错误的是() A.土地密集型产业——畜牧业、采掘业 B.劳动密集型产业——钢铁业、化工业 C.技术密集型产业——微电子工业、现代制药业 D.资本密集型产业——重型机械工业、电力工业 3、很多时候,我们的问题在于不能正确地个人和社会的界限。事实上,如果了个人,就不可能加强集体;如果了个人,集体也不可能获得自由。 依次填入划横线部分最恰当的一项是() A.区别削减约束 B.分清减弱限制 C.划清削弱束缚 D.区分降低压制 4、据报道,某卫视的亲子节目核心观众群女性观众占比近2/3。可以想象这样的场景:晚上,年轻的母亲独自带着年幼的孩子,在家看电视上的“爸爸带孩子”,而年轻的爸爸也许还在加班、在应酬,也许只是待在卧室里打游戏、玩电脑——他们的孩子依然延续着没有父亲陪伴的故事。事实上,这种现象同样发生在母亲身上,在不少现代家庭,养育孩子的职责主要推到上一代老人身上。 这段文字旨在强调() A.父母亲情教育缺席现代的家庭生活 B.在现实生活中亲子教育的主体缺位 C.当下亲子节目赢得共鸣的真正原因 D.现实生活中父母与子女间缺少交流 5、输血本质上是一种移植,必然会伴随一系列可能发生的免疫反应,移植物抗宿主病就是其中之一,其发病原因简单说来就是供血者体内的免疫活性淋巴细胞在患者体内迁移、增殖,反客为主,进而攻击患者的免疫系统。正常情况下,受血者会把供血者淋巴细胞识别为“异己”而加以排斥,这样供血者淋巴细胞就不能在受血者体内存在。而当受血者与供血者有血缘关系时,两者一部分遗传基因相同,受血者免疫功能低下,不能识别供血者的淋巴细胞,使得供血者的淋巴细胞在受血者体内植活并增殖,导致发病。所以,。 填入划横线部分最恰当的一项是()

神经元活动的一般规律和神经元的作用方式

神经元活动的一般规律:神经系统神经元,神经纤维突触神经递质.受体学说.神经 营养性作用 神经元是神经系统的结构与功能单位。结构上大致都可分成细胞体和突起两部分,突起又分树突和轴突两种。轴突往往很长,由细胞的轴丘分出,其直径均匀,开始一段称为始段,离开细胞体若干距离后始获得髓鞘,成为神经纤维。习惯上把神经纤维分为有髓纤维与无髓纤维两种,实际上所谓无髓纤维也有一薄层髓鞘,并非完全无髓鞘。 (一)神经纤维传导的特征 神经传导是依靠局部电流来完成的。因此它要求神经纤维在结构和功能上都是完整的;如果神经纤维被切断或局部受麻醉药作用而丧失了完整性,则因局部电流不能很好通过断口或麻醉区而发生传导阻滞。一条神经干中包含着许多条神经纤维,但由于局部电流主要在一条纤维上构成回路,加上各纤维之间存在结缔组织,因此每条纤维传导冲动时基本上互不干扰,表现为传导的绝缘性。人工刺激神经纤维的任何一点引发冲动时,由于局部电流可在刺激点的两端发生,因此冲动可向两端传导,表现为传导的双向性。由于冲动传导耗能极少,比突触传递的耗以小得多,因此神经传导具有相对不疲劳性。 (二)神经纤维传导的速度 一般地说,神经纤维的直径越大,其传导速度也越大;有髓纤维的传导速度与直径成正比,其大致关系为:传导速度(m/s)=6×直径(μm)。一般据说有髓纤维的直径是指包括轴索与髓鞘在一起的总直径,而轴索直径与总直径的比例与传导速度又有密切关系,最适宜的比例为0.6左右。神经纤维的传导速度与温度有关,温度降低则传导速度减慢。 经测定,人的上肢正中神经的运动神经纤维和感觉神经纤维的传导速度分别为58m/s和65m/s。当周围神经发生病变时传导速度减慢。因此测定传导速度有助于诊断神经纤维的疾患和估计神经损伤的预后。 表10-1 神经纤维的分类(一)

14演讲的力量

没有看过TED视频的请举手?有吗,估计很少了。你的微信朋友圈、微博肯定有人转发过那些制作精美的视频:新颖的观点,完美的显示,还有振奋的演讲! 我们生来就会说,我们经常也习惯于不准备就去演讲,经常还会沾沾自喜觉得讲得不错。但如果对照那些几千万次级播放量的TED演讲,你能发现自己的差别吗? TED(指technology, entertainment, design即技术、娱乐、设计)是美国的一家私有非营利机构,诞生于1984年,2001年起,本书作者克里斯·安德森接管TED,这位传媒大亨创立了种子基金会(The Sapling Foundation),运营TED大会,使得TED成长为每天50万人观看视频的社区。他辅导过比尔·盖茨、诺奖得主丹尼尔·卡尼曼、超级畅销作家肯·罗宾逊等众多优秀演讲者。本书是他及团队15年TED演讲指导的优秀经验总结。 作者简介 克里斯·安德森(Chris Anderson) TED主席,TED大会创始人,TED首席教练。 毕业于牛津大学,做过记者,创办过100多份成功的杂志刊物和网站。在2001年买下TED,成为“TED 的守护人”,并将TED演讲者的领域从原先的技术、娱乐、设计三个领域扩展到了各行各业,邀请了科学家、哲学家、艺术家、探险家、心理学家、语言学家、宗教领袖、慈善家等人加入,致力于使TED成为超越会议性质的世界品牌。他提出的TED口号“传播有价值的思想”在全球各地广为传播。 精华解读 以下内容为《演讲的力量》一书精华解读,供广大书友们学习参考,欢迎分享,未经允许不可用作商业用途。 目录 第一篇:演讲的基础 第二篇:演讲的工具 第三篇:演讲的准备过程

神经元的结构 分类和功能

神经元的结构、分类和功能: 神经系统的细胞构成包括两类细胞:神经细胞和神经胶质细胞,一般将神经细胞称作神经元(neuron),被认为是神经系统行使功能、信息处理最基本的单位。而胶质细胞则主要起支持、营养和保护的作用,但随着人们积累知识的增加,逐渐发现胶质细胞也能够行使一些特殊的生理功能。 在人类的中枢神经系统中约含有1011个神经元,其种类很多,大小、形态以及功能相差很大,但它们也具有一些共性,例如突起。我们以运动神经元为例介绍神经元的典型结构,如图2-37所示。与一般的细胞一样,神经元也是由细胞膜、细胞核、细胞质组成的胞体(cell body)和一些突起(neurite)构成的。胞体为代谢和营养的中心,直径大小在μm级别。除胞体外,与神经元行使功能密切相关的结构是各种各样的特异性突起,也称为神经纤维。其中自胞体一侧发出、较细长的圆柱形突起为轴突(axon),每个运动神经元一般只有一个轴突,其功能是信息的输出通道,代表着神经元的输出端;同时还可以借助轴浆进行物质的运输,主要包括由胞体合成的神经递质、激素以及内源性的神经营养物质,这种运输称为轴浆运输。轴突从胞体发出的部位呈椎状隆起,称为轴丘(axon hillock),并逐渐变细形成轴突的起始段(initial segmeng),这一部分的功能及其重要,它是神经元产生冲动的起始部位,并随后继续沿着轴突向外传导。轴突通常被髓鞘(myelin)包裹,但并非是完全的将其包裹,而是分段包裹,髓鞘之间裸露的地方为郎飞结(node of Ranvier),其上含有大量的电压门控钠离子通道。轴突末梢(aoxn terminal)膨大的部分称为突触小体(synaptic knob),这是信息在某个神经元传递的终点,它能与另一个神经元或者效应器细胞相接触,并通过突触结构(synapse)进行信息的传递。 神经元中另一类重要的突起为树突(dendritic),一般是从胞体向外发散和延伸构成,数量较多,由于与树枝的分布类似而得名,是神经元进行信息接收的部位。树突表面长出的一些小的突起称为树突棘(dendritic spine),数目不等,它们的大小、形态数量与神经元发育和功能有关。当神经元活动较为频繁时,树突棘的数量和形状会发生相应的变化,是神经元可塑性研究的重要方面。轴突和树突的作用反映了功能两极分化的基本原理。 图2-37神经元的一般结构 按照不同的分类方法可以将神经元进行如下分类: (1)根据细胞形态分类 神经元形态的多样性令人印象深刻,根据树突和轴突相对于彼此或胞体的方向形态进行的分类如图2-38所示,可分为单极神经元、双极神经元、和多级神经元。形态学相似饿神经元倾向于集中在神经系统的某一特定区域,并具有相似

单神经元自适应PID控制器及其应用

收稿日期:2003-03-11;收修定稿日期:2003-07-03 作者简介:丁 军(1972-),男,安徽庐江人,硕士研究生,主要研究方向为智能控制;徐用懋,女,教授,博士生导师。 控制工程 Control Eng ineering of China Jan.2004Vol.11,No.1 2004年1月第11卷第1期 文章编号:1671-7848(2004)01-0027-05 单神经元自适应PID 控制器及其应用 丁 军,徐用懋 (清华大学自动化系,北京 100084) 摘 要:研究了单神经元自适应PI D 控制器,阐述了该控制器的特点、控制律、适用对象及工程整定方法,在和利时公司的SmartP ro 系统平台上开发出单神经元自适应PI D 控制器,进行了单神经元自适应PI D 控制器的典型一、二阶对象闭环仿真,最终将单神经元自适应P ID 控制器应用于制药厂发酵罐温度控制回路中。单神经元控制器具有可调参数少、易于整定、控制输出平稳、鲁棒性强的独特优点,适用于大滞后且要求平稳控制输出的工业过程。 关 键 词:单神经元自适应控制器;PID;DCS 中图分类号:T P 273 文献标识码:A 1 引 言 为适应快速过程神经网络控制的要求,并将神经网络与常规PID 调节器控制思路相结合,产生了神经元自适应PID 控制器。文献[1]采用单神经元构成PID 控制器,并和预测控制相结合,克服时滞对控制系统的影响,并在大时滞、大惯性的电加热炉上获得成功应用,缺点是要对过程进行辨识。文献[2]使用单神经元控制器对过热汽温对象的串级控制回路进行了仿真,结果表明,控制品质优于常规PID 控制器,但尚未投入实际工业运行。文献[3](类似的神经元控制文献[4~6])从常规PID 控制的机理得到启发,采用负反馈+反向BP 算法,使用3层神经元节点(其中一层为隐层),分别将带权值修正后的比例分量、积分分量、微分分量(从物理意义上讲)的神经元的共6个权值分别进行修正,使得总的能量函数最小。文中的仿真试验表明,此方法可以有效地在时滞系统上使用,具有一定的启发意义;主要缺点为计算量相对较大,且易陷入局部极小值。文献[7]对单神经元PID 做了深入的研究,大量与常规PID 的对比仿真表明,单神经元PID 控制器的性能优越,但尚未将单神经元PID 投入工业实际运行。本文在北京和利时系统工程股份有限公司SmartPro 分布式控制系统(DCS)平台上,将单神经元PID 控制器进行工程化开发与仿真研究,在充分发掘单神经元PID 优越性能的基础上,探索 工程化整定方法,最终投入工业实际运行。 2 单神经元自适应PID 控制器的设计 1)控制律 单神经元PID 控制器单神经元PID 控制器具有现场调整参数少、易于现场调试的重要特点,能较大地改善典型非线性时变对象的动态品质,能够适应过程的时变特性,保证控制系统在最佳状态下运行,控制品质明显优于常规PID 控制器。其工作机理如图1所示。 图1 单神经元自适应PID 的工作原理 设定值的滤波处理: y r (k +1)=(1-A )r (k )+A y r (k )式中,r (k )为设定值,y r (k)为滤波处理后的设定值,A (0

相关主题
文本预览
相关文档 最新文档