当前位置:文档之家› CO2激光焊接成形实验报告

CO2激光焊接成形实验报告

CO2激光焊接成形实验报告
CO2激光焊接成形实验报告

CO2激光焊接成形实验报告

1.实验目的

(1)了解激光焊接热导焊和深熔焊两种焊接模式的原理,特别要掌握激光深熔焊的原理。

(2)了解激光焊接工艺参数对焊缝成形的影响规律,利用实验方法获得焦点位置、激光功率

和焊接速度等对激光焊接焊缝成形的影响规律。

(3)测定焦点位置对激光焊接熔化效率的影响曲线。

2.实验内容

(1)学习并掌握激光深熔焊接的原理,主要包括小孔的形成、等离子体的产生和对焊接过程

的影响,以及激光深熔焊接的焊缝成形特征。

(2)利用2kW光纤激光器焊接低碳钢样品,焊后制备焊接横断面的金相试样,用光学显微

镜观察并记录不同焊接工艺条件下焊缝成形的特点,测试焊缝熔深和焊缝宽度随焦点位置、激光功率和焊接速度的变化规律。

(3)测量焊缝断面面积,得到焦点位置对激光焊接熔化效率的影响。

3.实验原理

激光焊接是一种利用高能量密度的激光束进行材料连接成形的方法。激光束经聚焦后可达到极高的功率密度,比常规热源的功率密度至少要高出两个数量级,因此激光可以熔化甚至汽化任何材料,可进行局部区域的微细焊接;焊接过程输入的线能量小,因此热影响区和热变形均很小;焊接速度高,可大大提高生产效率;光束易于传输,容易实现焊接自动化。

激光焊接系统一般由激光器、光路传输和聚焦系统、工作台组成。常用的大功率激光器主要有两类,一种是以CO2气体作为工作物质的激光器,称CO2激光器,可以输出10.6μm 波长的连续或脉冲激光;另一种是以掺钕钇铝石榴石晶体为工作物质的固体激光器,简称Nd:YAG或YAG激光器,可以输出1.06μm波长的连续或脉冲激光。

激光焊接可以两种模式进行,一种是基于小孔效应的激光深熔焊,另外是基于热传导方式的激光热导焊。激光深熔焊的原理如下:当功率密度高于5×105W/cm2的激光束照射在金属材料表面时,材料产生蒸发并形成小孔。深熔焊过程产生的金属蒸汽和保护气体,在激光作用下发生电离,从而在小孔内部和上方形成等离子体,这个充满金属蒸汽和等离子体的小孔就像一个黑体,入射激光进入小孔后经小孔壁的多次反射吸收后可达到90%以上的激光能量被小孔吸收,小孔周围的金属就是被小孔臂传递的能量所熔化。随着光束的移动,小孔前壁的液态金属材料被连续蒸发,小孔就以一种动态平衡的状态向前移动,包围小孔的熔融金属沿小孔周围向后流动,随后冷却并凝固形成焊缝。激光热导焊则是在功率密度低于5×105W/cm2下,基于热传导的焊接方法。由于通常情况下金属对激光的反射率较高,因此这种焊接方法获得的焊缝熔深很小。

在激光焊接中,激光功率、焊接速度和焦点位置是影响焊缝成形的主要参数,另外保护气体种类和流量也对焊缝成形产生重要影响。焦点位置是指光束焦点距工件表面的相对距离,定义焦点在工件表面以下为正(称入焦),反之为负(称离焦)。

焊缝成形参数主要包括熔深和焊缝宽度,激光焊接时,在同样的激光功率和焊接速度下,不同的焦点位置会影响聚焦光斑大小,从而影响作用在工件表面的激光功率密度,其结果会形成不同深度的小孔甚至不能形成小孔效应,产生不同熔深的焊缝。激光功率和焊接速度直接影响了输入的线能量,会导致焊缝成形的变化。

4.实验步骤

全体同学自行分为三组,分别通过改变焦点位置、激光功率和焊接速度研究各参数对焊缝成形的影响。具体实验步骤如下:

(1)准备低碳钢试样100mm×60mm×3mm若干块,表面用砂纸打磨去锈,并用丙酮清洗干净。在每块试样上划出焊接位置。

(2)焊前调节Ar气流量,轴向气体400L/h。

(3)将工件装卡好,启动数控机床并调整焊接喷嘴位置,完成机床编程。

(4)严格按照操作规程启动激光器。

(5)各组分别通过改变焦点位置、激光功率和焊接速度,进行激光焊接,得到不同的焊缝,每组分别改变参数5次,保证焊接过程从热导焊变化到深熔焊,总共15条焊缝。焊接过程中仔细观察不同状态下的焊接特点及等离子体的声光特征。

(6)焊后将试样取出,记录实验时间和所用激光器机时,关闭激光器和数控机床,并清扫工作台。

(7)将试样沿横断面剖开,并制备金相试样,利用显微镜测量焊缝宽度和深度。

(8)课后完成实验报告并回答思考题。

5.实验数据与分析

实验得到的激光功率P、焦点位置f及焊接速度v对焊缝熔宽和熔深的影响数据如下表所示。

表格1激光功率P对焊缝成形的影响(f=0,v=1.5m/min)

表格2焊接速度v对焊缝成形的影响(f=0,P=1000W)

表格3焦点位置f

表格4焦点位置f

根据以上各表所列数据,可做出如下所示的焊缝熔宽和熔深随激光功率P、焊接速度v 及焦点位置f的变化曲线。

由于焦点位置不仅影响工件表面光斑直径的大小,而且影响光束的入射方向,因而对焊缝形状、熔深和横截面积有较大影响。一定的离焦量可以使光斑能量的分布相对均匀,同时也可以获得合适的功率密度。尽管正负离焦量相等时,相应平面上的功率密度相等,然而,两种情况下所得到的焊点形状却不相同。负离焦时,小孔内的功率密度比工件表面的高,蒸发更加强烈。因此,要增大熔深时,可以采用负离焦;而焊接薄材料时,则宜采用正离焦。

在大多数激光焊接场合,通常将焦点位置设置在工件表面下大约所需熔深的1/4处。

激光功率主要影响熔深,当光斑直径保持不变时,熔深随入射光束功率的增加而变大。在其他条件相同时,高功率激光焊接获得的熔深大。在维持小孔效应的最低临界焊速下,可得到最大熔深。

分析焊接速度对焊缝成形的影响时,可借助线能量的概念。线能量是单位长度焊缝接受的激光能量。焊接速度大时,焊缝的线能量小,因而熔深下降;反之,可以获得较大的熔深。激光焊接时,要依据材料的热物理性质、接头形式和零件厚度等条件选择焊接速度,应能使材料吸收到足够的激光能量,实现充分的熔化,获得理想的熔深。

6.思考题

(1)激光焊接中的主要参数包括哪些,分别是如何影响焊缝成形的?

答:主要参数包括激光功率、焊接速度和焦点位置。激光功率增大时,熔深增大。焊接速度增大时,熔深及熔宽均下降。当焦点位于工件较深部位时,形成V形焊缝;当焦点在工件以上较高距离(正离焦量大)时,形成“钉头”状焊缝,且熔深减小;而当焦点位于工件表面以下1mm左右时,焊缝截面两侧接近平行。

(2)激光焊接的主要特点是什么,相对传统的焊接方法(如电弧焊),存在何种优势?激光焊又有哪些缺陷和不足?

答:与一般焊接方法相比,激光焊具有以下特点:

(a)聚焦后的激光具有很高的功率密度(105~107W/cm2或更高),焊接以深熔方式进行;由于激光加热范围小(<1mm),在同等功率和焊接厚度条件下,焊接速度高,热输入小,热影响区小,焊接应力和变形小。

(b)激光能发射、投射,能在空间传播相当距离而衰减很小,可以进行远距离或一些难以接近的部位的焊接;激光可通过光导纤维、棱镜等光学方法弯曲传输、偏转、聚焦,特别适合于微型零件及可达性很差部位的焊接。

(c)一台激光器可供多个工作台进行不同的工作,既可用于焊接,又可用于切割、合金化和热处理,一机多用。

(d)激光在大气中损耗不大,可以穿过玻璃等透明物体,适合于在玻璃制成的密封容器里焊接铍合金等剧毒材料。

(e)可以焊接一般焊接方法难以焊接的材料,如高熔点金属等,甚至可用于陶瓷、有机玻璃等非金属材料的焊接;焊后无需热处理,适合于某些对热输入敏感的材料的焊接。

(f)属于非接触焊接,接近焊区的距离比电弧焊的要求低,焊区材料的疲劳强度比电子束高。

目前影响大功率激光焊扩大应用的主要障碍是:激光特别是高功率连续激光器,价格昂贵;对焊件加工、组装、定位要求很高;激光器的电光转换及整体效率很低。

(3)请谈谈对本实验的认识、感想或建议。

答:本实验使我对激光焊接的原理、特点及应用产生了大致了解,也对激光焊接系统的组成产生了感性认识。实验过程进一步训练了我对金相显微镜的使用能力,并通过亲自测量、分析数据使我对激光功率、焊接速度、焦点位置等参数对焊缝成形的影响产生了认识。

材料成型及控制工程专业综合实验报告

目录 1 实验课题 (1) 2 实验目标 (1) 3 实验原理 (1) 3.1 轧制实验原理 (1) 3.1.1 轧制原理 (1) 3.1.2 轧制力测定原理 (1) 3.2 拉伸实验原理 (2) 4 实验参数设定 (3) 4.1 轧制实验参数的确定 (3) 4.1.1 试样参数的设定 (3) 4.1.2 轧制参数的设定 (3) 4.2 拉伸实验参数的确定 (3) 5 实验内容 (4) 5.1 轧制实验 (4) 5.1.1实验仪器及材料 (4) 5.1.2实验步骤 (4) 5.2 拉伸实验 (4) 5.2.1 实验仪器及材料 (4) 5.2.2实验步骤 (4) 6 实验结果与分析 (5) 6.1 轧制实验结果 (5) 6.2 分析与讨论 (8) 6.2.1 轧制实验 (8) 6.2 拉伸实验结果 (10) 7 实验小结 (15)

综合实验 1 实验课题 变形程度对金属板材冷轧变形力和机械性能的影响。 2 实验目标 通过改变压下量h ?,即改变变形程度h ε(H h H h H h //)(?=-=ε)实验参数分别进行冷轧和拉伸试验,以此来研究铝板在进行同步冷轧时轧制力随变形程度的变化规律,以及在不同压下量时钢板的机械性能(主要为屈服强度s σ和抗拉强度b σ)的影响。 3 实验原理 3.1 轧制实验原理 3.1.1 轧制原理 同步轧制是指上下两轧辊直径相等,转速相同,且均为主动辊、轧制过程对两个轧辊完全对称、轧辊为刚性、轧件除受轧辊作用外,不受其它任何外力作用、轧件在入辊处和出辊处速度均匀、轧件的机械性质均匀的轧制。在轧制过程中,同步轧制变形区金属在前滑区,后滑区上下表面摩擦力都是指向中性面,中性面附近单位下力增强,使平均单位轧制增大。同步轧制时单位轧制压力沿变形区长度方向的类似抛物线形状分布。 3.1.2 轧制力测定原理 目前测量轧制力的方法有两种:应力测量法和传感器法。而传感器测量法又有电容式、 柱作为弹性元件。圆柱体在轧制力作用下产生形变使得应变片的电阻发生变化,将这些应变片按一定的方式连接起来,在接入电桥,就可得到一个与轧制力成比例关系的输出电压,从而将力参数转变成电信号,其原理图如图2所示。

工程材料实验报告模板

工程材料实验报告 专业: 姓名:,学号: 姓名:,学号: 姓名:,学号: 青海大学机械工程学院 年月日

工程材料综合实验 ●金相显微镜的构造及使用 ●铁碳合金平衡组织分析 ●碳钢的热处理 ●金相试样的制备 ●碳钢热处理后的显微组织分析 ●硬度计的原理及应用 ●碳钢热处理后的硬度测试 ●常用工程材料的显微组织观察 实验一金相显微镜的构造和使用 一、实验目的 熟悉金相显微镜的基本原理、构造;了解金相显微镜的使用注意事项,掌握金相显微镜的使用方法。 二、实验设备及材料 三、实验内容 1)金相显微镜的基本原理2)金相显微镜的构造3)显微镜使用注意事项 四、实验步骤 五、实验报告 实验二铁碳合金平衡组织分析 一、实验目的 (1)熟悉铁碳合金在平衡状态下的显微组织。 (2)了解铁碳合金中的相与组织组成物的本质、形态及分布特征。

(3)分析并掌握平衡状态下铁碳合金的组织和性能之间的关系 二、实验设备及材料 三、实验内容 1)铁碳合金的平衡组织 2)各种组成相或组织组成物的特征 3)铁素体与渗碳体的区别 四、实验步骤 五、实验报告 实验三碳钢的热处理 一、实验目的 1)熟悉钢的几种基本热处理操作:退火、正火、淬火、回火 2)了解加热温度、冷却速度、回火温度等主要因素对45钢热处理后性能的影响。 二、实验设备及材料 三、实验内容 1)加热温度的选择 2)保温时间的确定 3)冷却方法 四、实验步骤 五、实验报告 实验四金相试样的制备 一、实验目的 1)了解金相试样的制备过程。 2)学会金相试样的制备技术。

二、实验设备及材料 三、实验内容 1)取样 2)镶样 3)磨制 4)抛光 四、实验步骤 五、实验报告 实验五碳钢热处理后的显微组织分析 一、实验目的 观察碳钢热处理后的显微组织 二、实验设备及材料 三、实验内容 1)钢冷却时所得到的各种组织组成物的形态 2)钢淬火回火后的组织 四、实验步骤 五、实验报告 实验六硬度计的原理及应用 一、实验目的 1)熟悉洛氏硬度计、布氏硬度计、显微硬度计的原理、构造。 2)学会三种硬度计的使用 二、实验设备及材料 三、实验内容 1)洛氏硬度实验原理 2)布氏硬度试验原理 3)显微硬度计的原理 四、实验步骤 五、实验报告 实验七碳钢热处理后的硬度测试

CO2激光焊接成形实验报告

CO2激光焊接成形实验报告 1.实验目的 (1)了解激光焊接热导焊和深熔焊两种焊接模式的原理,特别要掌握激光深熔焊的原理。 (2)了解激光焊接工艺参数对焊缝成形的影响规律,利用实验方法获得焦点位置、激光功率 和焊接速度等对激光焊接焊缝成形的影响规律。 (3)测定焦点位置对激光焊接熔化效率的影响曲线。 2.实验内容 (1)学习并掌握激光深熔焊接的原理,主要包括小孔的形成、等离子体的产生和对焊接过程 的影响,以及激光深熔焊接的焊缝成形特征。 (2)利用2kW光纤激光器焊接低碳钢样品,焊后制备焊接横断面的金相试样,用光学显微 镜观察并记录不同焊接工艺条件下焊缝成形的特点,测试焊缝熔深和焊缝宽度随焦点位置、激光功率和焊接速度的变化规律。 (3)测量焊缝断面面积,得到焦点位置对激光焊接熔化效率的影响。 3.实验原理 激光焊接是一种利用高能量密度的激光束进行材料连接成形的方法。激光束经聚焦后可达到极高的功率密度,比常规热源的功率密度至少要高出两个数量级,因此激光可以熔化甚至汽化任何材料,可进行局部区域的微细焊接;焊接过程输入的线能量小,因此热影响区和热变形均很小;焊接速度高,可大大提高生产效率;光束易于传输,容易实现焊接自动化。 激光焊接系统一般由激光器、光路传输和聚焦系统、工作台组成。常用的大功率激光器主要有两类,一种是以CO2气体作为工作物质的激光器,称CO2激光器,可以输出10.6μm 波长的连续或脉冲激光;另一种是以掺钕钇铝石榴石晶体为工作物质的固体激光器,简称Nd:YAG或YAG激光器,可以输出1.06μm波长的连续或脉冲激光。 激光焊接可以两种模式进行,一种是基于小孔效应的激光深熔焊,另外是基于热传导方式的激光热导焊。激光深熔焊的原理如下:当功率密度高于5×105W/cm2的激光束照射在金属材料表面时,材料产生蒸发并形成小孔。深熔焊过程产生的金属蒸汽和保护气体,在激光作用下发生电离,从而在小孔内部和上方形成等离子体,这个充满金属蒸汽和等离子体的小孔就像一个黑体,入射激光进入小孔后经小孔壁的多次反射吸收后可达到90%以上的激光能量被小孔吸收,小孔周围的金属就是被小孔臂传递的能量所熔化。随着光束的移动,小孔前壁的液态金属材料被连续蒸发,小孔就以一种动态平衡的状态向前移动,包围小孔的熔融金属沿小孔周围向后流动,随后冷却并凝固形成焊缝。激光热导焊则是在功率密度低于5×105W/cm2下,基于热传导的焊接方法。由于通常情况下金属对激光的反射率较高,因此这种焊接方法获得的焊缝熔深很小。 在激光焊接中,激光功率、焊接速度和焦点位置是影响焊缝成形的主要参数,另外保护气体种类和流量也对焊缝成形产生重要影响。焦点位置是指光束焦点距工件表面的相对距离,定义焦点在工件表面以下为正(称入焦),反之为负(称离焦)。 焊缝成形参数主要包括熔深和焊缝宽度,激光焊接时,在同样的激光功率和焊接速度下,不同的焦点位置会影响聚焦光斑大小,从而影响作用在工件表面的激光功率密度,其结果会形成不同深度的小孔甚至不能形成小孔效应,产生不同熔深的焊缝。激光功率和焊接速度直接影响了输入的线能量,会导致焊缝成形的变化。

工程材料实验报告

工程材料实验报告 一、实验目的: 1、熟悉并掌握热处理工艺的操作方法; 2、了解45钢、40Cr在室温下的组织结构; 3、了解合金钢经热处理工艺后硬度的测量方法并理解; 4、分析并掌握不同成分合金钢在不同热处理工艺下硬度不同的原因。 二、实验设备: 加热炉、抛光机、硬度测量仪、金相显微镜 三、实验内容: 1、将若干45钢、40Cr放在加热炉中,设定加热温度860℃,进行加热; 2、对加热到设定温度的试样做不同的冷却处理(油冷、水冷、空冷); 3、将一部分油冷和水冷的试样放到不同温度(200℃、400℃、600℃) 加热炉中做回火处理,有些试样不进行回火; 4、将经过正火和淬火未回火的试样打磨、抛光,观察金相组织;对经 过淬火和不同温度下回火的试样只进行打磨; 5、对所有试样测量硬度; 6、处理测量数据,比较分析不同成分合金钢在不同的热处理工艺下硬 度不同的原因。 四、数据处理: 材料淬火工艺回火工艺硬度HRC(三点) 45钢860℃×20min 油冷未回火24 26.4 26.5 空冷未回火19 15.5 16 860℃×20min 水冷 未回火55 62 65 200℃×60min 42.5 40.6 49.2 400℃×60min 34 36 35 600℃×60min 17.5 15.5 18.5 40Cr 860℃×20min 油冷未回火52 53 56 空冷未回火21 21.7 23 860℃×20min 水冷 未回火56 57 60 200℃×60min 48.8 49.9 50.5 400℃×60min 43.5 44.5 45 600℃×60min 22.5 21.5 20.5

高分子材料成型加工及性能测试综合实验指导书

高分子材料成型加工及性能测试 一、实验目的 应用《高分子物理》、《高分子材料工艺学》、《高分子材料成型与加工》所学的理论知识,进行高分子材料压制成型和注射成型实验,制得的高分子材料试样进行性能测试与分析。通过本实验,掌握常用塑料的压制成型和注射成型工艺流程,了解影响塑料制品性能的因素,初步锻炼学生对高分子材料成型加工方法的实践能力以及对实验数据的综合分析能力。 二、实验内容 1、塑料压制成型: (1)熟练操作开炼机、高速混合机、平板硫化仪成型设备,操作步骤见附录1; (2)制备出塑料试样。 2、塑料注射成型: (1)了解实验设备的基本结构,工作原理和操作要点,操作步骤见附录2; (2)了解注射成型设备对制品性质的影响; (3)掌握如何根据聚合物的性质,确定注射成型机料筒温度和模具温度; (4)制备出塑料试样。 3、塑料制品拉伸性能测试: (1)掌握电子拉力机测定塑料拉伸试样的基本操作,操作步骤见附录3; (2)依据应力-应变曲线,计算出各种力学参数(拉伸强度、断裂伸长率、断裂强度)。 4、塑料制品硬度测试:利用邵氏A型硬度计测定试样的硬度,操作步骤见附录4; 5、塑料制品导电性测试:利用高阻仪测定试样的表面电阻。测试时,将充分放电后的试样,接入仪器测量端,调整仪器,加上实验电压一分钟,读取电阻的指示值。 三、实验原理 大多数高分子材料(尤其是热塑性塑料)可以通过压制和注射成型。 压制是板材成型的重要方法,其工艺过程包括下列工序:(1)混合:按照一定配方称量各组分,按照一定的加料顺序,将各组分加入到高速分散机中进行几何分散;(2)双辊塑炼拉片:用双辊开炼机使混合物料熔融混合塑化,得到片材;(3)压制:把片材放入恒温压制模具中预热、加温、加压,使片材熔融塑化,然后冷却定型成板材。正确选择和调节压制温度、压力、时间以及制品的冷却程度是控制板材性能的工艺措施。通常在不影响制品性能的前提下,适当提高压制温度,降低成型压力,缩短成型周期对提高生产效率是行之有效的;但过高的温度、过长的加热时间会加剧树脂降解和熔料外溢,致使制品的各方面性能变劣。 注射成型亦称注射模塑或注塑,是热塑性塑料的一种重要成型方法。注射成型是将塑料(一般为粒料)在注射成型机的料筒内加热溶化,当呈流动状态时,熔融塑料在柱塞或螺杆的加压下被压缩并向前移动,进而通过塑料筒前端的喷嘴以很快的速度注入温度较低的闭合

工程材料综合实验报告

工程材料综合实验 1.金相显微镜的构造及使用 2.金相显微试样的制备 3.铁碳合金平衡组织观察 实验目的 1、了解金相显微镜的光学原理和构造,初步掌握金相显微镜的使用方法及利用显微镜进行显微组织分析。 学习金相试样的制备过程,了解金相显微组织的显示方法。 3、识别和研究铁碳合金(碳钢和白口铸铁)在平衡状态下的显微组织,分析含碳量对铁碳合金显微组织的影响,加深理解成分、组织与性能之间的相互关系。 实验步骤与过程 金相显微镜的构造及使用 ①.实验原理 由灯泡发出—束光线,经过聚光镜组(一)及反光镜,被会聚在孔径光栏上,然后经过聚光镜组(二),再度将光线聚集在物镜的后焦面上。最后光线通过物镜,用平行光照明标本,使其表面得到充分均匀的照明。从物体表面散射的成象光线,复经物镜、辅助物镜片(一)、半透反光镜、辅助物镜片(一)、棱镜与半五角棱镜,造成一个物体的放大实象。该象被目镜再次放大。照明部分的光学系统是按照库勒照明原理进行设计的,其优点在于视场照明均匀。用孔径光栏和视场光栏,可改变照明孔径及视场大小,减少有害漫射光,对提高象的衬度有很大好处。

②.主要结构 1.底座组: 底座组是该仪器主要组成部分之一。底座后端装有低压灯泡作为光源,利用灯座孔上面两边斜向布置的两个滚花螺钉,可使灯泡作上下和左右移动;转松压育直纹的偏心圈,灯座就可带着灯泡前后移动,然后转紧偏心圈,灯座就可紧固在灯座孔内。 灯前有聚光镜、反光镜和孔径光栏组成的部件,这织装置仅系照明系统的一部分,其余尚有视场光栏及另外安装在支架上的聚光镜。通过以上一系列透镜及物镜本身的作用,从而使试样表面获得充分均匀的照明。 2.粗微动调焦机构: 粗微动调焦机构采用的足同轴式调焦机构。粗动调焦手轮和微动调焦手轮是安装在粗微动座的两侧,位于仪器下部,高度适宜。观察者双手只需靠在桌上及仪器底座上即可很方便地进行调焦,长时间的使用也不易产生疲劳的感觉。旋转粗动调焦手轮,能使载物台迅速地上升或下降,旋转微动调焦手轮,能使载物台作缓慢的上升或下降,这是物镜精确调焦所必需的。右微动手轮上刻有分度,每小格格值为0.002毫米,估读值为0.001毫米。在右粗动调焦手轮左侧,装有松紧调节手轮,利用摩擦原理,根据载物台负荷轻重,调节手轮的松紧程度(以镜臂不下滑,且粗、微动调焦手轮转动舒适为宜)。这也就解决了仪器长期使用后因磨

塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 篇一:材料加工实验报告(注塑成型CAE分析实验) 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机

软件:UG软件、Moldflow软件 四、实验方法与步聚 1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器; 10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤); 13、得出结论 五、前置处理相关数据 1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题; 3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果:

工程材料实验报告

工 程 材 料 实 验 报 告 院系:机械工程学院 班级:10届机电一班 组员:魏仕宏 1000407008 崔继文 1000407010 丁元辉 1000407021 郑鹏涛 10004070

实验项目名称:金相试样的制备及铁碳合金平衡组织观察与分析 一、实验目的和要求 1.通过观察和分析,熟悉铁碳合金在平衡状态下的显微组织,熟悉金相显微镜的使用; 2.了解铁碳合金中的相及组织组成物的本质、形态及分布特征; 3.分析并掌握平衡状态下铁碳合金的组织和性能之间的关系。 二、实验内容和原理 1 概述 碳钢和铸铁是工业上应用最广的金属材料,它们的性能与组织有密切的联系,因此熟悉掌握它们的组织,对于合理使用钢铁材料具有十分重要的实际指导意义。 ⑴碳钢和白口铸铁的平衡组织 平衡组织一般是指合金在极为缓慢冷却的条件下(如退火状态)所得到的组织。铁碳合金在平衡状态下的显微组织可以根据Fe—Fe3C相图来分析。从相图可知,所有碳钢和白口铸铁在室温时的显微组织均由铁素体(F)和渗碳体(Fe3C)所组成。但是,由于碳含量的不同,结晶条件的差别,铁素体和渗碳体的相对数量、形态,分布和混合情况均不一样,因而呈现各种不同特征的组织组成物。碳钢和白口铸铁在室温下的平衡组织见表1。 a)工业纯铁——室温时的平衡组织为铁素体(F),F为白色块状(如图1所示); b)亚共析钢——室温时的平衡组织为铁素体(F)+珠光体(P),F呈白色块状,P呈层片 状,放大倍数不高时呈黑色块状(如图2所示)。碳质量分数大于0.6%的亚共析 钢,室温平衡组织中的F呈白色网状包围在P周围(如图3所示); c)共析钢——室温时的平衡组织是珠光体(P),其组成相是F和Fe3C(如图4、5所示); d)过共析钢——室温时的平衡组织为Fe3CⅡ+P。在显微镜下,Fe3CⅡ呈网状分布在层片 状P周围(如图6所示); e)亚共晶白口铸铁——室温时的平衡组织为P+Fe3CⅡ+ Ld'。Fe3CⅡ网状分布在粗大块 状的P的周围,Ld'则由条状或粒状P和Fe3C基体组成(如图7所示);

激光焊接实验报告

激光焊接实验报告 一、实验目的 1、理解激光焊接的基本原理及特点,熟悉运用激光进行金属焊接的具体过程。 2、观察CO2与YAG 两种激光器的焊接过程,理解其焊接方式的条件及形成机理。 3、掌握激光焊接机床及机械手的基本操作步骤和方法,能够进行简单的焊接操作。 4、掌握金相测量方法,观察和记录焊接实验现象,测量熔深、熔宽,并对焊接结果进行合理分析。 5、了解激光焊接的应用。 二、实验原理 2.1 激光焊接原理 激光焊接采用连续或脉冲激光束实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105 ~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。图1 是CO2 激光器焊接结构图。

图1 CO2激光器焊接结构图 在焊接金属的过程中,随着激光功率密度提高,材料表面会发生一系列变化,其包括表面温度升高、熔化、气化、形成小孔并出现光致等离子体。不同功率密度激光焊接金属材料时的主要过程如图2所示。当激光功率密度小于104W/cm2数量级时,金属吸收激光能量只引起材料表层温度的升高,并没有发生熔化。当功率密度在大于104W/cm2小于106W/cm2数量级围时,金属料表层发生熔化。功率密度达到106W/cm2数量级时,材料表面在激光束的作用下发生气化,在气化反冲压力的作用下,液态熔池向下凹陷形成深熔小孔。同时,伴随有金属蒸汽电离形成光致等离子体的现象。当功率密度大于107W/cm2时,光致等离子体将逆着激光束的入射方向传输,形成等离子体云团,出现等离子体对激光的屏蔽现象。 图2 不同功率密度激光辐照金属材料的主要物理过程 2.2激光焊接模式 根据是否产生小孔效应可以把激光焊接分为两种模式,即热导焊模式和深熔焊模式。

【实验报告】塑料成型加工技术实验报告范文

塑料成型加工技术实验报告范文 一、实验目的 1、掌握注塑成型工艺中各参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对其成型质量的影响大小。 2、了解塑件各种成型缺陷的形成机理,以及各工艺参数对各种缺陷形成的影响大小。 3、初步了解注塑成型分析软件Moldflow的各项功能及基本操作。 4、初步了解UG软件三维建模功能。 5、初步了解UG软件三维模具设计功能。 二、实验原理 1、Moldflow注塑成型分析软件的功能十分齐全,具有完整的分析模块,可以分析出注塑成型工艺中各个参数如塑件材料、成型压力、温度、注射速度、浇注系统等因素对成型质量的影响,还可以模拟出成型缺陷的形成,以及如何改进等等,还可以预测每次成型后的结果。 2、注射成型充填过程属于非牛顿体、非等温、非稳态的流动与传热过程,满足黏性流体力学和基本方程,但方程过于复杂所以引入了层流假设和未压缩流体假设等。最后通过公式的分析和计算,就可以得出结果。 三、实验器材 硬件:计算机、游标卡尺、注塑机、打印机 软件:UG软件、Moldflow软件 四、实验方法与步聚

1、UG软件模型建立和模具设计(已省去); 2、启动Moldflow软件; 3、新建一个分析项目; 4、输入分析模型文件; 5、网格划分和网格修改; 6、流道设计; 7、冷却水道布置; 8、成型工艺参数设置; 9、运行分析求解器;10、制作分析报告 11、用试验模具在注塑机上进行工艺试验(已省去); 12、分析模拟分析报告(省去与实验结果相比较这一步骤);13、得出结论 五、前置处理相关数据1.网格处理情况 1)进行网格诊断,可以看到网格重叠和最大纵横比等问题;2)网格诊断,并依次修改存在的网格问题;3)修改完后,再次检查网格情况。 2.材料选择及材料相关参数 在在方案任务视窗里双击第四项材料,弹出如图材料选择窗 可直接选常用材料,也可根据制造商、商业名称或全称搜索 3. 工艺参数设置 双击方案任务视窗里的“成型条件设置”,这里直接用默认值。 4. 分析类型设置(1)最佳浇口位置分析 分析结果: 理论最佳浇口在深蓝色区,但实际选浇口位置还需根据模具结构设计等综合因素考虑。在方案任务视窗里双击第三项,弹出选择分析系列窗口,选择浇口分析,最后选择如图位置。

复材综合实验报告

本科实验报告 课程名称: 复合材料工程综合实验 姓 名: 贾高洪 专业班级 复材1301 学 号: 130690101 指导教师: 母静波、侯俊先、王光硕 2016年 5 月 27 日 装备制造学院实验报告 课程名称:__复合材料工程综合实验__________指导老师:实验名称: 手糊成型工艺实验 实验类型:_____操作实验_ 同组学生姓名:_____ _____ 一、实验目的和要求 1.掌握手糊成型工艺的技术要点、操作程序和技巧; 2.学会合理剪裁玻璃布、毡和铺设玻璃布、毡; 3.进一步理解不饱和聚酯树脂、脱模剂和胶衣树脂配方、凝胶、固化和富树脂层等概念和实际意义。 二、实验内容和原理 实验内容: 1.根据具体条件设计一种切实可行的制品(脸盆、垃圾桶)。 2.制品约为3mm ~4mm 厚,形状自定。 3.按制品要求剪裁玻璃布、毡。

4.手糊工艺操作,贴制作人标签。 5.固化后修毛边,如有可能还可装饰美化。 6.对自己手糊制品进行树脂含量测定。 实验原理: 手糊成型是最早使用的一种工艺方法。随着坡璃钢工业的迅速发展,尽管新的成型工艺不断涌现,但由于手糊成型具有投资少;无需复杂的专用设备和专门技术;可根据产品设计要求合理布置增强材料的材质、数量和方向,可以局部随意加强;不受产品几何形状和尺寸限制,适合于大型产品和批量不大的产品的生产等特点,至于仍被国外普遍采用,在各国玻璃钢工业生厂中仍占有工要地位。象我国这样人口众多的国家,在相当长的一段时间内,手糊成型仍将是发展玻璃钢工业的一种主要成型方法。 不饱和聚酯树脂中的苯乙烯既是稀释剂又是交联剂,在固化过程中不放出小分子,手糊制品几乎90%是采用不饱和聚酯树脂作为基体。模具结构形式大致分为阴模、阳模、对模三种。 阴模可使产品获得光滑的外表面,因此适用于产品外表面要求较光,几何尺寸较准确的产品,如汽车车身、船体等。阳模能使产品获得光滑的内表面,适用于内表几何尺寸要求较严的制品,如浴缸、电镀槽等。 脱模材料是玻璃钢成型中重要的辅助材料之一,如果选用不当,不仅会给施工带来困难,而且会使产品及模具受到损坏。脱模材料的品种很多,而且又因选用的粘接剂不同而各有所别。常用的脱模剂可归纳为三大类:即薄膜型脱模材料、混合溶液型脱模剂和油膏、蜡类脱模剂。薄膜型脱模材料有:玻璃纸、聚酯薄膜,聚氯乙烯薄膜,聚乙烯醇薄膜等等。本次实验我们选用聚乙烯醇做脱模剂。 本实验利用手糊工艺制备简单的玻璃纤维增强聚合物基复合材料制件。常温常压固化。 三、主要仪器设备 管式炉:差示扫描量热仪 仪器型号:OTF-1200X 生产厂商:合肥科晶材料技术有限公司 1.手糊工具:辊子、毛刷、刮刀、剪刀。 2.玻璃纤维布、毡,不饱和聚酯树脂,引发剂,促进剂,塑料盆,塑料桶。 四、操作方法和实验步骤 (1)配制脱模剂:聚乙烯醇8克溶解于64克水,在缓慢的加入64克乙醇。 (2)按制件形状和大小裁剪玻璃布或毡备用。 (3)在模具表面均匀连续的用纱布涂上一层聚乙烯醇溶液,脱模剂完全干透后,应随即上胶衣或进

建筑材料综合实训报告

去 建筑材料综合实训报告 班级: 学号: 姓名: 指导教师: 二〇一一年十二月

目录 1、综合实训的目的 (3) 2、工程资料 (3) 3、实训安排及要求 (3) 4、实训内容 (4) 4.1材料的检测 (4) 水泥检测报告 (5) 水泥检测委托单 (6) 水泥检测原始记录 (7) 砂检测报告 (8) 砂检测委托单 (9) 砂检测原始记录 (10) 石子检测报告 (11) 石子检测委托单 (12) 石子检测原始记录 (13) 4.2混凝土的配合比设计 (14) 混凝土初步配合比计算依据 (14) 混凝土初步配合比计算过程 (14) 4.3混凝土的试拌与调整 (16) 混凝土配合比设计原始记录 (16) 混凝土配合比设计检测报告 (18) 混凝土配合比设计委托单 (19) 5、实训收获、意见与建议 (20) 6、实训参考资料 (21)

1、综合实训的目的 《工程材料》是一门实践性比较强的基础课程,重点在于培养学生的实践动手能力,为今后学生走上工作岗位,打下实践操作基础。本次实训的目的为: 1)巩固《工程材料》课程中有关章节的知识,掌握不同建筑材料的实验原理,方法和步骤,提高学生的实际动手能力,培养学生独立分析问题和解决问题的能力。 2)按照材料检测实际工作过程,让学生练习常用建筑材料的检验委托、试验、试验结果分析、报告的编制与审核、试验报告的发放等整个过程,培养学生的实际工作能力,以便学生将来毕业后即可顶岗工作。 3)培养学生实事求是,一丝不苟的科学态度和扎实的工作作风。 4)培养学生吃苦耐劳的品格。 2、实际工程资料 3、实训的时间及要求

实训要求: 1)严格遵守实验室管理规定,不乱动、乱摸,爱护实验设备和仪器,注意安全; 2)不大声喧哗,打闹,旷课,一经发现,成绩按不及格论; 3)树立科学、实事求是的学习作风,对实测数据如实整理; 4)严格按照实验操作规程、严禁违规操作; 5)独立完成实训成果的汇总整理和装订,不抄袭; 6)实训期间应积极主动,互相配合,不能互相推诿。 4、实训内容 本次综合实训是结合实际工程材料检测内容,利用工程现场原材料,按照实际工程要求,完成各种材料的检测任务。主要任务如下: 1. 完成水泥检测、砂检测、石子检测、混凝土配合比设计检测等委托单的填写。 2. 完成水泥检测、砂检测、石子检测、混凝土配合比设计、混凝土抗压强度检测实验记录的填写。要求试验记录完善,严禁涂改。 3. 完成水泥检测报告、砂检测报告、石子检测报告、混凝土配合比设计检测报告、混凝土抗压强度检测报告。检测报告要求信息全,数据和试验记录对应,结论正确。 4.1材料性能的检测 水泥的检测、砂的检测、石子的检测

激光焊接文献综述

文献综述 激光焊接是激光加工材料加工技术应用的重要方面之一。70年代主要用于焊接薄壁材料和低速焊接,焊接过程属于热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于激光焊接作为一种高质量、高精度、低变形、高效率和高速度的焊接方法,它已成功地应用于微小型零件焊接中。 随着高功率CO2和高功率的YAG激光器以及光纤传输技术的完善、金属钼焊接聚束物镜等的研制成功,使其在机械制造、航空航天、汽车工业、粉末冶金、生物医学微电子行业等领域的应用越来越广,开辟了激光焊接的新领域。目前的研究主要集中于C02激光和YAG激光焊接各种金属材料时的理论,包括激光诱发的等离子体的分光、吸收、散射特性以及激光焊接智能化控制、复合焊接、激光焊接现象及小孔行为、焊接缺陷发生机理与防止方法等,并对镍基耐热合金、铝合金及镁合金的焊接性,焊接现象建模与数值模拟,钢铁材料、铜、铝合金与异种材料的连接,激光接头性能评价等方面做了一定的研究。 所有的研究大大地扩大了其应用的领域范围,主要应用于:制造业应用、粉末冶金领域、汽车工业、电子工业、生物医学、其他领域如对BT20钛合金、HEl30合金、Li-ion电池等激光焊接。 激光焊接主要是通过高能激光脉冲来实现的。激光电源首先把脉冲氙灯点着。激光电源对氙灯脉冲放电,形成一定频率,一定脉宽的光波,该光波经过聚光腔辐射到Nd3+ YAG激光晶体上,激发Nd3+YAG激光晶体发光,再经过激光谐振腔谐振之后,发出波长为1.06um脉冲激光,该脉冲激光经过扩束、反射、聚焦后打在所要焊接的物体上;在计算机系统控制下,移动数控工作台,从而完成焊接。焊接时需要的脉冲激光频率、脉宽、工作台速度、移动方向等通过计算机来控制。通过对机关电源的频率、脉宽的不同设定可调节控制脉冲激光的能量。 这里的脉冲激光焊机主要由激光电源、PC数控系统、光学系统、冷却系统、CCD监视系统及吹起装置等组成。 激光焊接的特点是被焊接工件变形极小,几乎没有连接间隙,焊接深度/宽度比高,因此焊接质量比传统焊接方法高。但是,如何保证激光焊接的质量,也就是激光焊接过程监测与质量控制是一个激光利用领域的重要内容,包括利用电感、电容、声波、光电等各种传感器,通过电子计算机处理,针对不同焊接对象和要求,实现诸如焊缝跟踪、缺陷检测、焊缝质量监测等项目,通过反馈控制调节焊接工艺参数,从而实现自动化激光焊接。在激光焊接中,光束焦点位置是最关键的控制工艺参数之一,在一定激光功率和焊接速度下,只有焦点处于最佳位置范围内才能获得最大熔深和好的焊缝形状。在实际激光焊接中,为了避免和减少影响焦点位置稳定性的因素,需要专门的夹紧和设备技术,这种设备的精确程度与激光焊接的质量高低是相辅相成的。 与其它传统焊接技术相比,激光焊接的主要优点是:

(年整理)焊接检测实验报告

(年整理)焊接检测实验报告 班 级 学 号 姓 名 日 期 成 绩 材料科学与工程学院焊接检测与探伤实验室 实验概述: 【实验目的及要求】 一、超声波探伤 1.学习超声波探伤方法并熟悉超声波探伤仪的使用。 2.掌握超声波探伤用DAC曲线的测定方法。 二、目视检测 掌握焊接检验尺在焊缝目视检测中的测量方法三、磁粉探伤 1.理解磁粉探伤的基本原理 2.学习磁轭探伤的操作方法四、射线探伤底片上缺陷的识别 掌握各种焊接缺陷在底片上显示的特点五、渗透探伤 掌握渗透探伤的基本程序和缺陷显示识别【实验原理】 一、超声波探伤实验 本实验采用A型脉冲发射式探伤仪。其原理是,将探头发射出的超声波经耦合剂传到被检工件内,在试件中传播到缺陷时产生反射。由于压电晶片有可逆效应,因此缺陷发射回来的超声波能被探头接受,变为电脉冲,显示在探伤仪的荧光屏上,称为伤脉冲。超声波探伤仪的电路方框图及其工作原理如图1所示。

二、磁粉探伤 磁力探伤是对铁磁材料露在表面或处于近表面的缺陷进行无损探伤的方法。检验时将工件磁化,磁力线通过工件,对于断面尺寸相同,内部组织均匀的工件,磁力线在工件只的分布是均匀的;而对于内部有缺陷的工件,则磁力线因缺陷处的磁阻比工件材料的磁阻大得多而弯曲,于是在缺陷近表面处形成漏磁场如图2所示。这时撒在试件上的磁粉微粒向磁通密度最大处移动,磁粉被吸引在金属内部有缺陷而产生漏磁的地方,故磁粉聚集处即指示缺陷所在。 三、渗透探伤 渗透检测法是利用渗透液的渗透作用检测非多孔性材料表面开口缺陷的无损检测方法。将被探工件浸涂具有高度渗透能力的渗透剂,由于液体的润湿作用和毛细现象,渗透液便渗入工件表面缺陷中。然后将工件缺陷以外的多余渗透液清洗干净,再涂一层吸附力很强的显像剂,缺陷中的渗透液在毛细作用下重新被吸到工件的表面,从而显示出缺陷的形状和位置的鲜明图案,从而达到了无损检测的目的。 【实验设备、仪器、工具等】 接受放大电路扫描电路同步电路发射电路探头缺陷工图2-1超声波探伤仪的电路方框图及其工作原理图接受放大电路扫描电路同步电路发射电路探头缺陷工件图1超声波探伤仪的电路方框图及其工作原理图图1零件表面的漏漏磁图2零件表面的漏磁场漏磁场 1.CTS-22型超声波探伤仪 2.磁轭探伤仪 3.渗透探伤剂 4.RB-2试块 5.CSK-IB试块 6.不同型号超声波探伤探头若干个 7.HJ20型焊接检验尺 8.焊缝射线探伤底片若干片 9.带热裂纹的焊接试样实验内容: 【实验过程】 (实验步骤、记录、数据、) 一、超声波探伤 1.超声波探伤仪的使用调节超声波探伤仪面板各个旋钮的观察其对超声波探伤的影响。 2.直探头超声波探伤的缺陷定位方法将直探头耦合在CSK-Ⅰ试块上,调节

工程材料及材料成型基础实验报告

实验一金属材料硬度的测定实验 一、实验目的 1、了解布氏硬度和洛氏硬度的测定方法。 2、掌握布氏、洛氏硬度试验计的基本构造和操作方法。 二、实验内容及步骤 1、布氏硬度的测定 布氏硬度的测定在HB-3000型布氏硬度机上进行。 (1)实验原理 布氏硬度数值通过布氏硬度试验测定。布氏硬度试验是指用一定直径的球体(钢球或硬质合金球)以相应的试验力压入被测材料或零件表面,经规定保持时间后卸除试验力,通过测量表面压痕直径来计算硬度的一种压痕硬度试验方法。 布氏硬度值是试验力除以压痕球形表面积所得的商。使用淬火钢球压头时用符号HBS,使用硬质合金球压头时用符号HBW,计算公式如下: HBS(HBW)=0.102 式中:F—试验力(N); D—球体直径(mm); d—压痕平均直径(mm)。 由上式可以看出,当F、D一定时,布氏硬度值仅与压痕直径d的大小有关。所以在测定布氏硬度时,只要先测得压痕直径d,即可根据d值查有关表格得出HB值,并不需要进行上述计算。 国家标准GB231-1984规定,在进行布氏硬度试验时,首先应选择压头材料,布氏硬度值在450以下(如灰铸铁、有色金属及经退火、正火和调质处理的钢材等)时,应选用钢球作压头;当材料的布氏硬度值在450~650时,则应选用硬质合金球作压头。其次是根据被测材料种类和试样厚度,按照表1—1所示的布氏硬度试验规范正确地选择压头直径D、试验力F和保持时间t。 布氏硬度习惯上只写出硬度值而不必注明单位,其标注方法是,符号HBS或HBW之前为硬度值,符号后面按以下顺序用数值表示试验条件:球体直径、试验力,试验力保持时间(10~15s不标注)例如: 120HBS10/1000/30,表示直径10mm钢球在9.80KN(1000kgf)的试验力作用下,保持30s测得的布氏硬度值为120。 500HBW5/750,表示用直径5mm的硬质合金球在7.35KN(750kgf)试验力作用下,保持10~15s测得的布氏硬度值为500。 布氏硬度值的测量误差小,数据稳定,重复性强,常用于测量退火、正火、调质处理后的零件以及灰铸铁、结构钢、非铁金属及非金属材料等毛坯或半成品 (2)操作前的准备工作 a. 选定压头擦拭干净,装入主轴衬套中; b. 选定载荷,加上相应的砝码; c. 确定持续时间,把圆盘上的时间定位器(红色指示点)转到与持续时间相符的位置上。

金属材料工程09级综合性设计性实验报告

金属热处理综合性、设计性实验报告 实验名称:20#钢热处理 专业:金属材料工程 班级:金属3班 姓名:齐希伦 学号:0907024304 指导教师:马臣 金属材料工程教研室 一、实验目的 通过选材,测试原材料硬度,设计热处理工艺,进行热处理(淬火,回火),测试处理后材料硬度,制备金相组织,在显微镜下进行观察。研究组织构成,分析材料成分、性能、热处理工艺组织结构之间的关系。培养综合分析能力。 二.实验设备 砂轮机,火花图谱,热处理中温炉5台,高温炉1台,金相磨抛光机4台,金相显微镜3台,布氏硬度计1台,洛氏硬度计3台,盐水1桶,机油1桶。金属材料试件(5种) 三.实验步骤 1.材料选择: 拟制造零件:拖拉机传动轴、活塞销、收割机刀片、锉刀、滚动轴承等。 根据零件挑选试样,后用砂轮机磨试样,观看活化形貌,对照火花图谱,鉴别材料。 材料牌号判定结果:20#钢 2.试样力学性能测定: 根据材料牌号,计划用于制造活塞销零件。采用调质工艺,零件硬度要求达到20-25HRC 查表制定热处理工艺。 淬火温度:930℃ 保温时间:t=KD K=1.0min/mm D为零件直径t=1×30=30分钟 淬火介质:盐水 回火温度:无

回火时间:无 画出热处理工艺 4.热处理试验: 将淬火炉 炉温升到930℃ 放入工件,保温10分后,进行淬火一冷到底。 5.热处理后材料硬度测试: 用HR150洛氏硬度计测量淬火,回火后试样硬度。 测试淬火后硬度值:42HRC –48HRC 6.制备金相试样: 通过磨平、粗磨、抛光、腐蚀与吹干等制样步骤,制备金相试样。(写明过程) 7.金相组织鉴定: 在金相显微镜下观察试样制备后的金相组织为回火索氏体。

激光熔覆实验报告_20

实验12 激光熔覆 一、实验目的 1、熟悉激光熔覆的概念、特性和基本方法; 2、了解激光熔覆所涉及的激光器、加工机床、送粉器和喷嘴; 3、用侧向送粉法在45钢表面进行镍基合金的激光熔覆,优化工艺参数获得良 好的熔覆层; 4、测量熔覆层的尺寸,观察显微组织。 二、实验原理 激光熔覆是指以不同的添料方式在被熔覆基体表面上放置被选择的涂层材料经激光辐照使之和基体表面一薄层同时熔化,并快速凝固后形成稀释度极低,与基体成冶金结合的表面涂层,显著改善基层表面的耐磨、耐蚀、耐热、抗氧化及电气特性的工艺方法,从而达到表面改性或修复的目的,既满足了对材料表面特定性能的要求,又节约了大量的贵重元素。 与堆焊、喷涂、电镀和气相沉积相比,激光熔覆具有稀释度小、组织致密、涂层与基体结合好、适合熔覆材料多、粒度及含量变化大等特点,因此激光熔覆技术应用前景十分广阔。 熔覆材料:目前应用广泛的激光熔覆材料主要有:镍基、钴基、铁基合金、碳化钨复合材料。其中,又以镍基材料应用最多,与钴基材料相比,其价格便宜。工艺设备原理 熔覆工艺:激光熔覆按熔覆材料的供给方式大概可分为两大类,即预置式激光熔覆和同步式激光熔覆。预置式激光熔覆是将熔覆材料事先置于基材表面的熔覆部位,然后采用激光束辐照扫描熔化,熔覆材料以粉、丝、板的形式加入,其中以粉末的形式最为常用。同步式激光熔覆则是将熔覆材料直接送入激光束中,使供料和熔覆同时完成。熔覆材料主要也是以粉末的形式送入,有的也采用线材或板材进行同步送料。 预置式激光熔覆的主要工艺流程为:基材熔覆表面预处理---预置熔覆材料---

预热---激光熔化---后热处理。 同步式激光熔覆的主要工艺流程为:基材熔覆表面预处理---送料激光熔化---后热处理。 按工艺流程,与激光熔覆相关的工艺主要是基材表面预处理方法、熔覆材料的供料方法、预热和后热处理。 三、实验设备 YLS-2000(IPG)光纤激光器、45钢板材(40╳60╳15),Ni基合金粉末。 四、实验步骤 1.预先准备好的45钢试样表面用酒精和丙酮清洗干净,用电吹风机吹干备用; 2.在激光加工工作头上安装反射聚焦工作头,接通电源,调节送粉嘴的位置; 在送粉器中加入适量的NiCrSiB合金粉末; 3.将试样平放在工作太平面上; 4.启动数控机床,移动激光工作头至试样上面,调节Z轴高度使喷嘴离试样距 离约为1.5mm; 5.启动激光器; 6.改变激光功率1000-2000W,改变扫描速度2-7mm/s,改变送粉速度6-13g/s, 进行送粉激光熔覆实验,得到不同结果的激光熔覆层;观察实验过程中的实验现象; 7.关闭激光器,关闭水冷机组,关闭数控机床;清理送粉器中的残留粉末;关 闭送粉器电源; 8.待试样冷却后用游标卡尺测量各种熔覆层的高度和宽度,观察记录熔覆层的 外观形貌; 9.观察描画相近工艺参数处理的试样快熔覆层的显微组织。 五、实验数据处理及分析 1.功率对熔覆层外观形貌的影响

实验报告一-材料成形技术

实验一材料成形技术 材料成形制造工艺多利用模型使原材料形成零件或毛坯。材料成形加工过程中,原材料的形状、尺寸、组织状态,甚至结合状态都会改变。由于成形精度一般不高,材料成形制造工艺常用来制造毛坯。也可以用来制造形状复杂但精度要求不太高的零件。材料成形工艺的生产效率较高。常用的成形工艺有铸造、锻压、粉末冶金等。 1、不同类型成型技术 a.铸造成型: 卡特挖机CA T: 1、铸造成型:其原理是铸造是将所需的金属熔化成液体,浇注到铸型中,待其冷却凝固后获得铸件(毛坯)的。因此,铸造也可以称为液态成形。铸造是毛坯或机器零件成形的重要方法之一。 2、铸造成形优缺点: 优点:(1)适应性广泛,铸件材质、大小、形状几乎不受限制;不宜塑性加工或焊接成形的材料,铸造成形尤具优势。(2)可形成形状复杂的零件;(3)生产成本较低。铸造用原材料来源广泛,价格低廉。铸件与最终零件的形状相似,尺寸相近,加工余量小。由于铸造具有如此突出的优点,所以才会经久不衰,且不断发展,直到现在仍然在制造业中得到广泛应用。 缺点:涉及生产工序较多,过程难以精确控制,废品率较高;铸件组织疏松,晶粒粗大,铸件某些力学性能较低;铸件表面粗糙,尺寸精度不高。工作环境较差,工人劳动强度大。 3、主要工艺特点: 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: (1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 (2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 (3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 (4)铸件一般使用的原材料来源广、铸件成本低。 (5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 视频中,亚米特驻扎和机具公司锁铸造的是797b卡车的关键部位——车架。首先先把金属废料填进电弧炉,之后把三个电极伸入炉中,电极中通有强大的电流,碰到金属后便产生2200℃的高温的电弧,金属加热后起泡溶解,半小时后即可浇注。然后把将近2000℃的金属液体倒入空浇桶,之后再引导空浇桶到零

相关主题
文本预览
相关文档 最新文档