当前位置:文档之家› 高中计数原理与概率计数原理

高中计数原理与概率计数原理

高中计数原理与概率计数原理
高中计数原理与概率计数原理

高中计数原理与概率计数原理 一、知识导学

1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法.

2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理

分步计数原理又称乘法原理

二、疑难知识导析

1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复.

2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成.

3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理.

4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线.

5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.

三、经典例题导讲

[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( )

A .12 种

B .7种

C .24种

D .49种

错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. ∴选B

错因:没有审清题意.本题不仅要考虑从哪个门进,还需考虑从哪个门出,应该用分步计数原理去解题.

正解:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D .

[例2]从1,2,3,…,10中选出3个不同的数,使这三个数构成等差数列,则这样的数列共有多少个?

错解:根据构成的等差数列的公差,分为公差为1、2、3、4四类.公差为1时,有8个;公差为2时,首先将数字分成1,3,5,7,9,和2,4,6,8,10两组,再得到满足要求的数列共3+3=6个;公差为3时,有1,4,7和4,7,10和3,6,9以及2,5,8,共4个;公差为4时,只有1,5,9和2,6,10两个.由分类计数原理可知,共构成了不同的等差数列8+6+4+2=20个.

错因:上述解答忽略了1,2,3与3,2,1它们是不同的数列, 因而导致考虑问题不全面,从而出现漏解. 这需要在解题过程中要全方位、多角度审视问题.

正解:根据构成的等差数列的公差,分为公差为±1、±2、±3、±4四类.公差为±1时,有8×2=16个;公差为±2时,满足要求的数列共6×2=12个;公差为±3时,有4×2=8个;公差为±4时,只有2×2=4个.由分类计数原理可知,共构成了不同的等差数列16+12+8+4=40个.

[例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用).

解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有3

2=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数.

由分步计数原理,共可得到8×6=48个不同的三位数.

解法二:第一步,排百位有6种选择,

第二步,排十位有4种选择,

第三步,排个位有2种选择.

根据分步计数原理,共可得到6×4×2=48个不同的三位数.

注:如果6能当作9用,解法1仍可行.

[例4]集合A ={1,2,3,4},集合B ={-1,-2},可建立多少个以A 为定义域B 为值域的不同函数?

分析:函数是特殊的映射,可建立映射模型解决.解: 从集合A 到集合B 的映射共有42=16个,只有都与-1,或-2对映的两个映射不符合题意,故

以A 为定义域B 为值域的不同函数共有16-2=14个.或

[例5] 用0,1,2,3,4,5这六个数字,

(1)可以组成多少个数字不重复的三位数?

(2)可以组成多少个数字允许重复的三位数?

(3)可以组成多少个数字不重复的三位奇数?

(4)可以组成多少个数字不重复的小于1000的自然数?

(5)可以组成多少个数字不重复的大于3000,小于5421的四位数?14)!2(22342224=+A C C C

解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个.

(2)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有6种选法;③个位数字有6种选法.由分步计数原理知所求三位数共有5×6×6=180个.

(3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个.

(4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个

(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字为5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5420也是满足条件的1个.故所求自然数共120+48+6+1=175个

评注:排数字问题是最常见的一种题型,要特别注意首位不能排0.

四、典型习题导练

1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有()

A.43种B.34种 C.18种D.36种2.集合A={1,2,-3},B={-1,-2,3,4},从A、B中各取1个元素作为占点P的坐标.(1)可以得到多少个不同的点?

(2)在这些点中位于第一象限的点有几个?

3. 在1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数与真数,能得到多少个不同的对数值?

4. 在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个?

5.某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?

6. 某地提供A、B、C、D四个企业供育才中学高三年级3个班级进行社会实践活动,其中A 是明星企业,必须有班级去进行社会实践,每个班级去哪个企业由班级自己在四个企业中任意选择一个,则不同的安排社会实践的方案共有多少种?

§9.2 排列与组合

一、知识导学

1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.

2.全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的全排列.

3. 排列数:从n个不同元素中取出m(m≤n)个元素的所有排列的个数叫做从n个

A表示.

不同元素中取出m个元素的排列数.用符号m

n

4. 阶乘:正整数1到n的连乘积,叫做n的阶乘,用n!表示.

规定:0!=1

5.组合:一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.

6.组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数叫做从n个不

同元素中取出m个元素的组合数.用符号m n C 表示.

7.本节公式

(1)排列数公式

)

1()3)(2)(1(+-???---=m n n n n n A m n (这里m、n∈*N ,且m≤n)

(2)组合数公式

n m n n n n n A A C m m

m n m

n )1()3)(2)(1(+-???---==(这里m、n∈*N ,且m≤n)(3)组合数的两个性质

m n n m n C C -= 规定:10=n C

11-++=m n

m n m n C C C 二、疑难知识导析

1.排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。从定义知,只有当元素完全,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列.两个相同数列,当且仅当它们的元素完全相同,并且元素排列的顺序也完全相同.

2.排列与排列数是两个不同的概念.一个排列是指从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的一种具体方法,它不是数;而排列数是指从n个不同元素中取出m(m≤n)个元素的所有不同数列的种数,它是一个数.

3.排列应用题一般分为两类,即无限制条件的排列问题和有限制条件的排列问题.常见题型有:排队问题、数字问题、与几何有关的问题.

解排列应用题时应注意以下几点:

①认真审题,根据题意分析它属于什么数学问题,题目中的事件是什么,有无限制条件,通过怎样的程序完成这个事件,用什么计算方法.

②弄清问题的限制条件,注意研究问题,确定特殊元素和特殊的位置.考虑问题的原则是特殊元素、特殊位置优先,必要时可通过试验、画图、小数字简化等手段帮助思考.③恰当分类,合理分步.

④在分析题意,画框图来处理,比较直观.在解应用时,应充分运用.

解排列应用题的基本思路:)!(!m n n A m

n

-=)!(!!

m n m n C m n -=

①基本思路:

直接法:即从条件出发,直接考虑符合条件的排列数;

间接法:即先不考虑限制条件,求出所有排列数,然后再从中减去不符合条件的排列数.②常用方法:特殊元素、特殊位置分析法,排除法(也称去杂法),对称分析法,捆绑法,插空档法,构造法等.

4.对组合的理解:如果两个组合中的元素完全相同,那么不管它们顺序如何都是相同的组合.当两个组合中的元素不完全相同时(即使只有一个元素不同),就是不同的组合.

5.排列与组合的区别与联系:

①根据排列与组合的定义,前者是从n个不同元素中取出m个不同元素后,还要按照一定的顺序排成一列,而后者只要从n个不同元素中取出m个不同元素并成一组,所以区分某一问题是排列还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,而交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列与选取元素的顺序有关,组合与选取元素的顺序无关.

②排列与组合的共同点,就是都要“从n个不同元素中,任取m(m≤n)个元素”,而不同点在于元素取出以后,是“排成一排”,还是“组成一组”,其实质就是取出的元素是否存在顺序上的差异.因此,区分排列问题和组合问题的主要标志是:是否与元素的排列顺序有关,有顺序的是排列问题,无顺序的组合问题.例如123和321,132是不同的排列,但它们都是相同的组合.再如两人互寄一次信是排列问题,互握一次手则是组合问题.

③排列数与组合数的联系.求从n个不同元素中取出m个元素的排列数m n A ,可以分为

以下两步:第一步,先求出从这n个不同元素中取出m个元素的组合数m n C ;第二步,求每

一个组合中m个元素的全排列数m m A .根据分步计数原理,得到m n A =m n C m m

A .从这一过程中可得出排列与组合的另一重要联系.从而,在解决排列问题时,先取后排是一个常见的解题策略.

6.解排列与组合应用题时,首先应抓住是排列问题还是组合问题.界定排列与组合问题是排列还是组合,唯一的标准是“顺序”,有序是排列问题,无序是组合问题.当排列与组合问题综合到一起时,一般采用先考虑组合后考虑排列的方法解答.其次要搞清需要分类,还是需要分步.分类计数原理与分步计数原理是关于计数的两个基本原理,它们不仅是推导排列数公式和组合数公式的基础,而且其应用贯穿于排列与组合的始终.学好两个计数原理是解决排列与组合应用题的基础.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

三、经典例题导讲

[例1] 10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?

错解:10个人坐6把不同的椅子,相当于10个元素到6个元素的映射,故有10

6种不同的坐法.

错因: 没弄清题意,题中要求每把椅子必须并且只能坐一人,已不符合映射模型了.本题事实上是一个排列问题.

正解: 坐在椅子上的6个人是走进屋子的10个人中的任意6个人,若把人抽象地看成元素,将6把不同的椅子当成不同的位置,则原问题抽象为从10个元素中作取6个元素占据

6个不同的位置.显然是从10个元素中任取6个元素的排列问题.从而,共有610A =151200

种坐法.

[例2]从-3,-2,-1,0,1,2,3,4八个数字中任取3个不同的数字作为二次函数c bx ax y ++=2 的系数a ,b,c的取值,问共能组成多少个不同的二次函数?

错解:从八个数字中任取3个不同的数字作为二次函数c bx ax y ++=2 的系数a ,b,c的取值,交换a ,b,c的具体取值,得到的二次函数就不同,因而本题是个排列问题,

故能组成38A 个不同的二次函数.

错因: 忽视了二次函数c bx ax y ++=2 的二次项系数a 不能为零.

正解:a ,b,c中不含0时,有37A 个;

a ,b,c中含有0时,有227A 个.

故共有37A +227A =294个不同的二次函数.

注:本题也可用间接解法.共可构成38A 个函数,其中a =0时有27A 个均不符合要求,从而

共有38A -27A =294个不同的二次函数.

[例3]以三棱柱的顶点为顶点共可组成多少个不同的三棱锥?

错解:按照上底面取出点的个数分三类:第一类,上底面恰取一点,这时下底面取三点,有3313C C =3个;第二类,上底面恰取2点,下底面也取两点,有2323C C =9个;上底面取3

点时,下底面取一点,有3313C C =3个.综上知,共可组成3+9+3=15个不同的三棱锥.

错因: 在上述解法中,第二类情形时,所取四点有可能共面.这时,务必注意在上底面取2点,与之对应的下底面的2点只有2种取法.

正解:在三棱柱的六个顶点中任取4个顶点有46C =15取法,其中侧面上的四点不能构成三

棱锥,故有15-3=12个不同的三棱锥.

[例4] 4名男生和3名女生并坐一排,分别回答下列问题:

(1)男生必须排在一起的坐法有多少种?

(2)女生互不相邻的坐法有多少种?

(3)男生相邻、女生也相邻的坐法有多少种?

(4)男女生相间的坐法有多少种?

(5)女生顺序已定的坐法有多少种?

解:⑴从整体出发,视四名男生为一整体,看成一个“大元素”,与三名女生共四个元素进行排列,有44A 种坐法;而大元素内部的小元素间又有44A 种坐法.故共有44A 4

4A =576种坐法.

⑵因为女生 互不相邻,故先将4名男生排好,有44A 种排法;然后在男生之间及其首

尾的5个空档中插入3名女生,有35A 种排法.故共有44A 35

A =1440种排法. ⑶类似(1)可得:33

4422A A A ??=288种 ⑷男生排好后,要保证男生互不相邻、女生也互不相邻,3名女生只能排在男生之间的

3个空档中,有33A 种排法.故共有44A 33

A =144种排法. ⑸7个元素的全排列有77A 种,因为女生定序,而她们的顺序不固定时有33A 排法,可知

77

A 中重复了33A 次,故共有77A ÷33A =47A =840种排法. 本题还可这样考虑:让男生先占7个位置中的4个,共有47A 种排法;余下的位置排女

生,因为女生定序,故她们只有1排法,从而共有47A =840种排法.

[例5] 某运输公司有7个车队,每个车队的车均多于4辆,现从这个车队中抽调出10辆车,并且每个车队至少抽调一辆,那么共有多少种不同的抽调方法?

解:在每个车队抽调一辆车的基础上,还须抽调的3辆车可分成三类:从一个车队中抽调,

有17C =7种;从两个车队中抽调,一个车队抽1辆,另一个车队抽两辆,有27A =42种;从

三个车队中抽调,每个车队抽调一辆,有37C =35辆.由分类计数原理知,共有7+42+35

=84种抽调方法.

本题可用档板法来解决:由于每个车队的车均多于4辆,只需将10个份额分成7份.具体来讲,相当于将10个相同的小球,放在7个不同的盒子中,且每个盒子均不空.可将10个小球排成一排,在相互之间的九个空档中插入6个档板,即可将小球分成7份,因而

有69C =84种抽调方法.

[例6]用0,1,2,…,9这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?

解:若千位数字与个位数字中有一个为0 ,则另一个为2,且0只能在个位,2在千位,这

样有四位数有38A 个.若千位与个位都不含有0,则应为1与3、2与4,3与5、4与6,5与7、

6与8,7与9,这样的四位数有7×22A ×28A 个.

∴共有28A +72

2A ×28A =840个符合条件的四位数 四、典型习题导练

1.某一天的课程表要排入语文、数学、英语、物理、体育、音乐6节课,如果第一节不排体育,最后一节不排数学,一共有多少种不同的排法?

2. 在7名运动员中选出4人组成接力队,参加4×100米接力赛,那么甲、乙两人都不跑中间两棒的安排方法有多少种?

3.有5双不同型号的皮鞋,从中任取4只有多少种不同的取法?所取的4只中没有2只是同型号的取法有多少种?所取的4只中有一双是同型号的取法有多少种?

4.一个五棱柱的任意两个侧面都不平行,且底面内的任意一条对角线与另一底面的边也不平行,以它的顶点为顶点的四面体有多少个?

5. 4名男生5名女生,一共9名实习生分配到高一的四个班级担任见习班主任,每班至少有男、女实习生各1名的不同分配方案共有多少种?

6.有6本不同的书,分给甲、乙、丙三人.

(1)甲、乙、丙三人各得2本,有多少种分法?

(2)一人得1本,一人得2本,一人得3本,有多少种分法?

(3)甲得1本,乙得2本,丙得3本,有多少种分法?

(4)平均分成三堆,每堆2本,有多少种分法?

计数原理、概率、随机变量及其分布、统计、统计案例

计数原理、概率、随机变量及其分布、统计、统计案例 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=,则P (ξ≤-2)=( ) A . B . C . D . 2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( ) A .2,6 B .2,7 C .3,6 D .3,7 3.将4个颜色互不相同的球全部收入编号为1和2的两个盒 子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种 4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,fx gx =a x ,f 1g 1+ f -1 g -1=52,则关于x 的方程abx 2+2x +5 2=0(b ∈(0,1))有两个不同实根的概率为( ) 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y 与x 负相关且y ^ =-; ② y 与x 负相关且y ^ =-+; ③y 与x 正相关且y ^ =+; ④y 与x 正相关且y ^ =--. 其中一定不正确的结论的序号是( ) A .①② B .②③

2017南开秋学期《概率论与统计原理》在线作业2

17秋学期《概率论与统计原理》在线作业 试卷总分:100 得分:100 一、单选题 (共 30 道试题,共 60 分) 1. 设A,B为两个事件,如果P(A)=0.6,P(B)=0.4,P(A│B)=0.5,则P(B│A)=() A. 0.2 B. 0.3 C. 1/3 D. 2/3 满分:2 分 正确答案:C 26. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 3. 有10道“是非题”,每道题答对的概率为0.5,则10道题中答对5道题的概率为 A. 0.80 B. 0.50 C. 0.25 D. 0.15 满分:2 分 正确答案:C 4. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:B

5. A. A B. B C. C D. D 满分:2 分正确答案:D 6. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 7. 题面见图片: A. A B. B C. C D. D 满分:2 分正确答案:B 8. 题面见图片: A. A B. B C. C D. D 满分:2 分

正确答案:D 9. 设随机变量X~B(n,p),已知EX=0.6,DX=0.48,则n,p的值为()。 A. n = 2,p =0.2 B. n = 6,p =0.1 C. n = 3,p =0.2 D. n = 2,p =0.3 满分:2 分 正确答案:C 10. 设一次试验成功的概率为p,进行100次独立重复试验,当p = ( ) 时,成功次数的标准差的值为最大 A. 0 B. 0.25 C. 0.5 D. 0.75 满分:2 分 正确答案:C 11. 已知P(A)=P(B)=P(C)=1/4,P(AC)=P(BC)=1/16,P(AB)=0,则事件”A,B,C都不发生“的概率为() A. 0 B. 0.375 C. 0.50 D. 0.625 满分:2 分 正确答案:B 12. 题面见图片: A. A B. B C. C D. D 满分:2 分 正确答案:D 13. 某轮胎厂广告声称它的产品可以平均行驶24000公里。现随机抽选20个轮胎作试验,

高考数学压轴专题人教版备战高考《计数原理与概率统计》基础测试题含解析

数学高考《计数原理与概率统计》复习资料 一、选择题 1.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3 C .0.58 D .0.958 【答案】D 【解析】 分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可. 详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =?=, 恰在第三次落地打破的概率为30.70.60.90.378P =??=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D . 点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C.

高中数学选修2-3计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+== 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

《概率论与统计原理》、《概率与统计原理》期末复习资料121220

一、填空题 1、设A ,B ,C 为三个事件,则下列事件“B 发生而A 与C 至少有一个发生”,“A ,B ,C 中至少有两个发生”,“A ,B ,C 中至少有一个发生”,“A ,B ,C 中不多于一个发生”,“A ,B ,C 中恰好有一个发生”,“A ,B ,C 中恰好有两个发生”分别可表示为 、 、 、 、 、 。 参考答案: B (A+ C ,AB+AC+BC ,A +B +C ,C A +C B +B A ,AB C +AC B +A BC , BC A +C B A +C AB 考核知识点:事件的关系及运算,参见P9 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为 、 、 。 参考答案:0.04,0.04,0.1 考核知识点:古典型概率,参见P11 3、箱中有60个黑球和40个白球,从中任意连接不放回取出k 个球,则第k 次取出黑球的概率为 。 参考答案:0.6 考核知识点:古典型概率,参见P13 4、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为 ,获利10~15万元的概率为 。 参考答案:0.2,0.4 考核知识点:概率的性质,参见P16~P17 5、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取到的两个球都是白球的概率为 ;取到的两个球颜色相同的概率为 ;取到的两个球中至少有一个是白球的概率为 。 参考答案:0.4,7/15,14/15 考核知识点:古典型概率和概率的性质,参见P18~P19 6、设事件A ,B 互不相容,已知P (A )= 0.6,P (B )= 0.3,则P (A+B )= ;P (A +B ) = ;P (A B )= ;P (B A )= 。 参考答案:0.9,0.4,0.3,0.1 考核知识点:概率的性质,参见P19 7、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。

高中计数原理与概率计数原理

高中计数原理与概率计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理 二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多. 三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. ∴选B

高中数学典型例题解析:第九章 计数原理与概率

第九章 计数原理与概率 §9.1 计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法, 这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一 种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地 到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种

2017年高考概率与统计、计数原理专题分析

概率与统计、计数原理专题分析 高中数学课程中的“统计与概率”部分被安排在必修3和选修2-3,历来被老师认为易教、被学生认为易学,一线教师大多走马观花一带而过,以便腾出时间深挖其他章节内容.2017年全国高考概率与我们如约而至,常规内容紧密结合社会实际,以现实生活为背景设置试题,体现数学在解决实际问题中的巨大作用和应用价值,体现高考改革中加强应用性、实贱性的特点.研宄近几年高考试卷中“统计与概率试题,被认为“送分题”分数送不出去的尴尬,引发深思,促使我们重新审视“统计与概率”内容,深感“简单”的内容不简单! 一、专题考点分析 1.考点分析 2017年高考数学试题,概率与统计、计数原理部分考查的知识点覆盖面广,各卷考查知识点如下. (1)全国Ⅰ卷. 文科:样本的数字特征、几何概型、相关系数、方差均值计算; 理科:几何概型、二项式定理、正态分布、随机变量的期望和方差 (2)全国Ⅱ卷 文科:古典概型、频率分布直方图的应用; 理科:排列与组合、随机变量的期望、独立事件概率公式、独立性检验、频率分布直方图估计中位数. (3)全国Ⅲ卷. 文科:折线图、古典概型; 理科:折线图、离散型随机变量的分布列、数学期望 (4)北京卷. 文科:频率分布直方图的应用;理科:散点图的应用、古典概型、超几何分布、方差 (5)天津卷 文科:古典概型;理科:排列与组合、离散型随机变量的概率分布列及数学期望 (6)江苏卷 几何概型、分层抽样古典概型排列组合、随机变量及其分布、数学期望 (7)浙江卷 随机变量的期望和方差、二项式定理 (8)山东卷 文科:茎叶图、样本的数字特征、古典概型; 理科:回归直线方程、古典概型、随机变量的分布列与数学期望、超几何分布 2. 题量与分值分析 每年全国各地区的高考中都会有各种类型的概率题出现,分值占整套试卷总分的 8%~14%. 2017年各卷考查的题型及分值情况如下 (1)全国Ⅰ卷文、理科分别考查两道选择题和一道解答题,总分值均为22分 (2)全国Ⅱ卷文科考查一道选择题和一道解答题,总分值为17分;理科考查两道选择题和一道解答题,总分值为22分. (3)全国Ⅲ卷文、理科分别考查一道选择题和一道解答题,总分值均为17分. (4)北京卷文科考查一道解答题,分值为13分;理科考查一道填空题和一道解答题,总分值为18分. (5)天津卷文、理科分别考查一道选择题和一道解答题,总分值均为18分. (6)江苏卷考查两道填空题和一道解答题,总分值为20分.

《概率论与统计原理》复习资料

《概率论与统计原理》复习资料

《概率论与统计原理》复习资料 一、填空题 1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。 参考答案: B(A+C,AB+AC+BC,A +B+C,C A+C B+B A,AB C+AC B+A BC,A+C AB A+C B BC 考核知识点:事件的关系及运算 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。 参考答案:0.04,0.02,0.1 考核知识点:古典型概率 3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。 参考答案:1/8,3/8 考核知识点:古典型概率 4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。 参考答案:0.6 考核知识点:古典型概率 5、假设某商店获利15万元以下的概率为0.9,获利10万元以下的概率为0.5,获利5万元以下的概率为0.3,则该商店获利5~10万元的概率为,获利10~15万元的概率为。 参考答案:0.2,0.4 考核知识点:概率的性质 6、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取

到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。 参考答案:0.4,7/15,14/15 考核知识点:古典型概率和概率的性质 7、设事件A,B互不相容,已知P(A)= 0.6,P(B)= 0.3,则P (A+B)= ;P(A+B)= ;P(A B)= ;P(B A)= 。 参考答案:0.9,0.4,0.3,0.1 考核知识点:概率的性质 8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5,0.6,0.8,则恰有一人中靶的概率为;至少有一人中靶的概率为。 参考答案:(1)0.26;(2)0.96 考核知识点:事件的独立性 9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。 参考答案:5) - - 1( 1p 考核知识点:事件的独立性 10、设随机变量X~N(1,4),则P{0 ≤X<1.6}= ;P{X<1}= ;P{X=x0}= 。 参考答案:0.3094,0.5,0 考核知识点:正态分布,参见P61;概率密度的性质 11、设随机变量X~B(n,p),已知E X=0.6,D X=0.48,则n = ,p = 。 参考答案:3,0.2 考核知识点:随机变量的数学期望和方差 12、设随机变量X服从参数为(100,0.2)的二项分布,则 E X= ,D X= 。 参考答案:20,16 考核知识点:随机变量的数学期望和方差

计数原理、概率

计数原理、概率 两个基本计数原理 导学目标:理解分类计数原理和分步计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. 自主梳理 1.分类计数原理 完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步计数原理 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n 步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法. 3.分类计数原理与分步计数原理,都是涉及完成一件事的不同方法的种数,它们的区别在于:分类计数原理与“分类”有关,各种方法相互独立,用其中任何一种方法都可以完成这件事;分步计数原理与“分步”有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成,从思想方法的角度看,分类计数原理的运用是将一个问题进行“分类”思考,分步计数原理是将问题进行“分步”思考. 自我检测 1.(2009·北京改编)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为________. 2. 右图小圆圈表示络的结点,结点之间的连线表示它们有线相联,连线上标注的数字表示该段线单位时间内可以通过的最大信息量.现从结点B向结点A传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为________. 3.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有________种. 4.(2018·湖北改编)现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是________. 5. 如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一种颜色,现有4种颜色可供选择,则不同着色方法共有________种.(以数字作答) 探究点一分类计数原理的应用 例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?

18计数原理、概率与统计(陈选明)

— 高三数学(理十五)第1页 共6页— 2017-2018学年度南昌市高三第一轮复习训练题 数学(理十五)计数原理、概率与统计 命题人:新建二中 陈选明 审题人:新建二中 朱优奇 一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能 手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛 的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的 学生中获得“诗词能手”称号的人数为( ) A. 2 B. 4 C. 5 D. 6 2.已知两组数12345671234567:,,,,,,,:,,,,,,A x x x x x x x B y y y y y y y ,其中 ()23,1,2,3,4,5,6,7i i y x i =+=,A 组数的平均数与方差分别记为2,,A x S B 组数的平均数与方差分别记为2,B y S ,则下面关系式正确的是( ) A. 2223,23B A y x s s =+=+ B. 2223,4B A y x s s =+= C. 222,4B A y x s s == D. 222,43B A y x s s ==+ 3.某高校调查了200名学生每周的自习时间(单位: 小时),制成了如图所示的频率分布直方图,其 中自习时间的范围是[]17.5,30,样本数据分组为 [)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5, []27.5,30. 根据直方图,若这200名学生中每周的 自习时间不超过m 小时的人数为164,则m 的值约为( ) A. 26.25 B. 26.5 C. 26.75 D. 27 4.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多 年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则511a a +的值为( ) A.528 B.1020 C.1038 D. 1040 5.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有( )条 A. 40 B. 60 C. 80 D. 120

高三数学选修2-3 概率统计计数原理

(十三) 计数原理、概率统计(理科)(样稿) 华南师范大学附中罗华张琪 A 组 (1) C22+C23+C24+…+C210= (A) 990 (B) 165 (C) 120 (D) 55 B (2)把3 个不同的小球随意地放入4 个不同的盒子内,则3 个小球恰在三个不同的盒子内的概率为 (A) 3 4(B) 4 5(C) 3 8(D) 7 16 C (3)某学校要派遣6位教师中的4位去参加一个学术会议,其中甲、乙两位教师不能同时参加,则派遣教师的不同方法数共有 A.7种 B.8种C.9种 D.10种 C (4)将3 种农作物都种植在如图的4 块试验田里,每块种植一种农作物,要求相邻的试验田不能种植同一种作物,则不同的种植方法共有几种 (A) 6 (B) 12 (C) 18 (D) 24 C C13C12(1+2) (5)四人报名参加跑步、跳高、和游泳比赛,每人限报一项,不同的报名结果有种? 34 (6) (1 + x) 30的展开式中,系数最大的项是第__________项。 16; (7) 平面内有10个点,其中每3点不共线,以其中任意2个点为端点的线段有_________条,有向线段有_________条. C210=45 ; A210=90 (8) 某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论: ①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1 ③他至少击中目标1次的概率是1-0.14 其中正确结论的序号是(写出所有正确结论的序号). ①③ (9) 这是高考第一批录取的一份志愿表。有4所重点院校,每所院校有3个专业是你较为满 意的选择。若表格须填满且规定学校没有重复、同一学校的专业也没有重复的话。你将有种不同的填写方案?

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》全集汇编附答案解析

【高中数学】数学《计数原理与概率统计》高考知识点 一、选择题 1.已知()9 29012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1 【答案】B 【解析】 【分析】 求出二项式()9 13x -展开式的通项为()193r r r T C x +=?-,可知当r 为奇数时,0r a <,当 r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++?+的值. 【详解】 二项式()9 13x -展开式的通项()193r r r T C x +=?-,当r 为奇数时,0r a <,当r 为偶数 时,0r a >, 因此,()9 90191314a a a ??++?+=-?-=??. 故选:B. 【点睛】 本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C. 【点睛】

南开18春学期《概率论与统计原理》在线作业

(单选题) 1: 要求次品率低于10%才能出厂,在检验时原假设应该是() A: p≥0.1 B: p≤0.1 C: p<0.1 D: p>0.1 正确答案: (单选题) 2: 设X和Y是相互独立的两个随机变量,X在[0,2]上服从均匀分布,Y服从参数为2的泊松分布,则E(XY)=() A: 0.5 B: 1 C: 2 D: 4 正确答案: (单选题) 3: 设随机变量X~N(0,1),则方程t2+2 X t+4=0没有实根的概率为() A: 0.6826 B: 0.9545 C: 0.9773 D: 0.9718 正确答案: (单选题) 4: 设人的体重为随机变量X,且EX=a,DX=b。则10个人的体重记为Y,则()成立。 A: EY=a B: EY=10a C: DY=b D: DY=10a 正确答案: (单选题) 5: 设随机变量X在区间[1,3] 上服从均匀分布,则P{-0.5<X<1.5} 为() A: 1 B: 0.5 C: 0.25 D: 0 正确答案: (单选题) 6: 在抽样方式与样本容量不变的情况下,要求提高置信时,就会 A: 缩小置信区间 B: 不影响置信区间 C: 可能缩小也可能增大置信区间 D: 增大置信区间 正确答案: (单选题) 7: 设随机变量X服从参数为1的指数分布,则E[X^2]=() A: 1 B: 1.5 C: 4/3 D: 2 正确答案: (单选题) 8: 某工厂生产的零件出厂时每200个装一盒,这种零件由合格和不合格两类,合格率为0.99。设每盒中不合格数为X,则X通常服从() A: 正态分布 B: 均匀分布 C: 指数分布 D: 二项分布 正确答案: (单选题) 9: 从0,1,2,…,9共10个数字中的任意两个(可重复使用)组成一个两位数的字码,则字码之和为4的概率为() A: 0.02

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

高考数学压轴专题长沙备战高考《计数原理与概率统计》知识点训练及答案

【高中数学】数学高考《计数原理与概率统计》复习资料 一、选择题 1.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A . 13 B . 14 C . 15 D . 12 【答案】A 【解析】 【分析】 根据条件概率的公式与排列组合的方法求解即可. 【详解】 由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率11333315 5C C A 9A 20P ==,其中学生丙第一个出场的概率13 3325 5C A 3A 20P ==,所以所求概率为21 13P P P ==. 故选:A 【点睛】 本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型. 2.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v 共线的概率为( ) A . 1 3 B . 14 C . 16 D . 112 【答案】D 【解析】 【分析】 由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r 共线的基本事件的个数,利用 古典概型及其概率的计算公式,即可求解。 【详解】 由题意,将一枚骰子抛掷两次,共有6636?=种结果, 又由向量(,),(3,6)p m n q ==u r r 共线,即630m n -=,即2n m =, 满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果, 所以向量p u r 与q r 共线的概率为31 3612 P = =,故选D 。 【点睛】 本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础

概率论与统计原理复习资料

《概率论与统计原理》复习资料 一、填空题 1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。 参考答案: B(A+C,AB+AC+BC,A +B+C,C B+B A+C A,AB C+AC B+A BC,A+C AB B A+C BC 考核知识点:事件的关系及运算 2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。 参考答案:,, 考核知识点:古典型概率 3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率 为,恰好有2枚正面向上的概率为。 参考答案:1/8,3/8 考核知识点:古典型概率 4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。 参考答案: 考核知识点:古典型概率 5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率 为,获利10~15万元的概率为。 参考答案:, 考核知识点:概率的性质 6、设袋中有6个球,其中4白2黑。用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率 为。

参考答案:,7/15,14/15 考核知识点:古典型概率和概率的性质 7、设事件A ,B 互不相容,已知P (A )= ,P (B )= ,则P (A+B )= ;P (A +B )= ;P (A B )= ;P (B A )= 。 参考答案:,,, 考核知识点:概率的性质 8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为 ;至少有一人中靶的概率为 。 参考答案:(1);(2) 考核知识点:事件的独立性 9、每次试验的成功率为p (0< p <1),则在5次重复试验中至少成功一次的概率为 。 参考答案:5)1(1p -- 考核知识点:事件的独立性 10、设随机变量X ~N (1,4),则P{0 ≤X <}= ;P{X <1}= ;P{X =x 0}= 。 参考答案:,,0 考核知识点:正态分布,参见P61;概率密度的性质 11、设随机变量X ~B (n ,p ),已知E X =,D X =,则n = ,p = 。 参考答案:3, 考核知识点:随机变量的数学期望和方差 12、设随机变量X 服从参数为(100,)的二项分布,则E X = , D X = 。 参考答案:20,16 考核知识点:随机变量的数学期望和方差 13、设随机变量X 服从正态分布N (,),则E X 2= ,D (2X -3)= 。 参考答案:,1 考核知识点:随机变量的数学期望和方差及其性质 14、设由来自正态总体)9,(2μN 的容量为9的简单随机样本,得样本均值X =5,则未知参数μ的最大似然估计值为 ,μ的置信度为的置信区间为 。

2021-2022年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概型理

2021年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概 型理 1.将一个骰子抛掷一次,设事件A 表示向上的一面出现的点数不超过3,事件B 表示向上的一面出现的点数不小于4,事件C 表示向上的一面出现奇数点,则( ) A .A 与B 是对立事件 B .A 与B 是互斥而非对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件 答案 A 解析 由题意知,事件A 包含的基本事件为向上点数为1,2,3,事件B 包含的基本事件为向上的点数为4,5,6.事件C 包含的点数为1,3,5.A 与B 是对立事件,故选A. 2.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是( ) A .恰好有1件次品和恰好有2件次品 B .至少有1件次品和全是次品 C .至少有1件正品和至少有1件次品 D .至少有1件次品和全是正品 答案 A 解析 依据互斥和对立事件的定义知,B ,C 都不是互斥事件;D 不但是互斥事件而且是对立事件;只有A 是互斥事件但不是对立事件. 3.(xx·广东茂名模拟)在{1,3,5}和{2,4}两个集合中各取一个数字组成一个两位数,则这个数能被4整除的概率是( ) A.1 3 B.12 C.16 D.14 答案 D

解析 符合条件的所有两位数为12,14,21,41,32,34,23,43,52,54,25,45,共12个,能被4整除的数为12,32,52,共3个,故所求概率P =312=1 4 . 4.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.34 答案 C 解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P =2 3 . 5.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下: A .0.53 B .0.5 C .0.47 D .0.37 答案 A 解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100 =0.53,故选A. 6.(xx·天津改编)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为1 3,则甲获胜的概率 和甲不输的概率分别为( ) A.16,1 6 B.12,23 C.16,23 D.23,12 答案 C 解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=1 6. 设事件A 为“甲不输”,则A 可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=16+12=2 3 .(或设事件A 为“甲不输”,则A 可看作是“乙胜”的对立事件.所以P(A)

2018年北京市高考数学理10专题十计数原理、统计、概率

第十篇:计数原理、统计、概率 一、选择题 1.【2018全国一卷3】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻 番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 2.【2018全国一卷10】下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个 半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 3.【2018全国二卷8】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥 德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723 =+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. 1 12 B. 1 14 C. 1 15 D. 1 18 4.【2018全国三卷5】 5 2 2 x x ?? + ? ?? 的展开式中4x的系数为

A .10 B .20 C .40 D .80 5.【2018全国三卷8】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =, ()()46P X P X =<=,则p = A . B . C . D . 6.【2018浙江卷7】设0

相关主题
文本预览
相关文档 最新文档