当前位置:文档之家› 实验2通用Timer

实验2通用Timer

实验2通用Timer
实验2通用Timer

实验2、TIMER

【实验目的】

1、学习用Keil软件开发ARM程序方法和步骤(包括环境搭建和具体配置)。

2、学习STM32系列处理器TIMER的结构及工作原理。

3、理解基于Cortex-M3内核的STM32实验开发平台的管脚链接及原理。

4、掌握使用J—LINK下载程序的方法。

【实验要求】

1、掌握STM32系列处理器TIMER以及NVIC的功能原理;

2、TIMER端口的寄存器配置情况?各个端口引脚通过软件可以进行哪些模式配置?怎样配

置?

3、在Keil中设计ARM程序,实现定时器触发中断对流水灯的控制;

4、下载到实验平台,并成功运行。

5、附加要求:修改源程序,实现定时器触发中断对LED的各种不同移动、闪烁效果。

6、附加要求:用汇编编程直接实现定时器触发中断对流水灯的控制。

【实验原理】

1、STM32系列处理器的时钟树:

2、STM32高级定时器结构图:

STM32F10x系列单片机有8个定时器:高级定时器(Timer1和Timer8);通用定时器(TIM2、TIM3、TIM4和TIM5)和基本定时器(TIM6和TIM7)。

3、TIMER寄存器地址映像和复位值

4、固件函数库(见附件文档固件函数库)

5、实验电路原理图

实验电路的连接如下图,4个LED是利用STM32的GPIO口的PD.8到PD.11来控制的。引脚输出高电平则LED点亮,输出低电平则LED熄灭(因为LED的另一端接地)。

对管脚的操作实际上就是对控制管脚寄存器的操作,所以可以通过对管脚寄存器的操作,实现管脚的不同输出(即高低电平),从而控制LED的状态(亮、灭)。

C程序如下:

#include "stm32f10x.h"

#include "stm32f10x_gpio.h"

#include "stm32f10x_tim.h"

#include "stm32f10x_rcc.h"

void GPIO_Configuration(void)

{

GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |

GPIO_Pin_11;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOD, &GPIO_InitStructure);

}

void TIM_Configuration(void)

{

TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE); TIM_BaseInitStructure.TIM_Period=20000;

TIM_BaseInitStructure.TIM_Prescaler=3599;

TIM_BaseInitStructure.TIM_ClockDivision=0 ;

TIM_BaseInitStructure.TIM_CounterMode=TIM_CounterMode_Down; TIM_TimeBaseInit(TIM1,&TIM_BaseInitStructure);

TIM_ClearFlag(TIM1,TIM_FLAG_Update);

TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE);

TIM_Cmd(TIM1, ENABLE);

}

void NVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure;

VECT_TAB_RAM

NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);

NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

NVIC_InitStructure.NVIC_IRQChannel= TIM1_UP_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

}

void TIM1_UP_IRQHandler(void)

{

u8 ReadValue;

if(TIM_GetITStatus(TIM1, TIM_IT_Update) != RESET) {

TIM_ClearITPendingBit(TIM1 , TIM_FLAG_Update);

ReadValue = GPIO_ReadOutputDataBit(GPIOD,GPIO_Pin_8 | GPIO_Pin_9 |

GPIO_Pin_10 | GPIO_Pin_11);

if(ReadValue == 0)

{

GPIO_SetBits(GPIOD,GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11);

}

else

{ GPIO_ResetBits(GPIOD,GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11);

}

}

}

void RCC_Configuration(void)

{

SystemInit();

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD , ENABLE );

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);

}

int main()

{

RCC_Configuration();

GPIO_Configuration();

NVIC_Configuration();

TIM_Configuration();

while(1)

{

}

}

水泥试验方法及步骤

水泥检测作业指导书 Ⅰ执行标准: GB50204-2002 混凝土结构工程施工及验收规范 GB175-1999 硅酸盐水泥、普通硅酸盐水泥 GB1344-1999 矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥 GB1345-91水泥细度检验方法(80μm筛筛析法) GB/T17671—1999水泥胶砂强度检验方法(ISO法) GB/T1346-2001水泥标准稠度用水量、凝结时间、安定性检验方法Ⅱ代表批量及取样方法: 检查数量,按同一生产厂家、同一等级、同一品种、同一批号且连续进场的水泥,袋装不超过200t为一批,散装不超过500t 为一批,每一批抽样不少于一次。从分布均匀的不同部位,至少从20袋中抽取(散装至少从三个罐中抽取)大致相同数量,混合后取12kg样品送试。 Ⅲ送试样品处理: 试验前:接到水泥试样后,应立即将水泥(约12 kg)装入内部套有塑料袋的留样桶里,然后封紧袋口、盖严桶盖,贴上编号标签后送至水泥试验室,待24h后进行试验。 试验后:试验完毕,剩余水泥应妥善处理,同样封紧袋口、盖严桶盖,放置于水泥样品留样架上,留置三个月,再报质量负责人按要求处理。

Ⅳ水泥室验室要求: 温度应保持在20℃±2℃,相对湿度应不低于50%;试体带模养护的养护箱或雾室、养护池水温度应保持在20℃±1℃,相对湿度不低于90%。 试验室空气温度和相对湿度及养护池水温在工作期间每天至少记录一次;养护箱或雾室的温度与相对湿度至少每4h记录一次,在自动控制的情况下记录次数可以酌减至一天记录二次。 Ⅴ水泥检测方法及步骤: 试验前先使仪器设备空转运行,检查是否正常,然后认真填写各仪器设备使用记录。 水泥物理性能检测主要包括水泥细度、标准稠度用水量、凝结时间、安定性、强度几项。 一、水泥细度检验方法(80μm筛筛析法)GB 1345—91 1、仪器:试验筛、负压筛析仪、天平 2、样品处理: 水泥样品应充分拌匀,通过0.9mm方孔筛,记录筛余物情况,要防止过筛时混进其他水泥。 3、操作程序(负压筛法): (1)筛析试验前,应把负压筛放在筛座上,盖上筛盖,接通电源,检查控制系统,调节负压至4000~6000Pa范围内。 (2)称取试样25g,置于洁净的负压筛中,盖上筛盖,放在筛座上,开动筛析仪连续筛析2min,在此期间如有试样附着在筛

定时器实验报告

定时器实验报告 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

电子信息工程学系实验报告课程名称:单片机原理及接口应用 实验项目名称:51定时器实验 实验时间: 班级:姓名:学号: 一、实验目的: 熟悉keil仿真软件、protues仿真软件的使用和单片机定时程序的编写。了解51单片机中定时、计数的概念,熟悉51单片机内部定时/计数器的结构与工作原理。掌握中断方式处理定时/计数的工作过程,掌握定时/计数器在C51中的设置与程序的书写格式以及使用方法。 二、实验环境: 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 三、实验原理: 1、51单片机定时计数器的基本情况 8051型有两个十六位定时/计数器T0、T1,有四种工作方式。 MCS-51系列单片机的定时/计数器有几个相关的特殊功能寄存器: 方式控制寄存器TMOD; 加法计数寄存器TH0、TH1 (高八位);TL0、TL1 (低八位); 定时/计数到标志TF0、TF1(中断控制寄存器TCON) 定时/计数器启停控制位TR0、TR1(TCON) 定时/计数器中断允许位ET0、ET1(中断允许寄存IE) 定时/计数器中断优先级控制位PT0、PT1(中断优IP)

2 、51单片机的相关寄存器设置 方式控制寄存器TMOD: D7D6D5D4D3D2D1D0 GATE C/T M1 M0GATE C/T M1M0 TMOD的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。 TMOD各位的含义如下: 1. 工作方式选择位M1、M0 M1、M0的状态决定定时器的工作方式: M1M0功能说明 0 0 1 10 1 1 方式0,为13位的定时/计数器 方式1,为16位的定时/计数器 方式2,为常数自动重装入的8位定时/计数器 方式3,T0分为两个8位定时/计数器, T1在该方式时停止 3、51单片机定时器的工作过程(逻辑)方式一方式1:当M1M0=01时,定时器工作于方式1。

实验3-2timer定时器(中断方式)

实验三-2 timer定时器(中断方式) 【实验目的】 1、学习LPC1768处理器timer定时器(中断方式)的功能原理; 2、掌握定时器功能设置及使用方法。 【实验要求】 1、了解LPC1768处理器timer定时器(中断方式)的功能原理。 【实验原理】 一、LPC系列处理器定时器的原理 参见课本P106中有关定时器的章节,重点要掌握定时器工作原理、定时器寄存器设置和定时器中断的工作方法等。 二、实验板上的定时器 1.LPC1700嵌入式处理器具有4个32位可编程定时/计数器,除了外设基址之外操作完全相同。 2. 定时/计数器对外设时钟(PCLK)周期或外部时钟进行计数,可选择产生中断或根据匹配寄存器的设定,在到达指定的定时值时执行其它动作(输出高/低电平、翻转或者无动作)。 3. 中断方式使用定时器: 在这种方式下定时器与处理器可以并行工作,等计数完成定时器通过中断通知处理器转而执行中断服务程序。这样的使用方式可以提高系统的效率。 程序首先要初始化使用的定时器,init_timer()函数执行内容包括设置定时器的匹配寄存器MRn和匹配控制寄存器MCRn,还有安装定时器中断服务函数等。该函数有两个参数:timer_num为初始化定时器序号,TimerInterval为Fpclk周期数也即定时器中断间隔时间。 三、程序说明 1.SystemInit(): 系统初始化,包括系统时钟设置等。 2. init_timer ( uint8_t timer_num, uint32_t TimerInterval ): 根据不同定时器编号设置定时器相关寄存器以及安装中断服务程序。 3. enable_timer( uint8_t timer_num ): 定时器使能,本实验中使用定时器0,因此参数timer_num设置为0。 4. TIMER0_IRQHandler (void):

水泥试验操作细则

水泥试验操作细则 (一) 相关标准 GB175-1999 《硅酸盐水泥、普通硅酸盐水泥》; GB1344-1999 《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》; GB12958-1999 《复合硅酸盐水泥》; GB/T176-1996 《水泥化学分析方法》; GB/T17671-1999 《水泥胶砂强度检验方法》; GB/T1345-2005 《水泥细度检验方法(80um筛筛分析)》; GB1346-2001 《水泥标准稠度用水量、凝结时间、安定性检验方法》; GB12573-90 《水泥取样方法》; JC/T738-2004 《水泥强度快速检验方法》; (二) 取样方法 1、对同一水泥厂生产的同期出厂的同品种、同强度等级的水泥, 以一次进厂(场)的同一出厂编号的水泥为一批。但一批的总量不得超过500t.随机地从不少于3个车罐中各取等量水泥,经搅拌均匀后,再从中取不少于12kg水泥作为检验试样.把试样均匀分成两等份,一份由实验室按标准进行试验,一份密封贮存,以备复验用. 2、对以进厂(场)的每批水泥,视在厂(场)存放情况,应重新采集试

样复验其强度和安定性.存放期超过三个月的水泥,使用前必须进行复验,并按复验结果仲裁. (三) 必试项目 1、水泥胶砂强度试验 (1)、材料 a.当水泥从取样至试验要保持24h以上时,应把它贮存在基本气 密的容器里,容器应与水泥不发生反应。 b.标准砂应符合GB/T17671-1999《水泥胶砂强度检验方法 ISO 法》的质量要求。 c.仲裁试验或其它重要试验用蒸馏水,其它试验可用饮用水。(2)温、湿度 a.水泥试体成型试验温度为20±2℃,相对湿度大于50%。水泥 试样、标准砂、拌和水及试摸的温度与室温相同。 b.养护箱温度为20±1℃,相对湿度大于90%。养护水的温度为20±1℃ (3)、试体成型 a.成型前将试摸擦净,四周的模板与底座的接触面上应涂一些 黄干油,紧密装配,防止漏浆,内壁均匀刷一薄层机油。 b.水泥与标准砂的重量比1:3。水灰比为0.5。 c.每成型三条试体需称量的材料及用量见下表:

高温旋转疲劳弯曲试验机

高温旋转弯曲疲劳试验机用于对黑色金属及其合金材料在室温及高温条件下进行小试样悬臂纯弯曲疲劳试验,测定金属圆形横截面试样在旋转状态下承受弯曲力矩时的疲劳性能。 高温旋转弯曲疲劳试验机Rotary bending fatigue testing machine 1 试验机介绍 馥勒高温旋转疲劳弯曲试验机由FL疲劳试验机架、交流高速电机及驱动器,测控系统、加载砝码、高温炉及控制器、高温试验夹具、润滑装置、保护装置等组成,用于对黑色金属及其合金材料在室温及高温条件下进行小试样悬臂纯弯曲疲劳试验,测定金属圆形横截面试样在旋转状态下承受弯曲力矩时的疲劳性能。 2 试验机方法 Q/FL-2019《材料疲劳试验方法》 3 试验标准方法 满足HB 5153-1996 金属高温旋转弯曲疲劳试验方法 HB 5152-1996 金属室温旋转弯曲疲劳试验方法 GB/T 4337-2008 金属材料疲劳试验旋转弯曲方法 JJG 652-2012 旋转弯曲疲劳试验机检定规程 4 主要技术规格参数 依据测试需求,选择相应的技术规格型号参数等 5 试验机规格型号 FLXPL25、FLXPL300

6 加载负荷 25N、300N 7 精度 ±0.1% 8 加载力臂 214mm 9 旋转速度 1500r/min~10000r/min,无级调速10 转速波动度 ±0.5%FS 11 弯矩误差 ±1% 12 载荷精度误差 ±1% 13

加力点静态径向跳动量 0.01mm 14 加力点动态径向跳动量 0.05mm 15 高温范围 300度~1000℃ 16 试验夹具选择 专用高温试验夹具,采用弹性前后夹头夹持试样,夹头与主轴弹性筒夹连接,可实现精密配合 17 适用材料 金属材料、高温合金材料等 18 测试控制器 馥勒旋转弯曲测控控制器 19 馥勒疲劳机触控操作 配有触摸屏操作及显示面板用于完成所有控制参数的设置、所有测量数据的显示及所有的试验操作;配有与计算机通讯的网络接口,当配计算机时,可实现计算机对单台设备的测控或对多台设备的组网测控;试验周次可以任意设定,达到设定值可自动停机。 19

定时器实验报告

电子信息工程学系实验报告 课程名称:单片机原理及接口应用Array实验项目名称:51定时器实验实验时间: 班级:姓名:学号: 一、实验目的: 熟悉keil仿真软件、protues仿真软件的使用和单片机定时程序的编写。了解51单片机中定时、计数的概念,熟悉51单片机内部定时/计数器的结构与工作原理。掌握中断方式处理定时/计数的工作过程,掌握定时/计数器在C51中的设置与程序的书写格式以及使用方法。 二、实验环境: 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 三、实验原理: 1、51单片机定时计数器的基本情况 8051型有两个十六位定时/计数器T0、T1,有四种工作方式。MCS-51系列单片机的定时/计数器有几个相关的特殊功能寄存器: 方式控制寄存器TMOD; 加法计数寄存器TH0、TH1 (高八位);TL0、TL1 (低八位); 定时/计数到标志TF0、TF1(中断控制寄存器TCON) 定时/计数器启停控制位TR0、TR1(TCON) 定时/计数器中断允许位ET0、ET1(中断允许寄存IE) 定时/计数器中断优先级控制位PT0、PT1(中断优IP) 2、51单片机的相关寄存器设置 方式控制寄存器TMOD: TMOD的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。TMOD各位的含义如下: 1. 工作方式选择位M1、M0 3、51单片机定时器的工作过程(逻辑)方式一 方式1:当M1M0=01时,定时器工作于方式1。

T1工作于方式1时,由TH1作为高8位,TL1作为低8位,构成一个十六位的计数器。若T1工作于定时方式1,计数初值为a,晶振频率为12MHz,则T1从计数初值计数到溢出的定时时间为t =(216-a)μS。 4、51单片机的编程 使用MCS-51单片机的定时/计数器的步骤是: .设定TMOD,确定: 工作状态(用作定时器/计数器); 工作方式; 控制方式。 如:T1用于定时器、方式1,T0用于计数器、方式2,均用软件控制。则TMOD的值应为:0001 0110,即0x16。 .设置合适的计数初值,以产生期望的定时间隔。由于定时/计数器在方式0、方式1和方式2时的最大计数间隔取决于使用的晶振频率fosc,如下表所示,当需要的定时间隔较大时,要采用适当的方法,即将定时间隔分段处理。 计数初值的计算方法如下,设晶振频率为fosc,则定时/计数器计数频率为fosc/12,定时/计数器的计数总次数T_all在方式0、方式1和方式2时分别为213 = 8192、216 = 65536和28 = 256,定时间隔为T,计数初值为a,则有 T = 12×(T_all – a)/fosc a = T_all – T×fosc/12 a = – T×fosc/12 (注意单位) THx = a / 256;TLx = a % 256; .确定定时/计数器工作于查询方式还是中断方式,若工作于中断方式,则在初始化时开放定时/计数器的中断及总中断: ET0 = 1;EA = 1; 还需要编写中断服务函数: void T0_srv(void)interrupt 1 using 1 { TL0 = a % 256; TH0 = a / 256; 中断服务程序段} .启动定时器:TR0(TR1)= 1。 四、实验内容过程及结果分析: 利用protues仿真软件设计一个可以显示秒表时间的显示电路。利用实验板上的一位led数码管做显示,利用中断法编写定时程序,控制单片机定时器进行定时,所定时间为1s。刚开始led数码管显示9,每过一秒数码管显示值减一,当显示到0时返回9,依此反复。然后设计00-59的两位秒表显示程序。 (1)实现个位秒表,9-0

公路工程水泥及水泥混凝土试验规程

公路工程水泥及水泥混凝土试验规程 T0501—2005 水泥取样方法 1目的、适用范围和引用标准 本方法规定了水泥取样的工具、部位、数量及步骤等。 本方法适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰硅酸盐水泥、复合硅酸盐水泥、道路硅酸盐水泥及指定采用本方法的其它品种水泥。 引用标准: GB 175-1999《硅酸盐水泥、普通硅酸盐水泥》 GB 1344—1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥》 GB 12958—1999《复合硅酸盐水泥》 GB 13693—1992《道路硅酸盐水泥》 2仪器设备 ⑴袋装水泥取样器。 ⑵散装水泥取样器。 3取样步骤 3.1取样数量应符合各相应水泥标准的规定。 3.2分割样 3.2.1袋装水泥:毎1/10编号从一袋中取至少6kg。 3.2.2散装水泥:每1/10编号在5min内取至少6kg。 3.3袋装水泥取样器:随机选择20个以上不同的部位,将取样管插入水泥适当深度,用大拇指按住气孔,小心抽出取样管。将所取样品放入洁净、干燥、不易受污染的容器中。 3.4散装水泥取样器:通过转动取样内管控制开关,在适当位置插

入水泥—定深度,关闭后小心抽出。将所取样品放入洁净、干燥、不易受污染的容器中。 4样品制备 4.1样品缩分 样品缩分可采用二分器,一次或多次将样品缩分到标准要求的规定量。 4.2试验样及封存样 将每一编号所取水泥混合样通过0.9mm方孔筛,均分为试验样和封存样。 4.3 分割样 每一编号所取10个分割样应分别通过0.9mm方孔筛,不得混杂。5样品的包装与贮存 5.1样品取得后应存放在密封的金属容器中,加封条。容器应洁净、干燥、防潮、密闭、不易破损、不与水泥发生反应。 5.2封存样应密封保管3个月。试验样与分割样亦应妥善保管。5.3在交货与验收时,水泥厂和用户共同取实物试样,封存样由买卖双方共同签封。以抽取实物试样的检验结果为验收依据时,水泥厂封存样保存期为40d;以同编号水泥的检验报告为验收依据时,水泥厂封存样保存期为3个月。 5.4存放样品的容器应至少在一处加盖清晰、不易擦掉的标有编号、取样时间、地点、人员的密封印,如只在一处标志应在器壁上。 5.5封存样应贮存于干燥、通风的环境中。 6取样单 样品取得后,均应由负责取样操作人员填写取样单. T0504—2005 水泥比表面积测定方法(勃氏法) 1目的、适用范围和引用标准 本方法规定采用勃氏法进行水泥比表面积测定。

旋转纯弯曲疲劳试验机测量结果的不确定度评定

旋转纯弯曲疲劳试验机 测量结果的不确定度评定 1 概述 规程规定采用三等标准测力仪(配合专用检具使用)、千分尺来检定旋转纯弯曲疲劳试验机的弯矩。通过被检试验机弯矩值和标称值的相对误差,根据规程来判定被检试验机是否合格。因此,要对这个弯矩的相对误差进行不确定度评估。 1.1 检定方法 依据《旋转纯弯曲疲劳试验机》规程规定,为了方便描述,以下简称试验机。 1.2 环境条件 室温10℃~35℃,检定过程中环境温度变化不大于2℃/h 。 相对湿度不大于80%, 1.3 弯矩检定装置 弯矩检定装置为准确度等级不低于0.3级的标准测力仪(配合专业检具使用)、千分尺。 1.4 检定对象 《旋转纯弯曲疲劳试验机》规程适用的试验机。 2 弯矩测量结果的不确定度评定 2.1 数学模型 F L M = (1) 式中: M ——试验机弯矩值,单位为牛米(Nm ); L ——试验机的力臂长度测量值,单位为(mm ) F ——试验力的测量值,单位为牛(N ) 。 按照不确定度传递率,M 的相对合成不确定度)(M u c 按公式(2)计算: 22))(())(()(F F u L L u M u crel += (2) 式中:)(M u crel ——试验机扭矩值的相对合成不确定度; )(L u ——力臂长度允许误差引起的标准不确定度分量; )(F u ——试验力测得值引起的标准不确定度分量; F ——标称力值; L ——标称力臂长度。 2.2 测量不确定度来源 2.2.1 由力臂长度允许误差引入的标准不确定度分量)(L u 的评定:

通过B 类方法进行评定,已知规程规定力臂长度的允许误差为±0.3%L ,半宽度为a=0.3%L ,估计其为正态分布。因此,由此引入的标准不确定度分量为L L L u %058.033%3.0)(== (3) 2.2.2 由试验力重复性引入的标准不确定度分量)(F u 的评定: 通过A 类方法进行评定,由于测量次数仅3次,所以采用极差法进行评定,当3=n 时,69.1=n d ,估计其为均匀分布,取3=k 。可得由试验力重复性引入的标准不确定度分量)(F u 为: F F F F u ?=-=342.03 69.1)(min max (4) 由于每次及每台试验机的力值测量重复性是不同的,但规程规定必须是在的(0~0.01)F 范围内。因此,公式(4)可以变换为下式: xF F F F u 342.03 69.1)(min max =-= (5) 式中:x ——重复性系数,0~0.01之间。 将公式(3)和(5)代人(2),得 ()()2 222342.000058.0342.000058.0)(x F xF L L M u crel +=??? ??+??? ??= (6) 分两种极端情况;得弯矩相对合成不确定度结果: 0=x 时 ()()% 058.000058 .0342.000058.0342.000058.0)(2222==+=?? ? ??+??? ??=x F xF L L M u crel 01.0=x 时 ()()% 35.0342.000058.0342.000058.0)(222 2=+=??? ??+??? ??=x F xF L L M u crel 实际日常检定工作中,006.0~002.0=x 左右,如果取中间数004.0=x 代人公式(6),弯矩的相对合成不确定度结果也只有:

05_STM32F4通用定时器详细讲解

STM32F4系列共有14个定时器,功能很强大。14个定时器分别为: 2个高级定时器:Timer1和Timer8 10个通用定时器:Timer2~timer5 和 timer9~timer14 2个基本定时器: timer6和timer7 本篇欲以通用定时器timer3为例,详细介绍定时器的各个方面,并对其PWM 功能做彻底的探讨。 Timer3是一个16位的定时器,有四个独立通道,分别对应着PA6 PA7 PB0 PB1 主要功能是:1输入捕获——测量脉冲长度。 2 输出波形——PWM 输出和单脉冲输出。 Timer3有4个时钟源: 1:内部时钟(CK_INT ),来自RCC 的TIMxCLK 2:外部时钟模式1:外部输入TI1FP1与TI2FP2 3:外部时钟模式2:外部触发输入TIMx_ETR ,仅适用于TIM2、TIM3、TIM4,TIM3,对应 着PD2引脚 4:内部触发输入:一个定时器触发另一个定时器。 时钟源可以通过TIMx_SMCR 相关位进行设置。这里我们使用内部时钟。 定时器挂在高速外设时钟APB1或低速外设时钟APB2上,时钟不超过内部高速时钟HCLK ,故当APBx_Prescaler 不为1时,定时器时钟为其2倍,当为1时,为了不超过HCLK ,定时器时钟等于HCLK 。 例如:我们一般配置系统时钟SYSCLK 为168MHz ,内部高速时钟 AHB=168Mhz ,APB1欲分频为4,(因为APB1最高时钟为42Mhz ),那么挂在APB1总线上的timer3时钟为84Mhz 。 《STM32F4xx 中文参考手册》的424~443页列出与通用定时器相关的寄存器一共20个, 以下列出与Timer3相关的寄存器及重要寄存器的简单介绍。 1 TIM3 控制寄存器 1 (TIM3_CR1) SYSCLK(最高 AHB_Prescaler APBx_Prescaler

水泥试验方法

水泥试验方法 水泥试验方法 水泥试验方法 试验条件试验温度为20℃±2℃相对湿度应不低于50%水泥试样、拌与水、仪器与用具得温度应与试验室一致湿气养护箱得温度为20℃±1℃相对湿度不低于90%。 1取样及频率 1、1 外观质量检查 进场水泥必须有水泥生产厂得质量证明书。每批进场水泥需核对、检查生产厂名、强度等级、出厂日期、出厂编号、数量、包装、质量证明书以及就是否受潮等。 1、2 取样方法 散装水泥当水泥深度不超过2m时应采用槽形管状取样器进行取样通过转动取样器内管控制开关在适当位置插入水泥一定深度关闭开关将所取样品放入洁净、干燥、不易受污染得容器中取样数量不少于12kg。袋装水泥应采用取样管连续取样从20个以上得不同部位取等量样品将所取样品放入洁净、干燥、不易受污染得容器中取样数量不少于12kg。样品分割样品混拌均匀后采用分样器或四分法缩分样品至不少于12kg作为检验试样。将样品分成两份一份按试验检测标准规定得方法进行检验一份密封保存三个月以备有疑问时用于复试。 1、3 检验频率

每批散装水泥不大于500t或袋装水泥不大于200t得同厂家、同品种、同批号、同出厂日期得水泥为一验收批。 2 水泥标准稠度用水量测定 2、1准备工作 维卡仪得金属棒能自由滑动,调整至试杆接触玻璃板时指针对准零点,搅拌机运行正常。 2、2 水泥净浆得拌制 用水泥净浆搅拌机搅拌锅与搅拌叶先用湿布擦过将拌与水倒入搅拌锅内然后在5s-10s内小必将称好得500g水泥加入水中防止水与水泥溅出拌与时先将锅放在搅拌机得锅座上升至搅拌位置启动搅拌机低速搅拌120s停15s同时将叶片与锅壁上得水泥刮入锅中间接着高速搅拌120s停机。 2、3 标准稠度用水量得测定步骤 拌与结束后立即将拌好得水泥净浆装入已置于玻璃底板上得试模中用小刀插捣轻轻振动数次刮去多余得净浆抹平后迅速将试模与底板移到维卡仪上并将其中心定在试杆下降低试杆直至与水泥净浆表面接触拧紧螺丝1s-2s后突然放松使试杆垂直自由地沉入水泥净浆中。在试杆停止沉入或释放试杆30s时记录试杆距底板之间得距离整个操作过程应在搅拌后1、5min内完成。以试杆沉入净浆并距底板6mm±1mm得水泥净浆为标准稠度净浆。其拌与用水量为该水泥得标准稠度用水量P按水泥质量得百分比计。 3 凝结时间测定

水泥材料试验检测方法

水泥材料试验检测方法 一、适用范围及试样准备方法 (-)适用范国 按我国现行国标(GB175一92)和(GB1344一92)要求,对水泥的技术性质应进行纲度、凝结时间、安定性和胶砂强度等试验,这里主要介绍与工程密切相关的后三个试验,本方法适用硅酸盐水泥、普通硅酸盐水泥、火山灰硅酸盐水泥和粉煤灰硅酸盐水泥以及指定采用本方法的其他品种水泥。 (二)水泥试样准备方法 1.散装水泥。对同一水泥厂生产的同期出厂的同品种、同标号的水泥,一次运进的同一出厂编号的水泥为一批,但一批的总量不超过500t.随机地从不少于3个车罐中各取等量水泥,经拌和均匀后,再从中称取不少于12kg水泥作为检验试样。 2.袋装水泥。对同一水泥厂生产的同期出厂的同品种、同标号的水泥,以一次运进的同一出厂编号的水泥为一批,但一批的总量不超过2oot。随机地从不少于20袋中各取等量水泥,经拌和均匀后,再从中称取不少于12kg水泥作为检验试样。 3.对来源固定,质量稳定、且又掌握其性能的水泥,视运进水泥的情况,可不定期的采集试样进行强度检验。如有异常情况应作相应项目的检验。 4.对已运进的每批水泥,视存放情况应重新采集试样复验其强度和安定性。存放期超过3个月的水泥,使用前必须复验,并按照结果使用。 5.取得的水泥的试样试验应首先充分拌匀,然后通过0.9mm方孔筛,记录筛余物情况,但要防止过筛时混进其他水泥。 二、水泥标准稠度用水量试验检测方法 (一)概述 水泥标准稠度用水量是指水泥净浆在标准稠度仪上,当标准试锥下沉深度为(282)mm 时的拌和用水量。 确定标准稠度的目的是为了在进行水泥凝结时间和安定性试验时,对水泥净浆在标准稠度的条件下测定,使不同的水泥具有可比性。 (二)仪器设备 1.标准稠度与凝结时间测定仪(应符合GB3350.6规定)。该仪器由铁座和可以自由滑动的金属圆棒构成。松紧螺丝用于调整金属棒的高低。金属棒上附有指针,在量程0~75mm的标尺上可指示金属棒的下降距离。 当测定标准稠度时,可以金属圆棒下装一金属空心试锥,锥底直径为40mm ,高为50mm。装净浆用的锥模上口内径为60mm,锥高70mm。 2.净浆搅拌机(应符合GB3350.8要求)。由搅拌翅和平底搅拌锅组成,搅拌翅转速为90r/min,搅拌锅的内径为130mm,深为95mm,搅拌翅与锅壁底的间隙为0.2~5mm。 (三)试验方法 1.标准稠度用水量,可用调整水量和不变水量两种方法中的任一种测定,如发生争议时以前者为准。

单片机定时器实验报告

XXXX大学信息工程与自动化学院学生实验报告 (2009 —2010 学年第二学期) 课程名称:单片机开课实验室: 2010年 5月14日 一.实验目的: 掌握定时器T0、T1的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 二.实验原理: MCS-51单片机内设置了两个可编程的16位定时器T0和T1,通过编程,可以设定为定时器和外部计数方式。T1还可以作为其串行口的波特率发生器。 定时器T0由特殊功能寄存器TL0和TH0构成,定时器T1由TH1和TL1构成,特殊功能寄存器TMOD控制定时器的工作方式,TCON控制其运行。定时器的中断由中断允许寄存器IE,中断优先权寄存器IP中的相应位进行控制。定时器T0的中断入口地址为000BH,T1的中断入口地址为001BH。 定时器的编程包括: 1)置工作方式。 2)置计数初值。 3)中断设置。 4)启动定时器。 定时器/计数器由四种工作方式,所用的计数位数不同,因此,定时计数常数也就不同。

在编写中断服务程序时,应该清楚中断响应过程:CPU执行中断服务程序之前,自动将程序计数器PC内容(即断点地址)压入堆栈保护(但不保护状态寄存器PSW,更不保护累加器A和其它寄存器内容),然后将对应的中断矢量装入程序计数器PC使程序转向该中断矢量地址单元中以执行中断服务程序。定时器T0和T1对应的中断矢量地址分别为000BH 和001BH。 中断服务程序从矢量地址开始执行,一直到返回指令“RETI”为止。“RETI”指令的操作一方面告诉中断系统该中断服务程序已经执行完毕,另一方面把原来压入堆栈保护的断点地址从栈顶弹出,装入到程序计数器PC,使程序返回到被到中断的程序断点处,以便继续执行。 因此,我们在编写中断服务程序时注意。 1.在中断矢量地址单元放一条无条件转移指令,使中断服务程序可以灵活地安排在64K 字节程序存储器的任何空间。 2.在中断服务程序中应特别注意用软件保护现场,以免中断返回后,丢失原寄存器、累加器的信息。 3.若要使执行的当前中断程序禁止更高优先级中断,可以先用软件关闭CPU中断,或禁止某中断源中断,在返回前再开放中断。 三.实验内容: 编写并调试一个程序,用AT89C51的T0工作方式1产生1s的定时时间,作为秒计数时间,当1s产生时,秒计数加1;秒计数到60时,自动从0开始。实验电路原理如图1所示。 计算初值公式 定时模式1 th0=(216-定时时间) /256 tl0=(216-定时时间) mod 256

23.Step7如何将定时器(Timer)的剩余时间转为浮点数

【S7-300】Step7如何将定时器(Timer)的剩余时间转为浮点数 在Step7中定时器(Timer)的输出参数BI、BCD,是其剩余时间的两种数据格式。BI以整数Int格式显示,BCD以BCD格式显示。如何将BI、BCD转为秒为单位的浮点数(Real),下面提供了思路和例程。 1 定时器(Timer)的参数说明 定时器(Timer)在编程中大量使用,有时会用到其剩余时间,例如用剩余时间进行其他运算和编程,或者在其它厂家的触摸屏上显示。这时,需将定时器的剩余时间转为浮点数(Real),以秒为单位。 下面是调用定时器的程序截图,预设定时时间为1分钟为例。

首先,分析定时器的各参数含义,按鼠标左键点击定时器框图后按F1键会看到step7帮助信息,如下图。 由此可见输出参数BI、BCD是定时器剩余时间的两种数据格式。BI以整数Int 格式显示,BCD以BCD格式显示。注意,此处BCD格式即是S5Time格式,其数据结构和时基如下:

明显看出,参数BI转为秒为单位的浮点数,必须利用参数BCD的时基。参数BCD转为秒为单位的浮点数,需调用库函数FC33(S5TI_TIM)。 2 剩余时间参数BI,转为秒为单位的浮点数(Real) 思路:参数BI -> 整数INT -> 双整数DI -> 浮点数Real -> 取参数BCD的时基-> 根据不同时基,转为秒为单位的浮点数Real。编程如下:

3 剩余时间参数BCD,转为秒为单位的浮点数(Real) 思路:参数BCD -> 时间S5Time -> 库函数FC33(S5TI_TIM) -> 时间Time -> 双整数DI -> 浮点数Real -> 除以1000.0,转为秒为单位的浮点数Real。编程如下: 4 结果显示 本例程中,定时器的预设定时时间为1分钟,启动定时器,截图如下。 可见,截图时定时器剩余时间为30s500ms,参数BI和BCD转为秒为单位的浮点数,均为30.5秒。

水泥常规试验

水泥常觃试验方法 一、评定标准:TB10424-2010铁路混凝土工程施工质量验收标准 二、检测方法依据 1、密度(按GB/T208-94检验) 2、比表面积(按GB/T8074-2008检验) 3、标准稠度用水量(按GB/T1346-2011检测) 4、凝结时间(按GB/T1346-2011检验) 5、安定性(按GB/T1346-2011检验) 6、抗折、抗压强度(GB/T17671检验) 三、检测方法步骤: (一)、密度 (1)主体主题内容与适用范围 本标准觃定了水泥密度测定中的仪器、操作方法和结果计算等。 本标准适用于测定水硬性水泥的密度,也适用于测定采用本方法的其他粉状物料的密度。 (2)引用标准 GB253 煤油 (3)定义 水泥密度:表示水泥单位体积的质量,水泥密度的单位是g/cm3。 (4)方法原理 将水泥倒入裃有一定量液体介质的李氏瓶内,幵使液体介质充分地浸透水泥颗粒。

位体积的质量即为密度,为使测定的水泥不产生水化反应,液体介质采用无水煤油。 (5)仪器 5.1 李氏瓶 横截面形状为圆形,外形尺寸如下图,应严格遵守关于公差、符号、长度、间距以及均匀刻度的要求;最高刻度标记与磨口玻璃塞最低点之间的间距至少为10mm。 5.1.1 李氏瓶的结构材料是优质玻璃,透明无条纹,且有抗化学侵蚀性且热滞后性小,要有足够的厚度以确保较好的耐裂性。 5.1.2 瓶颈刻度由0至24mL,且0~1mL和18~24mL应以0.1mL刻度,任何标明的容量误差都不大于0.05mL。 5.2 无水煤油符合GB253的要求 5.3 恒温水槽 (6)测定步骤 6.1 将无水煤油注入李氏瓶中到0至1mL刻度线后(以弯月面下部为准),盖上瓶塞放入恒温水槽内,使刻度部分浸入水中(水温应控制在李氏瓶刻度时的温度),恒温30min, 记下初始(第一次)读数。 6.2 从恒温水槽中取出李氏瓶,用滤纸将李氏瓶细长颈内没有煤油的部分仔细擦干净。 6.3 水泥试样应预先通过0.90mm方孔筛,在110±5℃温度下干燥1h,幵在干燥器内冷却至室温。称取水泥60g,称准至0.01g。 6.4 用小匙将水泥样品一点点的裃入6.1条的李氏瓶中,反复摇动(亦可用

实用疲劳理论-林晓斌

nCode 疲劳耐久性工程高级培训班课程 实用疲劳理论 实用疲劳理论 ?材料的物理性能 ?疲劳载荷 ?应力寿命(S-N)法 ?局部应变法(e-N) 1?2007 nCode 什么是金属疲劳? What is Fatigue?

Quiz 1: ?How can you break a metal spoon? Quiz 2: ?How can you break a ceramic spoon? Quiz 3: ?Why a metal spoon can be broken, and a ceramic spoon cannot?

金属疲劳失效的原因是什么? ?外因:载荷的变化 ?内因:金属中有位错 什么是金属疲劳? ?疲劳是一种机械损伤过程, 在这一过程中即使名义应力 低于材料的屈服强度,载荷 的反复变化也将引起失效 ?疲劳一般包含裂纹萌生和随 后的裂纹扩展两个过程,循 环塑性变形是金属产生疲劳 的主要原因 什么是金属疲劳? Quiz 4: ?Can you name a metal fatigue failure you experienced?

飞机空难(The De Havilland Comet Story) ?The first passenger jet airliner (1949 -1980) ?Suffered two tragic air accidents due to fatigue failure ?68 people killed as a result ?Order books fell by 50 aircraft ?Ultimately heralded the collapse of the British civil aircraft industry 火车出轨 汽车零部件失效 ?Truck frame ?Manifold ?Bracket ?Crankshaft ?Brake ?Exhaust pipe ?Wheel ?…

单片机实验报告——定时器

实验四定时器实验 自动化121班1202100236 张礼 一.实验目的 掌握定时器的工作原理及四种工作方式,掌握定时器计数初始值的计算,掌握如何对定时器进行初始化,以及程序中如何使用定时器进行定时。 二.实验仪器 单片机开发板一套,计算机一台。 三.实验任务 编写程序,使用单片机开发板上8位共阴极数码管的其中一位来显示0~9这九个字符,先从“0”开始显示,数字依次递增,当显示完“9”这个字符后,又从“0”开始显示,循环往复,每1秒钟变换一个字符,1秒钟的定时时间必须由定时器T0(或T1)提供。 开发板上的8位共阴极数码管与单片机的输入输出端口P1的硬件接线如图4-1所示,单片机P1口的8条数据线通过J3端子同时连接到2片74HC573D锁存器的输入端,数码管的各个同名端分别连接后再与锁存器U2的8个输出端相连,每一位数码管的位选端分别与锁存器U3的8个输出端相连。两片锁存器的输出使能端OE都恒接地,使得锁存器的内部数据保持器输出端与锁存器的输出端保持接通。而U2的锁存使能端LE由P2.1控制,所

以P2.1是段锁存;U3的锁存使能端LE由P2.0控制,所以P2.0是位锁存。当锁存使能端为“1”时,则锁存器输入端的数据传送到输出端;当锁存使能端为“0”时,锁存器输入端的数据则不能传送到输出端;因此段码和位码通过锁存器分时输出。 汇编语言程序流程如图4-2: 四.实验步骤: 1.数码管的0~9的字型码表如下: 2.参考图4-2所给的程序流程图编写实验程序。(注:以下程序为两位60秒计数程序) #include sbit wei=P2^0; sbit duan=P2^1; char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};

水泥试验报告

工程名称 __________________________________________ 委托单位 __________________________________________ 水泥品种及强度等级 ________________________________ 生产厂家 __________________________________________ 代表数量 _____________ t 出厂编号 __________________ 施工部位 __________________________________________ 试验单位 水泥试验报告 □□□□□□□□□ 负责人 _________________ 审核 _____________________ 试验 ___________ 报告编号 出厂日期 委托日期 试 验日期 取样人及证号 见证人及证号 (章)

水泥试验报告 填表说明: 1.水泥试验报告是为保证建筑工程质量,对用于工程中的水泥的强度、安定性和凝结 时间等指标进行测试后由试验单位出具的质量证明文件。 2.所有进场水泥必须进行复验,结构中用的水泥必须复验抗压强度、安定性等项目, 其他用水泥(如抹灰)必须复验安定性指标,进口水泥还应对其水泥的有害成分含量进行试验,能否使用以复验报告为准。 3.水泥出厂超过三个月(快硬硅酸盐水泥为一个月)和进口水泥在使用前必须进行复 验,由试验报告。混凝土和砌筑砂浆用水泥应实行有见证取样和送检。 4.水泥复验应出具 3 天强度报告以适应施工需要,但必须出具 28 天强度报告。

嵌入式系统流水灯,按键,定时器实验报告

嵌入式系统应用 实验报告 姓名: 学号: 学院: 专业: 班级: 指导教师:

实验1、流水灯实验 1.1实验要求 编程控制实验板上LED灯轮流点亮、熄灭,中间间隔一定时间。 1.2原理分析 实验主要考察对STM32F10X系列单片机GPIO的输出操作。 参阅数据手册可知,通过软件编程,GPIO可以配置成以下几种模式: ◇输入浮空 ◇输入上拉 ◇输入下拉 ◇模拟输入 ◇开漏输出 ◇推挽式输出 ◇推挽式复用功能 ◇开漏式复用功能 根据实验要求,应该首先将GPIO配置为推挽输出模式。 由原理图可知,单片机GPIO输出信号经过74HC244缓冲器,连接LED灯。由于74HC244的OE1和OE2都接地,为相同电平,故A端电平与Y端电平相同且LED灯共阳,所以,如果要点亮LED,GPIO应输出低电平。反之,LED灯熄灭。 1.3程序分析 软件方面,在程序启动时,调用SystemInit()函数(见附录1),对系统时钟等关键部分进行初始化,然后再对GPIO进行配置。 GPIO配置函数为SZ_STM32_LEDInit()(见附录2),函数中首先使能GPIO 时钟: RCC_APB2PeriphClockCmd(GPIO_CLK[Led], ENABLE); 然后配置GPIO输入输出模式: GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; 再配置GPIO端口翻转速度:

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 最后将配置好的参数写入寄存器,初始化完成: GPIO_Init(GPIO_PORT[Led], &GPIO_InitStructure)。 初始化完成后,程序循环点亮一个LED并熄灭其他LED,中间通过Delay()函数进行延时,达到流水灯的效果(程序完整代码见附录3)。 实验程序流程图如下: 硬件方面,根据实验指南,将实验板做如下连接: 1.3实验结果

定时器Timer实时修改时间间隔(周期)

1.定时器Timer当时间间隔(周期)变化时,实时去修改 我项目中主要是实现在某个时间段上午8:00-12:00,下午 2:00(pm_start)-19:00(pm_end),每隔3分钟(pm_time)(可以手动设置)自动上传当前的位置(google的定位) // 执行定时任务 privateboolean bool= true;// true表示服务器与本地数据相同,false表示服务器与本地数据不相同 privatevoid start_schedule_pm() { final Timer timer = new Timer(); timerTask = new TimerTask() { @Override publicvoid run() { //当不相同时取消timer重新new一个timer if (!bool) { if (timer != null) { Log.e("%%%%", bool + ""); timerTask.cancel(); timer.cancel(); start_schedule_pm(); bool = true;

return; } } if ((getCurrentTime() - 12) >= Double.valueOf(pm_end)) { timerTask.cancel(); timer.cancel(); //我的是在android service里跑的程序,所以关闭了service stopSelf(); return; } if (!AppUtils.checkNet(getApplicationContext())) { Log.d("data", "网络未连接"); return; } Log.d("data", "新任务开始");

相关主题
文本预览
相关文档 最新文档