当前位置:文档之家› 2.《高等数学》(二)期末模拟试题(含标准答案)

2.《高等数学》(二)期末模拟试题(含标准答案)

2.《高等数学》(二)期末模拟试题(含标准答案)
2.《高等数学》(二)期末模拟试题(含标准答案)

【注】 高等数学考试时间:7月13日(第二十周周二) 地点:主教楼1601教室 以下题目供同学们复习参考用!!!!

《高等数学》(二)期末模拟试题

一、填空题:(15分)

1.设,y

x z =则=??x

z .1-y yx

2. 积分=??D

xydxdy .其中D为40,20≤≤≤≤y x 。 16

3. L 为2x y =点(0,0)到(1,1)的一段弧,则=?

ds y L

.121

55-

4. 级数∑∞

=-1)1(n p n

n

当p 满足 时条件收敛.10≤

5. 方程0)1(=+-dy e dx ye x

x

的通解为 .

)1(x

e C y += 二、选择题:(15分)

1.方程

0)4(sin )cos 3(3

2=-++dy y x dx x y x 是 .C (A)可分离变量微分方程; (B) 一阶线性方程; (C )全微分方程; (D)(A),B ),(C )均不对.

2.),(y x f z =在),(00y x 可微,则

y

z

x z ????,在),(00y x 。C (A)连续; (B )不连续; (C )不一定存在; (D)一定存在。 3.级数∑∞

=????

??

+-

-211

1

1n n n 是 。A

(A )发散; (B)收敛; (C)条件收敛; (D )绝对收敛。 4.曲面22y x z +=与平面1=z 所围立体的体积为 。B (A )???Ω

+dv y x )(2

2

; (B)???

1

1 0

2 0

r

dz rdr d π

θ;

(C)??

?+----2

22

2

1 1 1

1

y x x x

dz dy dx ; (D )???

1

1 0

2 0

dz rdr d π

θ。

5.方程x e x y y y -=+'-''323的特解形式为 。B

(A )x e b ax )(+ (B)x cxe b ax ++ (C )x ce b ax ++ (D )x xe b ax )(+

三、),(2

2

x y f z -=其中)(u f 有连续的二阶偏导数,求22x

z

??.(8分)

解:)2(x f x z -?'=??

)2()2(222-?'+-?''=??f x f x z f f x '-''=242 例、设)](,[2

xy y x f z ?-=,),(v u f 具有二阶连续偏导数,求x

y z

???2.

x f f y

z

?'?'+-?'=???21)1(

]2[1211

2y f x f x

y z

?'?''+?''-=????x y f x f ?'??'?''+?''+??]2[2221??'

?'+??''?'+22f x y f 11

22)(f x xy f ''-''+'?'=??222122)2(f xy f y x ''?'+''?'-+?? 四、计算?-+-L

x x dy y e dx y y e )2cos ()2sin (,L 为由点A (1,0)到B(0,1),再到

C(-1,0)的有向折线。(8分)

解:2cos ,2sin -=-=y e Q y y e P x

x y e x Q y e y P x

x cos ,2cos =??-=?? .,,围成的区域为由设CA BC AB D 由格林公式

?-+-L

x

x dy y e dx y y e )2cos ()2sin (???-+--??-??=CA x x D

dy y e dx y y e dxdy y P

x Q )2cos ()2sin ()(

02-=??dxdy D

=2

五、计算

??

++dxdy zx dzdx yz dydz xy 2

22,其中∑为球体4222≤++z y x 及锥体22y x z +≥的公共部分的外表面。(8分) 解:,围成的空间区域为由设∑Ω

数学期末试题(1)及答案

第一学期期末检测模拟试题(1) 七年级数学试题 参考答案 一、1~5 DDBBC 6~10 DACDC 11.C 12.D 二、13. <,<14. 圆锥15. 10cm或4cm 16. 201017. (42500-88a) 18. 1 19. 2-20.16 -. 三、21.解:(1) 2 2 12 294 33 ?? --?-+÷- ? ?? = 13 494 92 --?+? = 416 --+ =1. (2) 2 4 21 (1)5(3) 33 ?? ---+÷-? ? ?? = 411 15() 933 -+?-? = 45 1 99 -- =0.

22.解: 15x 2-(6x 2 +4x )-(4x 2 + 2x -3)+(-5x 2 + 6x + 9) =15x 2 - 6x 2 -4x -4x 2 -2 x + 3 -5x 2 + 6x + 9 =15x 2 - 6x 2- 4x 2 -5x 2 -4x - 2x + 6x + 3 + 9 =12. 因为原多项式化简(即去括号、合并同类项)后的结果为12,这个结果不含字母x ,故原多项式的值与x 的取值无关.因此,小芳同学将“x =2012”错抄成“x =2021”,结果仍然是正确的. 23.解: (1)因为点M 、N 分别是AC 、BC 的中点, 所以MC =21AC =21×12=6, NC =21BC =21×2=2. 所以MN =MC+NC =6+2=8. (2)MN 的长度是2a . 规律:已知线段分成两部分,它们的中点之间的距离等于原来线段长度的一半.

24.解:设失地农民中自主创业连续经营一年以上 的有x人,则自主创业且解决5人以上失业人员稳定就业一年以上的农民有(60-x)人. 根据题意列出方程 1000x +(60-x)(1000 + 2000)=100000. 解得:x = 40. 所以60-x=20. 答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人. 四、25.解:(1)450-36-55—180-49=130(万人),作图正确(图略); (2)(1-3%-10%-38%-17%)×10000 = 3200(人); (3)180÷450×10000=4000(人),4000-3200=800(人).

人教版数学必修2期末模拟试题及答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题 1.点(1,-1)到直线x -y +1=0的距离是( ). A . 2 1 B . 2 3 C . 2 2 D . 2 2 3 2.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ). A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 3.下列直线中与直线2x +y +1=0垂直的一条是( ). A .2x ―y ―1=0 B .x -2y +1=0 C .x +2y +1=0 D .x + 2 1 y -1=0 4.已知圆的方程为x 2+y 2-2x +6y +8=0,那么通过圆心的一条直线方程是( ). A .2x -y -1=0 B .2x +y +1=0 C .2x -y +1=0 D .2x +y -1=0 5.如图(1)、(2)、(3)、(4)为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( ). A .三棱台、三棱柱、圆锥、圆台 B .三棱台、三棱锥、圆锥、圆台 C .三棱柱、四棱锥、圆锥、圆台 D .三棱柱、三棱台、圆锥、圆台 6.直线3x +4y -5=0与圆2x 2+2y 2―4x ―2y +1=0的位置关系是( ). A .相离 B .相切 C .相交但直线不过圆心 D .相交且直线过圆心 7.过点P (a ,5)作圆(x +2)2+(y -1)2=4的切线,切线长为32,则a 等于( ). A .-1 B .-2 C .-3 D .0 (4) (3) (1) (2)

《普通高中数学课程标准2017年版》学习心得

《普通高中数学课程标准(2017年版)》学习体会 王迎曙(江西省上饶县中学) (一)关键词 1.四基:基础知识、基本技能、基本思想、基本活动的经验 2.四能:发现和提出问题的能力、分析和解决问题的能力、 3.三会:学会用数学眼光观察世界,用数学思维分析世界,用数学语言表达世界 4.六素养:数学抽象、数学建模、逻辑推理、数学运算、数据分析、直观想象 5.四主题:函数、几何与代数、统计与概率、数学建模活动与数学探究活动 6.五课程:A数理类课程(数学、物理、计算机、精密仪器等),B经济、社会(数理经济等)和部分理工类(化学、生物、机械等),C人文类课程(历史、语言等),D体育、艺术类课程,E拓展、生活、地方、大学先修类课程 7.三水平:水平一是高中毕业应当达到的要求,水平二是高考的要求,水平三是大学自主招生的参考 8.四方面:情境与问题、知识与技能、思维与表达、交流与反思 9.两建议:教学建议、评价建议 (二)他山之玉 1.核心素养导向的学科课程标准修订实质是一场课程观、知识观、教学观和学科教育观的重建,是对“为谁培养人、培养什么人、如何培养人”这一教育根本问题的时代回应。——福建师范大学教授余文森 2.我们现在已经基本普及高中阶段教育了,与过去高中教育就是“精英教育”不一样,学生有多样化的需求,也有不同的基础。因此,这次修订普通高中课程方案既要强化共同基础,同时也要满足学生的多样化选择需求、多样化发展需求。——教育部基础教育课程教材专家工作委员会主任王湛 3.新的普通高中课程方案不是推倒重来,而是在继承中前行,在改革中完善,修订后的课程方案力求反映先进的教育思想和理念,高度关注促进学生全面而有个性的发展。——教育部部长助理、教材局局长郑富芝 4.学科核心素养是知识与技能、过程与方法、情感态度价值观“三维目标”的整合与提升,是学科育人目标的认知升级,打破了学科等级化的困局,更为国际范围内解决课程建设同类问题提供了“中国方案”。——华东师范大学课程教学研究所所长崔允漷 (三)特别关注 1.数学建模活动与数学探究活动 (1)数学建模活动是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题。(2)数学探究活动是围绕某个具体的数学问题,开展自主探究、合作研究并最终解决问题的过程。具体表现为:发现和提出有意义的数学问题,猜测合理的数学结论,提出解决问题的思路和方案,通过自主探索、合作研究论证数学结论。应经历选题、开题、做题、结题四个环节。 2.学业质量 (1)学业质量内涵:学业质量是学生在完成本学科课程学习后的学业成就表现。是学生自主学习与评价、教师教学活动与评价、教材编写的知道性要求,也是相应考试命题的依据。(2)学业质量水平:每一个数学学科核心素养划分为三个水平,每一个水平是通过数学学

高等数学试题及答案

高等数学试题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《 高等数学 》 一.选择题 1. 当0→x 时,)1ln(x y +=与下列那个函数不是等价的 ( ) A)、x y = B)、x y sin = C)、x y cos 1-= D)、1-=x e y 2. 函数f(x)在点x 0极限存在是函数在该点连续的( ) A)、必要条件 B)、充分条件 C)、充要条件 D)、无关条件 3. 下列各组函数中,)(x f 和)(x g 不是同一函数的原函数的有( ). A)、()()() 222 1 ,21)(x x x x e e x g e e x f ---=-= B) 、(( )) ()ln ,ln f x x g x x ==- C)、()()x x g x x f --=-=1arcsin 23,12arcsin )( D)、()2 tan ,sec csc )(x x g x x x f =+= 4. 下列各式正确的是( ) A )、2ln 2x x x dx C =+? B )、sin cos tdt t C =-+? C )、2arctan 1dx dx x x =+? D )、211 ()dx C x x -=-+? 5. 下列等式不正确的是( ). A )、()()x f dx x f dx d b a =??????? B )、()()()[]()x b x b f dt x f dx d x b a '=??????? C )、()()x f dx x f dx d x a =??????? D )、()()x F dt t F dx d x a '=????? ?'? 6. 0 ln(1)lim x x t dt x →+=?( ) A )、0 B )、1 C )、2 D )、4 7. 设bx x f sin )(=,则=''?dx x f x )(( ) A )、C bx bx x +-sin cos B )、C bx bx x +-cos cos

【压轴卷】初一数学上期末模拟试题带答案

【压轴卷】初一数学上期末模拟试题带答案 一、选择题 1.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( ) A .不赔不赚 B .赚9元 C .赔18元 D .赚18元 2.若x 是3-的相反数,5y =,则x y +的值为( ) A .8- B .2 C .8或2- D .8-或2 3.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立 的是( ) A .a+b+c>0 B .|a+b|

A .4m 厘米 B .4n 厘米 C .2()m n +厘米 D .4()m n -厘米 7.在下列变形中,错误的是( ) A .(﹣2)﹣3+(﹣5)=﹣2﹣3﹣5 B .(37﹣3)﹣(37﹣5)=37﹣3﹣37 ﹣5 C .a +(b ﹣c )=a +b ﹣c D .a ﹣(b +c )=a ﹣b ﹣c 8.根据图中的程序,当输出数值为6时,输入数值x 为( ) A .-2 B .2 C .-2或2 D .不存在 9.如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a 是方框①,②,③,④中的一个数,则数a 所在的方框是( ) A .① B .② C .③ D .④ 10.已知x =y ,则下面变形错误的是( ) A .x +a =y +a B .x -a =y -a C .2x =2y D .x y a a = 11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式乘方(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.

初三数学期末模拟试题

初三数学期末模拟试题 一、选择题(本题共16分,每小题2分) 1、将9 608 000用科学记数法表示为 A 、9 608×106 B 、960.8×105 C 、96.08×104 D 、9.608×103 2、如图,在△ABC 中,DE ∥BC ,AD:DB = 2:3 则DE:BC 的值为( ) A.1:3 B .2:3 C.1:2 D.2:5 3、将抛物线y=2x 2经过怎样的平移可得到抛物线y=2(x+3)2+4 ( ). A .先向左平移3个单位,再向上平移4个单位 B .先向左平移3个单位,再向下平移4个单位 C .先向右平移3个单位,再向上平移4个单位 D .先向右平移3个单位,再向下平移4个单位 4.在Rt ⊿ABC 中,∠C=90°,∠B=30°, sinA 的值为( ). A 、 1 B 、 23 C 、 22 D 、 2 1 5、在下列函数中,其图象与x 轴没有交点的是( ) A .2y x = B .31y x =-+ C .2 y x = D .1 y x = 6.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°, 则∠BCD 的度数为 ( ) (A) 32° (B) 58° (C)64° (D) 116° A B D E D O

7.如图,⊙O的半径OC垂直于弦AB,垂足为D,OA=22, ∠B=22.5°,AB的长为() A.2 B.4 C.22D.42 8.如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x的函数图象如图2所示,则矩形ABCD的面积是 A.20B.24C.48D.60 二、填空题(本题共2分,每小题16分) 9.分解因式:24 m n n -=. 10.如果两个相似三角形的周长比为5:3,则面积比是_________. 11.已知:如图,在高2m,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要米 12.请写出一个函数值随着自变量的增大而减小的反比例函数的表达式:. y x 3 4 O O C

【必考题】九年级数学下期末模拟试题及答案(2)

【必考题】九年级数学下期末模拟试题及答案(2) 一、选择题 1.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =k x (k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( ) A .12 B .4 C .3 D .6 2.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数 B .中位数 C .众数 D .方差 3.在△ABC 中(2cosA-2)2+|1-tanB|=0,则△ABC 一定是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 4.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( ) A .108° B .90° C .72° D .60° 5.如图,在ABC V 中,90ACB ∠=?,分别以点A 和点C 为圆心,以大于 1 2 AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接 CD .若34B ∠=?,则BDC ∠的度数是( ) A .68? B .112? C .124? D .146? 6.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )

A .∠2=20° B .∠2=30° C .∠2=45° D .∠2=50° 7.估6的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 8.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,3 9.二次函数2 y ax bx c =++的图象如图所示,则一次函数2 4y bx b ac =+-与反比例函数a b c y x ++= 在同一坐标系内的图象大致为( ) A . B . C . D . 10.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140 B .120 C .160 D .100 11.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8% B .9% C .10% D .11% 12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折 D .9折 二、填空题 13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____. 14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.

(完整版)新课标高中数学微积分精选习题

高二数学微积分练习题 一、选择题: 1.已知自由落体运动的速率gt v =,则落体运动从0=t 到0t t =所走的 路程为 ( ) A .32 0gt B .20gt C .22 0gt D .6 2 0gt [解析]要学生理解微积分在物理学中的应用,可用来求路程、位移、功 2、如图,阴影部分的面积是 A .32 B .329- C . 332 D .3 35 [解析]让学生理解利用微积分求曲边形的面积 3、 若 1 1 (2)3ln 2a x dx x +=+? ,且a >1,则a 的值为 ( ) A .6 B 。4 C 。3 D 。2 [解析] 4、用 S 表示图中阴影部分的面积,则S 的值是( ) A .??a c f (x ) d x B .|??a c f (x ) d x | C .?? a b f (x )d x +?? b c f (x ) d x D .??b c f (x ) d x -??a b f (x )d x 5、已知f (x )为偶函数且??0 6 f (x )d x =8,则??-6 6f (x )d x 等于( ) A .0 B .4 C .8 D .16 6、函数y =??-x x (cos t +t 2+2)d t (x >0)( ) A .是奇函数 B .是偶函数 C .非奇非偶函数 D .以上都不正确 7、函数f(x)=? ??? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图 形的面积为( ) A.32 B .1 C .2 D.12 8、???0 3|x 2 -4|dx =( ) A.213 B.223 C.233 D.253 二、填空题: 9.曲线1,0,2 ===y x x y ,所围成的图形的面积可用定积分表示为 . 10.由x y cos =及x 轴围成的介于0与2π之间的平面图形的面积,利用定积分应 表达为 . 11、若等比数列{a n }的首项为2 3,且a 4=??1 4 (1+2x )d x ,则公比等于____. 12、.已知函数f (x )=3x 2+2x +1,若??-1 1f (x )d x =2f (a )成立,则a =________

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

【典型题】高一数学上期末模拟试卷带答案

【典型题】高一数学上期末模拟试卷带答案 一、选择题 1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围 是( ) A .1,110?? ??? B .() 10,10,10骣琪??琪桫 C .1,1010?? ??? D .()()0,110,?+∞ 2.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增 B .()f x 在(0,2)单调递减 C .()y =f x 的图像关于直线x=1对称 D .()y =f x 的图像关于点(1,0)对称 3.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有 2121 ()() 0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-< B .(1)(2)(3)f f f <-< C .(2)(1)(3)f f f -<< D .(3)(1)(2)f f f <<- 4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=1 9 ,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2] 5.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1 B .3 C .5 D .7 6.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ???? ? ????? 的值为 ( )

2019年七年级数学上期末模拟试题带答案 (2)

2019年七年级数学上期末模拟试题带答案 (2) 一、选择题 1.将7760000用科学记数法表示为() A.5 7.7610 ?B.6 7.7610 ?C.6 77.610 ?D.7 7.7610 ?2.已知长方形的周长是45cm,一边长是acm,则这个长方形的面积是() A. (45) 2 a a - cm2B.a( 45 2 a -)cm2 C.45 2 a cm2D.( 45 2 a -)cm2 3.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在() A.16号B.18号C.20号D.22号 4.下列方程变形中,正确的是() A.由3x=﹣4,系数化为1得x= 3 4 - B.由5=2﹣x,移项得x=5﹣2 C.由 123 1 68 -+ -= x x ,去分母得4(x﹣1)﹣3(2x+3)=1 D.由 3x﹣(2﹣4x)=5,去括号得3x+4x﹣2=5 5.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是() A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x) 6.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是( ) A.(-1)n-1x2n-1B.(-1)n x2n-1 C.(-1)n-1x2n+1D.(-1)n x2n+1 7.观察如图所示图形,则第n个图形中三角形的个数是( ) A.2n+2B.4n+4C.4n D.4n-4 8.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是() A.2 B.3 C.4 D.5 9.下面结论正确的有() ①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.

(完整)高等数学考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ). (A )4 24arctan 1x dx x π π-+? (B )44 arcsin x x dx ππ-? (C )112x x e e dx --+? (D )()121sin x x x dx -+? 10.设() f x 为连续函数,则()1 2f x dx '?等于( ). (A )()()20f f - (B ) ()()11102f f -????(C )()()1 202 f f -????(D )()()10f f - 二.填空题(每题4分,共20分) 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3.21 x y x =-的垂直渐近线有条. 4. ()21ln dx x x = +?. 5. ()4 22 sin cos x x x dx π π - += ?.

【必考题】高一数学下期末模拟试题及答案

【必考题】高一数学下期末模拟试题及答案 一、选择题 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2 cos 3 A = ,则b= A B C .2 D .3 2.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( ) A .0d >,170S > B .0d <,170S < C .0d >,180S < D .0d >,180S > 3.已知向量a v ,b v 满足4a =v ,b v 在a v 上的投影(正射影的数量)为-2,则2a b -v v 的最 小值为( ) A . B .10 C D .8 4.设m ,n 为两条不同的直线,α,β为两个不同的平面,则( ) A .若//m α,//n α,则//m n B .若//m α,//m β,则//αβ C .若//m n ,n α⊥,则m α⊥ D .若//m α,αβ⊥,则m β⊥ 5.已知ABC ?是边长为4的等边三角形,P 为平面ABC 内一点,则?()PA PB PC +u u u v u u u v u u u v 的 最小值是() A .6- B .3- C .4- D .2- 6.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2 ?? ???? B .[]1,4- C .1,22??-???? D .[]5,5- 7.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( ) A .若l m ⊥,m α?,则l α⊥ B .若l α⊥,//l m ,则m α⊥ C .若//l α,m α?,则//l m D .若//l α,//m α,则//l m 8.已知{}n a 的前n 项和2 41n S n n =-+,则1210a a a +++=L ( ) A .68 B .67 C .61 D .60 9.若||1OA =u u u v ,||OB u u u v 0OA OB ?=u u u v u u u v ,点C 在AB 上,且30AOC ?∠=,设OC mOA nOB u u u v u u u v u u u v =+(,)m n R ∈,则m n 的值为( ) A . 13 B .3 C D 10.某三棱锥的三视图如图所示,则该三棱锥的体积为( )

2019年初一数学上期末模拟试题(含答案) (2)

2019年初一数学上期末模拟试题(含答案) (2) 一、选择题 1.下列图形中,能用ABC ∠,B D,α∠表示同一个角的是( ) A . B . C . D . 2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( ) A .2.18× 106 B .2.18×105 C .21.8×106 D .21.8×105 3.实数a 、b 、c 在数轴上的位置如图所示,且a 与c 互为相反数,则下列式子中一定成立的是( ) A .a+b+c>0 B .|a+b|

高等数学试题库

高等数学试题库 第一章 极限与连续 一.判断题 1-1-1 函数y=1/ln(x+1)的定义域是(-1, ∞).( ) 1-1-2 函数y=lg((1-x)/(1+x))是奇函数.( ) 1-1-3 函数y=x 2+1的反函数是y=(x+1)1/2.( ) 1-1-4 y=arctgx+1010是有界函数.( ) 1-1-5 若()lim x f x →=2 3,则f(2)=3.( ) 1-1-6 若()lim x f x →=23,则f(x)在x=2处连续.( ) 1-1-7 若f(x)在x 0无定义,则lim x x →0 f(x)必不存在.( ) 1-1-8 lim sin lim limsin x x x x x x x →→→=?=0100 10.( ) 1-1-9 lim x →1 (1/(1-x)-1/(1-x 3))= lim x →11/(1-x)-lim x →11/(1-x 3)=∞- ∞=0.( ) 1-1-10 lim x →1x/(x-1)= lim x →1x/lim x →1(x-1)= ∞.( ) 1-1-11 lim n →∞(1/n 2+2/n 2+3/n 2+…+n/n 2)=0+0+0+…+0=0.( ) 1-1-12 若f(x 0-0)=f(x 0+0),则f(x)在x 0连续.( ) 1-1-13 方程x ·2x =1至少有一个小于1的正数根.( ) 1-1-14 若f(x)在闭区间[a ,b]上不连续,则f(x)在闭区间[a ,b]上必无最大值和最小 值.( ) 二.填空题 1-2-1 lim x →4 (x 2-5x+4)/(x-4)=________. 1-2-2 lim x x x →+--42134 =________. 1-2-3 lim n →∞ (1+2+3+…+n)/n 2=________. 1-2-4 lim x →0x 2/(1-cosx)=________. 1-2-5 lim n →∞ n[ln(1+n)-ln(n)]=________. 1-2-6 设f(x)= sin ,, x x x 222+≠=???ππ ,则lim x →πf(x)=________. 1-2-7 当a=________时,函数f(x)= a x x x x x x ++≤>???21030,sin , ,在x=0处连续. 1-2-8 函数 f(x)= (x-1)/(x 2+x-2) 的间断点是____. 1-2-9 已知极限lim x →3 (x 2-2x+k)/(x-3) 存在(k 为实数),则此极限值是________.

初一数学下期末模拟试题及答案

初一数学下期末模拟试题及答案 一、选择题 1.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣5 2.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( ) A .(﹣26,50) B .(﹣25,50) C .(26,50) D .(25,50) 3.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( ) A .783230x y x y +=??+=? B .78 2330x y x y +=??+=? C .30 2378x y x y +=??+=? D .30 3278x y x y +=??+=? 4.若|321|20x y x y --++-=,则x ,y 的值为( ) A .1 4x y =??=? B .2 0x y =??=? C .0 2x y =??=? D .1 1x y =??=? 5.如图,如果AB ∥CD ,那么下面说法错误的是( ) A .∠3=∠7 B .∠2=∠6 C .∠3+∠4+∠5+∠6=180° D .∠4=∠8 6.不等式4-2x >0的解集在数轴上表示为( ) A . B . C . D . 7.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )

高等数学标准

《简单的线性规划及其应用 课题: 简单的线性规划及其应用 一、教学目标: 1 . 知识目标: 1 、在应用图解法解题的过程中培养学生的观察能力、理解能力; 2 、在变式训练的过程中,培养学生的分析能力、探索能力; 3 、会用线性规划的理论和方法解决一些较简单的实际问题。 2 . 能力目标 : 1 、了解线性规划的意义,了解线性约束条件、线性目标函数、可 行解、可行域和最优解等概念; 2 、理解线性规划问题的图解法; 3 、会利用图解法求线性目标函数的最优解; 4 、 让学生体验数学来源于生活,服务于生活,体验应用数 学的快乐。 3 . 情感目标: 1 、 培养学生学习数学的兴趣和“用数学”的意识,激励学生 创新,鼓励学生讨论,学会沟通,培养团结协作精神; 2 、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、 从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想 《高等数学》课程标准 一、课程描述 1、课程性质 数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成

方法和理论,并且进行广泛应用的科学。数学是一种工具,也是一种文化。作为工具,数学应用于各门科学,可以帮助人们更好地探求客观世界的规律,有助于人们收集、整理、描述信息、建立模型,进而解决问题;作为一种文化,数学一直是现代文化的主要力量,数学知识的学习过程,能培养人们形成理性和客观的生活态度与工作理念,使人们的思维习惯与语言表达趋于严密和精炼。 在高职院校中,《高等数学》课程是各专业一门必修的公共基础课。它将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。基于高职教育的特点,在高等数学的教学中必须遵循“以必需,够用为度”的原则,注重对学生基本运算能力和数学思维方式的训练,强调对基本数学概念的理解和应用,以努力提高学生的数学修养和素质。 在高等职业技术教育中,高等数学是一门必修的公共基础课。 2、课程的基本理念 (1)优化课程结构,适应高等职业教育人才培养模式 高等职业技术教育是以培养高等技术应用性专门人才为根本任务,以适应社会需要为目标,以培养技术应用能力为主线设计学生的知识、能力、素质结构和培养方案,毕业生应具有基础理论知识适度、技术应用能力强、知识面较宽、素质高等特点。因此,课程的教学内容体系应突出“应用”的主旨,从而与经济建设、科技进步和社会发展要求相适应,与人的全面发展需求相适应,与高等教育课程改革要求相衔接。 (2)以素质、能力培养为目标,充分体现课程的基础性、应用性和发展性 数学是一种普适性工具,在数据处理,表达计算、演绎推理等方面为其它学科提供了一种特有的语言、思想和方法,数学的基础性地位无可替代,更不能偏废。高等职业技术教育中,高等数学作为公共基础课程,应充分遵循“需有所学、学有所用”的原则,教学过程中应从素质、能力培养出发,开发学生的创新思维。 (3)以学生为中心,充分发挥学生的学习能动性 高等数学的学习内容应当根据实际需求进行调整,而内容的呈现也应采用不同的表达方式,以满足多样化的学习需求,同时教学活动必须建立在学生的接受能力基础之上。而教师也不是被动的,应调动一切可行的手段,激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验,为学习和实践提供有效的知识工具和良好的思维素质。 (4)加强计算机与数学教学的整合,促进教学改革,提高教学质量 现代信息技术的发展对数学教育的价值、目标、内容以及学与教的方式产生了重大的影响。数学课程的设计与实施应重视运用现代信息技术,加强计算机与数学教学的整合,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,致力于改变学生的学习方式,把学生的学习活动整合到现实的、探索性的数学活动中去。 (5)构建本课程新的评价体系,考察学生的“输出”能力 评价的主要目的是为了全面了解学生的数学学习历程,考察学生的实际能力,同时激励学生的学习和改进教师的教学。但以往的评价手段过于单一,不能全面反映学生的真实情况,而且评价的价值取向犹为偏颇。所以应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,也要关注学习的过程;要关注数学知识的掌握,也要关注数学知识的运用。总之,评价的结果优劣要经得起实践检验。 3、课程设计理念 依据课程的基本理念,根据不同系的不同专业,在内容的选择上,要从提高素质和加强应用的角度选择教材的内容,大胆取舍,以满足专业岗位的需求。针对不同专业的学生特点及专

相关主题
文本预览
相关文档 最新文档