高一物理重力势能和弹性势能 (1)
- 格式:ppt
- 大小:989.50 KB
- 文档页数:23
重力势能和弹性势能【学习目标】1.理解重力势能的概念,会用重力势能的定义式进行计算.2.理解重力势能的变化和重力做功的关系.知道重力做功与路径无关. 3.知道重力势能的相对性.4.明确弹性势能的含义,理解弹性势能的相对性 5.知道弹性势能与哪些量有关. 【要点梳理】要点一、重力做功的特点 要点诠释:重力对物体所做的功只跟物体的初末位置的高度有关,跟物体运动的路径无关.物体沿闭合的路径运动一周,重力做功为零,其实恒力(大小方向不变)做功都具有这一特点.如物体由A 位置运动到B 位置,如图所示,A 、B 两位置的高度分别为h 1、h 2,物体的质量为m ,无论从A 到B 路径如何,重力做的功均为:cos G W mgl α==mgh =mg(h 1-h 2)=mgh 1-mgh 2.可见重力做功与路径无关.要点二、重力势能 要点诠释:(1)定义:物体由于被举高而具有的能.(2)公式:物体的重力势能等于它所受重力与所处高度的乘积.P E mgh =.h 是物体重心到参考平面的高度. (3)单位:焦(J).1J =21kg m s 1N m m -∙∙∙=∙.(4)重力势能是一个相对量,它的数值与参考平面的选择有关.实际上是由h 为相对量引起的.参考平面的选择不同,重力势能的值也就不同,一般取地面为参考平面.在参考平面内的物体,E P =0; 在参考平面上方的物体,E P >0; 在参考平面下方的物体,E P <0.(5)重力势能是标量,它的正、负值表示大小. (6)重力势能是地球和物体共有的.要点三、重力势能的相对性与重力势能变化的绝对性 要点诠释:(1)重力势能是一个相对量,它的数值与参考平面的选择有关.在参考平面内,物体的重力势能为零;在参考平面上方的物体,重力势能为正值;在参考平面下方的物体,重力势能为负值. (2)重力势能变化的不变性(绝对性).尽管重力势能的大小与参考平面的选择有关,但重力势能的变化量都与参考平面的选择无关,这体现了它的不变性(绝对性).(3)某种势能的减少量,等于其相应力所做的功.重力势能的减少量,等于重力所做的功;弹簧弹性势能的减少量,等于弹簧弹力所做的功.(4)重力势能的计算公式E P =mgh ,只适用于地球表面及其附近g 值不变时的范围,若g 值变化时,不能用其计算.要点四、重力做功和重力势能改变的关系 要点诠释:(1)设A 、B 两点为物体在运动过程中所经历的两点(如图所示)。
高一物理机械能和机械能守恒定律通用版【本讲主要内容】机械能和机械能守恒定律动能、重力势能、弹性势能和机械能守恒定律的应用【知识掌握】【知识点精析】1. 重力做功的特点:重力做功与移动路径无关,只跟物体的起点位置和终点位置有关。
W G=mgh。
2. 重力势能:(1)重力势能的概念:受重力作用的物体具有与它的高度有关的能称为重力势能。
表达式为。
E m ghp注意:①重力势能是物体与地球所组成的系统所共有的能量。
②数值E p=mgh与参考面的选择有关,式中的h是物体重心到参考面的高度。
③势能的正、负号用来表示大小。
(2)重力做功与重力势能的关系:重力做正功,重力势能减少;克服重力做功,重力势能增大。
即:W G=-△E p3. 弹性势能的概念:物体由于弹性形变而具有的与它的形变量有关的势能称为弹性势能。
4. 机械能守恒定律:(1)机械能(E)的概念:动能、弹性势能和重力势能统称机械能。
即E=E k+E p。
(2)机械能守恒定律内容:在只有系统内重力和弹力做功的情形下,物体动能和势能发生相互转化,但机械能总量保持不变。
(3)机械能守恒条件的表达式:mgh2+1/2mv22=22 11mvmgh ,即E P2+E K2= E P1+E K1,表示末状态的机械能等于初状态的机械能。
(4)系统机械能守恒的三种表示方式:①E1总=E2总(意义:前后状态系统总的机械能守恒)②△E p减=△E k增(系统减少的重力势能等于系统增加的动能)③△E A减=△E B增(A物体减少的机械能等于B物体增加的机械能)注意:解题时究竟选择哪一种表达形式,应灵活选取,需注意的是:选①时,必须规定零势能面,其他两式,没必要选取,但必须分清能量的减少量和增加量5. 判断机械能是否守恒的方法:(1)用做功来判断:只有重力和系统内的弹力做功,其他力不做功(或合力做功为0),机械能总量保持不变。
(2)用能量转换来判断:只是系统内动能和势能相互转化,无其他形式能量之间(如热能)转化。
动能与势能重力势能与弹性势能的转化动能与势能:重力势能与弹性势能的转化引言:物体在运动中具有动能,而在静止时,可以具有势能。
其中,重力势能和弹性势能是常见的两种形式。
本文将重点探讨重力势能和弹性势能之间的相互转化关系。
一、重力势能重力势能是指物体在竖直方向上由于位置的高低而具有的能量。
当物体在地面以上位置时,具有较高的重力势能;而当物体下落至地面时,重力势能逐渐减小为零。
二、动能动能是物体运动时所具有的能量。
当物体在运动过程中,其动能随着速度的增加而增加,随着速度的减小而减小。
三、重力势能转化为动能当一个物体从较高位置自由下落时,其重力势能将转化为动能。
根据能量守恒定律,物体的重力势能转化为等量的动能,数学表达式为:mgh = (1/2)mv²其中,m表示物体的质量,g表示重力加速度,h表示物体的高度,v表示物体的速度。
根据这个公式,我们可以计算物体下落时的动能。
四、弹性势能弹性势能是物体由于形变而具有的能量。
当一个物体被施加外力产生形变时,其具有弹性势能。
弹性势能随着外力的增加而增加,随着形变减小而减小。
五、动能转化为弹性势能当一个物体受到外力撞击时,物体的动能将转化为弹性势能。
例如,当弹簧被压缩时,它具有较大的弹性势能。
根据能量守恒定律,动能转化为等量的弹性势能。
六、重力势能与弹性势能的转化重力势能和弹性势能之间存在相互转化的情况。
例如,当一个重物被吊起并与弹簧相连时,重力势能转化为动能,并将动能转化为弹性势能,使得弹簧发生形变。
当重物的动能消耗完毕时,弹簧的弹性势能将再次转化为重力势能,使重物再次上升。
七、实际应用重力势能和弹性势能的转化在生活中广泛应用。
例如,过山车的上坡部分将乘客的重力势能转化为动能,使其获得速度。
而过山车的下坡部分则将动能转化为重力势能,使乘客再次上升。
此外,在日常生活中,弹簧秤的工作原理也是基于重力势能和弹性势能的转化。
结论:重力势能与弹性势能是能量的两种表现形式,二者之间能够相互转化。
物理高一势能知识点一、引言在物理学中,势能是用来描述物体在某个位置的“储能”能力或者“准备做功”的能量。
在高一物理学习中,掌握势能的概念和应用是非常重要的。
本文将详细介绍高一物理中的势能知识点。
二、势能的定义势能是指物体由于其位置或者状态而具有的能量。
在物理学中,常见的势能有重力势能、弹性势能和化学势能等。
三、重力势能重力势能是指物体由于离地面高度的变化而具有的能量。
根据万有引力定律,地球对物体的吸引力与物体离地面的高度有关。
物体离地面越高,其重力势能就越大。
重力势能的计算公式为:Ep = mgh其中,Ep表示重力势能,m表示物体的质量,g表示重力加速度,h表示物体离地面的高度。
四、弹性势能弹性势能是指物体在发生形变时由于恢复力而具有的能量。
常见的例子是弹簧,当弹簧被拉伸或压缩时,会存储弹性势能。
弹性势能的计算公式为:Es = (1/2)kx²其中,Es表示弹性势能,k表示弹簧的劲度系数,x表示弹簧的伸长或压缩的长度。
五、化学势能化学势能是指物质在不同化学反应中具有的能量。
当物质参与化学反应时,其分子结构和组成会发生改变,从而导致化学势能的变化。
化学势能的计算涉及到化学反应的平衡常数和摩尔焓变等复杂的概念,这些内容通常在高中物理学习的后期进行深入探讨。
六、势能转换势能可以相互转换,而势能转换一般伴随着能量的转化。
经典的例子是重力势能和动能之间的转换,当物体从高处自由落下时,其重力势能逐渐减小,而动能逐渐增大,二者之和保持不变。
这一现象可以用机械能守恒定律来描述。
七、应用实例势能的概念和应用广泛存在于日常生活和工程技术中。
例如,建筑物的重力势能需要在设计和施工过程中加以考虑;弹簧作为一种常用的储能装置,弹性势能的变化可以用于计算弹簧的劲度系数等;化学势能在能源转化和储存中起着重要的作用。
八、结论势能是物理学中重要的概念,用于描述物体由于位置或状态而具有的能量。
重力势能、弹性势能和化学势能是高中物理学习中常见的势能类型。
高一物理第七章重力势能,弹性势能重力势能1.将同一物体分两次举高,每次举高的高度相同,那么( )A.不论选定什么参考平面,两种情况中,物体重力势能的增加值相同B.不论选定什么参考平面,两种情况中,物体最后的重力势能相等C.不同的参考平面,两种情况中,重力做功不等D.不同的参考平面,两种情况中,物体最后的重力势能肯定不等2.如图7-6-1所示,两木块质量分别为m1和m2,两轻质弹簧的劲度系数分别为k l和k2,上面的木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中,两木块的重力势能各增加多少?3.同一物体,第一次被匀速提升到l0 m高处,第二次被沿着倾角为30°的光滑斜面拉到位移为20 m处,那么,在这两次过程中( )A.第一次增加的重力势能大B.第二次增加的重力势能大C.两次增加的重力势能一样大D.两次物体克服重力做功值相等4.下列说法中正确的是( )A.选择不同的参考平面,物体的重力势能的数值是不同的B.物体克服重力做功,物体的重力势能增加C.重力对物体做正功,物体的重力势能增加D.重力势能为负值的物体,肯定比重力势能为正值的物体做功要少5.质量为m的物体,由静止开始下落,由于空气阻力的作用,下落的加速度为4g/5,在物体下落h的过程中,下列说法正确的是( )A.物体重力做的功为mghB.物体的动能增加了mghC.物体重力势能减少了mghD.物体克服阻力所做的功为mgh/56.在水平面上竖直放置一轻质弹簧,有一个物体在它的正上方自由落下,在物体压缩弹簧直至速度减为零时( )A.物体的重力势能最大B.物体的动能最大C.弹簧的弹性势能最大D.弹簧的弹性势能最小7.质量为m的物体从地面上方H高处无初速释放,落在地面后出现一个深为h的坑,如图7-6-2所示,在此过程中( )A.重力对物体做功mgHB.物体重力势能减少mg(H+h)C.合力对物体做的总功为零.D.地面对物体的平均阻力为mgH/h8.下列关于弹性势能的说法中,正确的是( )A.任何发生弹性形变的物体都具有弹性势能B.任何具有弹性势能的物体,一定发生弹性形变C.物体只要发生形变,就一定具有弹性势能D.弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关9.井深8m,井上支架高2m,在支架上用一根长3m的绳子系住一个重100N的物体.若以地面为参考平面,则物体的重力势能为;若以井底面为参考平面,则物体的重力势能为.10.在水平地面上平铺n块砖,每块砖的质量为m,厚度为h,如将砖一块一块地竖直叠放起来,需要做的功为.11,质量是5 kg的铜球,从离地面15 m高处自由下落1 s,其重力势能变为.(g取10m /s2,取地面为参考平面)12.质量为m的物体放在地面上,其上表面竖直固定一根轻弹簧,弹簧原长为L,劲度系数为k,下端与物体相连接,如图7-6-3所示.现将弹簧上端P缓慢提一段距离H,使物体离开地面.若以地面为参考平面,试求此时物体的重力势能。
能量与功要点二、能量要点诠释:能量与物体的运动相对应,是对物体不同运动形式的统一量度,不同的运动形式对应不同的能量.(1)势能:相互作用的物体凭借其位置而具有的能量叫做势能.注意:①两物体间有相互作用力,物体才会有势能.②势能是与两物体相对位置有关的能量,又叫位能.例如:地面附近的物体被提到一定的高度而具有的能量叫重力势能;拉伸、压缩的弹簧,拉开的弓具有的能量叫弹性势能.(2)动能:物体由于运动而具有的能量叫做动能.动能是一个状态量,动能的大小与物体的运动方向无关,只与物体的质量和运动速度的大小有关.例如:高速运动的炮弹具有很大的动能,可以穿透军舰厚厚的钢板进入船体;运动的水流、气流(风)可以推动叶轮转动而使发电机发电.要点三、功的概念要点诠释:(1)功的定义:物体受力的作用,并沿力的方向发生一段位移,就说力对物体做了功.力对物体做功是和一定的运动过程有关的.功是一个过程量,功所描述的是力对空间的积累效应.(2)功的两个要素:力和沿力的方向发生位移.两个要素对于功而言缺一不可,因为有力不一定有位移;有位移也不一定有力.特别说明:力是在位移方向上的力;位移是在力的方向上的位移.如物体在光滑水平面上匀速运动,重力和弹力的方向与位移的方向垂直,这两个力并不做功.(3)功的计算式:cos=.W Flα在计算功时应该注意以下问题:①式中F一定是恒力.若是变力,中学阶段一般不用上式求功.②式中的l 是力的作用点的位移,也为物体对地的位移.α是F方向与位移l方向的夹角.③力对物体做的功只与F、l、α三者有关,与物体的运动状态等因素无关.④功的单位是焦耳,符号是J.(4)功是标量,只有大小没有方向,因此合外力的功等于各分力做功的代数和.要点四、功的正负要点诠释:1.功的正负力对物体做正功还是负功,由F和l方向间的夹角大小来决定.根据cos=知:W Flα(1)当0°≤α<90°时,cosα>0,则W>0,此时力F对物体做正功.(2)当α=90°时,cosα=0,则W=0,即力对物体不做功.(3)当90°<α≤180°时,cosα<0,则W<0,此时力F对物体做负功,也叫物体克服力,做功.2.功的正负的物理意义因为功是描述力在空间位移上累积作用的物理量,是能量转化的量度,能量是标量,相应地,功也是标量.功的正负有如下含义:意义动力学角度能量角度正功动力对物体做正功,这个力对物体来说是动力力对物体做功,向物体提供能量,即受力物体获得了能量负功 力对物体做负功,这个力是阻力,对物体的运动起阻碍作用物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量说明 不能把负功的负号理解为力与位移方向相反,更不能错误地认为功是矢量,负功的方向与位移方向相反.一个力对物体做了负功,往往说成物体克服这个力做了功(取绝对值),即力F 做负功-Fs 等效于物体克服力F 做功Fs【典型例题】类型一、恒力功的计算 例1、如图所示,质量为2 kg 的物体在水平地面上,受到与水平方向成37°角、大小为10 N 的拉力作用,移动2m .已知地面与物体间的动摩擦因数μ=0.2.求:(1)拉力对物体做的功;(2)重力对物体做的功;(3)弹力对物体做的功;(4)摩擦力对物体做的功;(5)外力对物体做的总功.(g 取10 m /s 2)【思路点拨】只要弄清物体的受力情况,明确每个力与位移的夹角,就可根据功的定义求解.【解析】(1)拉力F 做的功 cos37F W F l =°=10×2×0.8J =16J . (2)重力G 做的功 cos90G W mg l =°=0. (3)弹力F N 做的功 cos900N F N W F l ==°. (4)摩擦力f F 做的功cos180f F f N W F l F l μ==-°(sin37) 5.6J mg F l μ=--=-°. (5)外力做的总功N f F F F W W W W =++总=16J+0+0-5.6J =10.4 J . 也可先求出合力,再求合力做的总功. cos37(sin 37)F F mg F μ=-合°-?=5.2 N , cos 0W F l ==总合°5.2×2×1J =10.4 J .【变式1】(2015 赫山区校级一模)如图所示,A 、B 两物体质量分别是A m 和B m ,用劲度系数为k 的弹簧相连,A 、B 处于静止状态。
第四节重力势能1.重力做的功(1)表达式W G=mgh=mg(h1-h2),其中h表示物体起点和终点的高度差,h1、h2分别表示物体起点和终点的高度。
(2)正负物体下降时重力做正功;物体被举高时重力做负功,也可以说成物体克服重力做功。
(3)特点物体运动时,重力对它做的功只跟它的起点和终点的位置有关,而跟物体运动的路径无关。
2.重力势能(1)定义:物体由于位于高处而具有的能量。
(2)大小:等于物体所受重力与所处高度的乘积,表达式为E p=mgh,其中h 表示物体所在位置的高度。
(3)单位:焦耳,与功的单位相同。
重力势能是标量,正负表示大小。
(4)重力做功与重力势能变化的关系①表达式:W G=E p1-E p2。
②重力做正功,重力势能减小;重力做负功,重力势能增大。
3.重力势能的相对性和系统性(1)相对性①参考平面:物体的重力势能总是相对于某一水平面来说的,这个水平面叫做参考平面,在参考平面,物体的重力势能取作0。
②重力势能的相对性选择不同的参考平面,物体重力势能的数值是不同的。
对选定的参考平面,上方物体的重力势能是正值,下方物体的重力势能是负值,负值的重力势能,表示物体在这个位置具有的重力势能要比在参考平面上具有的重力势能小。
(2)系统性重力势能是地球与物体所组成的系统共有的。
判一判(1)重力势能E p1=2 J,E p2=-3 J,则E p1与E p2方向相反。
()(2)同一物体的重力势能E p1=2 J,E p2=-3 J,则E p1>E p2。
()(3)在同一高度的质量不同的两个物体,它们的重力势能一定不同。
()提示:(1)×重力势能是标量,没有方向。
(2)√重力势能为正值,表示物体处于参考平面的上方,为负值表示物体处于参考平面的下方,而同一物体在越高的地方重力势能越大。
(3)×若选定两物体所处的水平面为参考平面,则两物体的重力势能均为0。
说明:(1)重力做功与路径无关,只与始末位置的高度差有关。
重力势能和弹性势能一、重力势能1.定义:物体处于一定高度而具有的能称为重力势能2.符号:p E3.单位:J4.表达式:mgh E p =,h 表示物体相对于零势能面的高度5.零势能面:人为规定的一个参考面,物体若位于零势能面,则重力势能为零6.说明:(1)重力势能是标量,有正有负,物体的重力势能为正,表示物体在零势能面上方,反之则表示物体在零势能面下方(2)重力势能具有相对性,其大小与零势能面的选取有关,但是重力势能的改变量则与零势能面的选取无关(3)重力势能是物体和地球所共有的二、重力做功与重力势能变化的关系:1.重力势能的变化:mgh h h mg mgh mgh E E E p =-=-=-=∆)(1212122.重力做功等于重力势能的改变,即mgh E W p G =∆-=3.重力做正功,物体向下运动,重力势能减小;重力做负功,物体向上运动,重力势能增大4.在水平面上运动,重力不做功,重力势能不变Eg1.一个质量为1kg 的物体,位于离地面高1.5m 处,比天花板低2.5m 。
以地面为零势能位置时,物体的重力势能等于______J ;以天花板为零势能位置时,物体的重力势能等于______J(g 取10m /s 2). Eg2.一棵树上有一个质量为0.3kg 的熟透了的苹果P ,该苹果从树上A 先落到地面C 最后滚入沟底D 。
已知AC 、CD 的高度差分别为2.2m 和3m ,以地面C 为零势能面,A 、B 、C 、D 、E 面之间竖直距离如图所示。
已知重力加速度为10m /s 2,则该苹果从A 落下到D 的过程中重力势能的减少量和在D 处的重力势能分别是( )A 15.6J 和9JB 9J 和-9JC 15.6J 和-9JD 15.6J 和-15.6JEg3.重为100N 长1米的不均匀铁棒平放在水平面上,某人将它一端缓慢竖起,需做功55J ,将它另一端竖起,需做功( )A 45JB 55JC 60JD 65JEg4.如图所示,一个质量为M 的物体放在水平地面上,物体上方安装一个长度为L、劲度系数为k 的轻弹簧,现用手拉着弹簧上端的P 点缓慢向上移动,直到物体离开地面一段距离.在这一过程中,P 点的位移(开始时弹簧为原长)是H,则物体重力势能增加了( )A MgHB k g M MgH 22C k g M MgH 22- D k Mg MgH -三、弹性势能1.定义:因发生弹性形变所具有的能量,叫做弹性势能2决定因素:(1)与形变程度有关,形变越大,弹性势能就越大;(2)与劲度系数有关,k 越大,弹性势能就越大3.表达式:221kx E P (不可直接用)通常情况下用动能定理或变力做功的方法计算4.弹簧的弹力做功与弹性势能变化的关系:(1)默认平衡位置O 点弹性势能为零(2)从A 点→O 点过程中,弹簧弹力和加速度向右,弹力和加速度减小,弹簧弹力做正功,弹簧往恢复原长方向运动,弹性势能减少;滑块速度增大,动能增大,弹性势能转化成动能(3)从O 点→'A 点过程中,弹簧弹力和加速度向左,弹力和加速度减小,弹簧弹力做负功,弹簧往远离原长方向运动,弹性势能增大;滑块速度减小,动能减小,动能转化成弹性势能(4)小结:滑块在A 点(或'A 点)时,形变最大弹力最大,加速度最大,弹性势能最大;滑块在OEg5.关于弹性势能,下列说法中正确的是( )A. 任何发生弹性形变的物体,都具有弹性势能B. 任何具有弹性势能的物体,一定发生了弹性形变C. 物体只要发生形变,就一定具有弹性势能D. 弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关Eg6.关于弹性势能,下列说法正确的是()A. 发生弹性形变的物体都具有弹性势能B. 只有弹簧在发生弹性形变时才具有弹性势能C. 弹性势能可以与其他形式的能相互转化D. 弹性势能在国际单位制中的单位是焦耳Eg7.关于弹簧的弹性势能,下列说法中正确的是()A. 当弹簧变长时。
重力势能理姓名 上课日期:______________ 【学习目标】1.理解重力势能的概念,知道重力势能的相对性、系统性2.深入理解重力势能的变化和重力做功的关系3. 会用重力势能的定义式计算物体具有的重力势能,学习等效法计算重力势能 【重点】1.重力势能的变化和重力势能的关系 2.等效法计算重力势能 【难点】等效法计算重力势能 【学法指导】对比重力做功与重力势能的变化,利用“重力做功与过程无关,只由初末位置决定”认识等效法求重力势能的变化。
【回顾旧知】1、重力做功:与起点和终点的位置 .与物体的路径 .2、重力势能:物体的重力势能等于它所受的 和所处 的乘积. 是标量。
3、重力做功与重力势能的关系:重力做正功重力势能 ;重力做负功重力势能 。
4、重力势能的相对性:重力势能与 的选取有关;但重力势能的 与参考平面的选取无关.五、重力势能的系统性:重力势能是物体和 所共有的. 【情境展现】情景1如图所示,某物块分别沿三条不同的轨道由离地高h 的A 点滑到同一水平面上,轨道1、2是光滑的,轨道3是粗糙的,物块沿三个轨道滑下到地面。
重力做功是否相同312A h情景2物体1的重力势能E p 1=3J ,物体2 的重力势能E p 2=-3J ,哪个物体的重力势能大如何理解【学海深思】1.由情景1思考:三种情况下,物块的重力势能的变化相同吗如果以地面为重力势能的零参考面,则可认为物块的重力势能为零,你能分析一下物块在三种情况下的能量转化吗2.情景2中, 你能通过重力做功来解释你的判断吗3. 如图5-21-1所示,一条铁链长为2 m ,质量为10kg ,放在水平地面上,拿住一端提起铁链直到铁链全部离开地面的瞬间,物体克服重力做功为多少物体的重力势能变化了多少【交流共享,合作探究】1. 物体在运动过程中,克服重力做功50J ,则( )A. 物体的重力势能一定为50JB. 物体的重力势能一定增加50JC. 物体的重力势能一定减少50JD. 物体的重力势能可能不变2. 井深8m ,井上支架高2m ,在支架上用一根长3m 的绳子系住一个重100N 的物体 ,若以地面为参考平面,则物体的重力势能有;若以井底面为参考平面,则物体的重力势能是 。