当前位置:文档之家› 飞机液压能源系统管路振动特性分析

飞机液压能源系统管路振动特性分析

飞机液压能源系统管路振动特性分析
飞机液压能源系统管路振动特性分析

飞机液压能源系统管路振动特性分析ΞΞ

潘陆原,王占林,裘丽华

(北京航空航天大学自动控制系,100083)

摘要:针对由于飞机液压能源系统管路振动造成的故障问题,提出了管路振动系统是慢变参数系统的概念。为了全面描述液压能源系统管路的振动特性,给出了一种实用的分析流体与固体管道发生流固耦合振动的工程方法。

关键词:液压系统;流固耦合;慢变参数;振动

1 前言

现代飞机液压系统大多采用变量柱塞泵,脉动式的流量输出是其固有特性,由此产生的压力脉动常使能源管路系统遭到严重破坏,危害乘员的生命安全,影响飞行任务的正常完成。飞机液压能源系统的管路振动问题,多年来一直困扰着飞机液压系统设计师和事故分析人员。随着飞机液压系统的高压化,这一问题更加突出。在新机型的设计过程中,人们一般采用传递矩阵法计算流体管路的动态特性,对于固体管道,除了进行强度计算外,还要进行管道的固有频率测试。据此保证液压管路系统长期可靠的工作。在事故分析过程中,管路系统的故障大部分集中在能源管路部分,分析事故的方法与设计时采用的方法基本相同,流体管路动态特性的计算结果与设计时的计算结果是一致的,但是固体管道的测试结果却与设计时的测试结果大相径庭。本文针对这个问题,引入慢变参数的概念,分析液压能源管路系统的动态特性。

2 液压能源系统的振动

飞机液压系统的能源部分由液压泵、滤油器及其之间的管路组成。系统的振动分为机械振动和流体振动两种基本类型。产生振动的根源,主要是液压泵的旋转运动和往复吸排油过程,以及管路中流体的谐振。主发动机通过附件机匣给液压泵提供动力,在正常的加工和使用条件下,液压泵的主轴、轴承和缸体等转动部件能够长期处于良好的工作状态,机械性能平稳,振动较小。在柱塞往复运动完成吸排油的过程中,可能产生的气穴、气蚀等问题,可以采用增压油箱和泵内流道的合理设计等手段加以解决。柱塞孔腔与配流盘低压腔接通吸油时,柱塞处于下死点,柱塞腔容积很小,加之三角槽等均压结构,两腔压力很快平衡,微弱的流量脉动可以忽略;柱塞孔腔与配流盘高压腔接通排油时,尽管采取了三角槽、阻尼孔和预压缩等措施,但是高压腔压力仍然高于柱塞孔腔压力,在两腔接通的过程中,出现流量倒灌现象,流量脉动很大,使液压泵成为流体振动的根源。液压泵产生的流量脉动经过管路的作用,形成压力脉动,流体的振动通过管路传至系统。

管路振动的情况比较复杂,液压泵脉动式的流量输出使流体管路和固体管道产生强迫振动。流体管路本身的分布参数特性,使之在管道结构满足谐振条件时,发生自激谐振。液压泵的脉动频率与流体的谐振频率接近时,振动会进一步加强。如果固体管道的固有频率与流体的谐振频率相接近,或者与液压泵的脉动频率相接近,则产生流固耦合共振。机械结构在其固有频率附近的强烈振动,常常导致结构破坏和事故的发生。

3 液压管路系统的一般设计

液压泵的脉动频率f p为

f p=nZ/60(1)式中:n-

液压泵的转速;Z-柱塞数。

飞机液压泵工作时的转速是不断变化的,一般与主发动机转速的70%~100%成比例变化。

流体管路的频率特性为

p e

Q e

=

cos hΓ-Z

e

sin hΓ

-

1

Z e

sin hΓcos hΓ

p s

Q s

(2)

式中:p e、Q e—分别为油滤入口的压力、流量;

p s、Q s—分别为液压泵出口的压力、流量;

Γ—管路的传递算子;Z

e

—管路的特征阻抗。

根据流体力学理论【1】,由式(2)可以得到流体管路的谐振频率、振幅等分布参数特性。流体与管道的流固耦合作用很复杂,精确的现代分析理论与工程应用尚存在一定距离【2】,固体管道及其支承结构的振动特性,一般结合估算通过实验确定。飞机上的导向管细而长,流体的流速不大,流速对固体管道固有频率的影响通常可以忽略不计,考虑到管道中流体的压力及质量,管道最低阶固有频率f1的估算式为【3】f1=

λ

1

L2

EI

M

(3)式中:λ1—决定于支承条件的配套系数,两端固支时,取2214,一端固支,一端铰支时,取1514,

两端铰支时,取9187,飞机液压管道的支

承属于两端固支的情况;

E—管材的弹性模量;

I—管路的截面惯性矩;

M—管道与流体的单位质量;

L—支承点之间管道的长度。

实际管道的固有频率,需要在飞机地面模拟器和

Ξ“九?五”国防重点预研课题“新型液压系统和液压作动器关键技术研究”资助(课题编号:361715)

试验机上进行测试确定。支承结构除进行静强度计算

和实验外,还进行疲劳强度的计算与实验。

按上述方法设计飞机液压管路系统,应该能保证管道的最低阶固有频率高于液压泵最高脉动频率的115~2倍,通过管路布局保证流体管路不发生自激谐振,并且在发动机70%~100%转速范围内,流体管路的1~3阶谐振频率与液压泵的脉动频率不发生耦合。4 支承结构的慢变参数特性

将管路系统各个关键频率基本错开,保证了液压系统长期稳定可靠的工作。可是能源管路系统的故障仍然时有发生,其中大部分故障原因是管道的固有频率与液压泵的脉动频率发生耦合共振。除管路断裂、固定结构撕裂等最终破坏形式之外,与管道接触的管夹表面存在明显的磨损,但是管夹并没有达到疲劳失效的程度。管道通过管夹的卡接固定在飞机主体结构

上,这种管夹与管道的卡接关系是结构接触问题【4】

。这类接触问题的主要特点,一是接触面积不断变化,外力与由外力引起的位移之间的关系是非线性的,二是接触区内的应力相当高,三是结构参数具有慢变特性。所谓慢变参数,是指参数与方程的周期相比变化很慢,即在短时间内分析时,参数可视为常数,而在

长时间内分析时,则要考虑参数的显著变化【5】

,如图所示由管道和管夹组成的接触结构,管夹固定在机体管道与管夹组成的接触结构结构上,管夹与管道之间具有相互作用预紧力和一定的摩擦系数,将管道视为单位质量的受力体,管道受到预紧力、结构弹性变形力和周期性强迫激振力的作用,其力平衡方程为

x ¨+Kx +μN =F cos ωt

(4)

式中:x —单位质量系统的位移;

K —结构变形弹性力的当量弹簧系数;N —管夹的预紧力;

μ—为摩擦系数;

F cos ωt —管道受到的周期性强迫激振力。

式(4)由K BM 法【4~6】求解,这里只定性分析其

参数的慢变特性。在飞机装备使用的最初阶段,接触结构在初始预紧力的作用下,接触区没有相对位移,管道支承情况处于比较理想的固支状态,由液压泵引起的管路中的压力的脉动始终激励管道强迫振动,随着飞行时间的增长,导致接触结构逐渐磨损,甚至松动,接触区产生微小相对位移。但是并没有造成直接的破坏,而是使式(4)中的K 和N 减少,即结构变形弹性力和管夹预紧力减少。这意味着管道的支承结

构刚度下降,管道的支承已经不是固支状态,式(3)中的λ1减少,进而使f 1降低。当f 1降低到接近式(1)中的f p 时,发生流固耦合振动。K 、N 、λ1和f 1都是慢变参数,这种管道支承结构刚度逐渐下降的慢变参数特性,是造成飞机液压能源管路及相关固定结构破坏失效的真正原因。5 一种流固耦合振动分析的工程化方法

将理论分析和实验测试有机结合起来进行飞机液压系统的设计与分析,是一种实用的工程化方法。液压能源管路系统是飞机液压系统中最薄弱的环节,设计与分析时可以采取如下步骤:

(1)按照飞机总体设计要求和液压系统设计规范选择具有所需性能的材料,进行管路布局。

(2)根据式(1)、式(2)计算液压泵的脉动频率和流体管路的分布参数特性。

(3)由实验测试支承结构对管道最低阶固有频率的影响。根据式(3)计算理想固支条件下管道的最低阶固有频率、通过模拟磨损过程、获得λ1随预紧力变化的试曲线,根据材料强度确定预紧力的大小,同时预测管路系统的维修寿命。在材料处理上,应注意管夹与管道具有相同的表面硬度,这是减少接触结构磨损的有力保证。

(4)分析关键频率范围,调整有关参数,使关键频率基本错开。

(5)与其他部件进行飞机地面模拟器和试验机上的全面测试,液压系统设计定型。6 结论

(1)飞机液压能源管路系统支承结构的慢变参数特性是导致管路系统破坏失效的真正原因。

(2)流固耦合振动的复杂性使之难以单纯依靠理论计算确定,本文提出的工程化方法适用于管路系统的分析与设计。

(3)保证管夹与管道具有相同表面硬度,是减少接触结构磨损的关键因素。参考文献

【1】Hullender D 1A ?M odel Representation for Fluid T ransmission Line

Dynamics ?International Symposium of Fluid C ontrol and Measurment ,T oky o ,1985

【2】Paidoussis M P ,Li G X ?Pipes conveying fluid ?a m odel

dynamical problem Journal of Fluids and S tructures ,Jul 1993

【3】R 1D 1Blevins ?Flow -induced vibration ?Van N ostrand Reinhold

C ompany ,1977

【4】【苏】H 1A 1比尔格尔等著?机械零件强度计算手册?北京:

机械工业出版社,1987

【5】闻邦椿等?含慢变参数的非线性振动系统的振动特性?非

线性动力学学报,199816

【6】Nay feh ,A 1H 1M ook ,D 1T 1?N onlinear oscillations ?John Wiley ,

1979

收稿时间:1999-12-21

飞机液压系统

飞机液压系统 【摘要】 本论文主要阐述了液压系统的原理,主要部件组成,功用,以及维护与修理。液压系统是指飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动作的整套装置。液压系统由液压油箱、油箱增压系统、液压泵、地面勤务系统等组成。由于飞机液压系统的工作情况直接与飞行安全密切相关。故现代飞机上大多装有两套(或多套)相互独立的液压系统。单位功率重量小、系统传输效率高、安装简便灵活、惯性小、动态响应快、控制速度范围宽、油液本身有润滑作用、运动机件不易磨损是其优点;缺点为油液容易渗漏、不耐燃烧、操纵信号不易综合。与其他机械的液压系统相比,飞机液压系统的特点是动作速度快、工作温度和工作压力高。本论文主要以波音737为例分析飞机液压系统。 关键词:液压系统驱动马达泵(EMDP)液压动力转换组件(PTU) Abstract: This paper describes the principle of the hydraulic system, major components, function, and maintenance and repair. Aircraft hydraulic system is to oil as the working medium, by the hydraulic actuator to complete a specific set of device control action. Hydraulic system by hydraulic tank, fuel tank pressurization system, hydraulic pump, ground service system components. Since the work of the aircraft hydraulic system directly related to flight safety. Therefore, most modern aircraft equipped with two (or sets) of independent hydraulic system. The weight of a small unit power, the system transmission efficiency, ease of installation flexibility, inertia is small, fast dynamic response, wide speed control, lubrication oil itself, moving parts, easy to wear its advantages; disadvantage of easy oil leakage, impatience burning, easy to manipulate the signal integrated. Hydraulic and other mechanical systems, aircraft hydraulic system is characterized by a movement speed, high temperature and pressure. In this thesis, an example of Boeing 737 aircraft hydraulic system. Key words:The hydraulic system EMDP PTU

液压系统振动和噪声的产生原因及消除措施

液压系统振动和噪声的产生原因及消除措施 液压设备在给人们带来诸多方便同时,液压系统的泄漏,振动和噪声,不易维修等缺点,也为液压系统的应用造成了障碍。尤其在现今随着技术水平不断提高,液压系统的噪声和振动也随之加剧,已经成为了限制液压传动技术发展的重要因数,因此,研究液压系统的噪声和振动有着积极的意义。 1,振动和噪声的危害 液压系统中的振动和噪声是两种并存的有害现像,从本质上说,它们是同一个物理现象的两个方面,两者互相依存,共同作用。随着液压传动的运动速度不断增加和压力不断提高,振动和噪声也势必加剧,振动容易破坏液压元件,损害机械的工作性能,影响到设备的使用寿命,而噪声则可能影响操作者的健康和情绪,增加操作者的疲劳度。 2,振动和噪声的来源 造成液压系统中的振动和噪声来源很多,大致有机械系统,液压泵,液压阀及管路等几方面。

机械系统的振动和噪声 机械系统的振动和噪声,主要是由驱动液压泵的机械传动系统引起的,主要有以下几方面。 1,回转体的不平衡 在实际应用中,电机大都通过联轴节驱动液压泵工作,要使这些回转体做到完全的动平衡是非常困难的,如果不平衡力太大,就会在回转时产生较大的转轴的弯曲振动而产生噪声。 2,安装不当液压系统常因安装上存在问题,而引起振动和噪声。如系统管道支承不良及基础的缺陷或液压泵与电机轴不同心,以及联轴节松动,这些都会引起较大的振动和噪声。 2.2液压泵(液压马达)通常是整个液压系统中产生振动和噪声的最主要的液压元件. 液压泵产生振动和噪声的原因,一方面是由于机械的振动,另一方面是由于液体压力流量积聚变化引起的. 1,液压泵压力和流量的周期变化

飞机液压能源系统管路振动特性分析

飞机液压能源系统管路振动特性分析ΞΞ 潘陆原,王占林,裘丽华 (北京航空航天大学自动控制系,100083) 摘要:针对由于飞机液压能源系统管路振动造成的故障问题,提出了管路振动系统是慢变参数系统的概念。为了全面描述液压能源系统管路的振动特性,给出了一种实用的分析流体与固体管道发生流固耦合振动的工程方法。 关键词:液压系统;流固耦合;慢变参数;振动 1 前言 现代飞机液压系统大多采用变量柱塞泵,脉动式的流量输出是其固有特性,由此产生的压力脉动常使能源管路系统遭到严重破坏,危害乘员的生命安全,影响飞行任务的正常完成。飞机液压能源系统的管路振动问题,多年来一直困扰着飞机液压系统设计师和事故分析人员。随着飞机液压系统的高压化,这一问题更加突出。在新机型的设计过程中,人们一般采用传递矩阵法计算流体管路的动态特性,对于固体管道,除了进行强度计算外,还要进行管道的固有频率测试。据此保证液压管路系统长期可靠的工作。在事故分析过程中,管路系统的故障大部分集中在能源管路部分,分析事故的方法与设计时采用的方法基本相同,流体管路动态特性的计算结果与设计时的计算结果是一致的,但是固体管道的测试结果却与设计时的测试结果大相径庭。本文针对这个问题,引入慢变参数的概念,分析液压能源管路系统的动态特性。 2 液压能源系统的振动 飞机液压系统的能源部分由液压泵、滤油器及其之间的管路组成。系统的振动分为机械振动和流体振动两种基本类型。产生振动的根源,主要是液压泵的旋转运动和往复吸排油过程,以及管路中流体的谐振。主发动机通过附件机匣给液压泵提供动力,在正常的加工和使用条件下,液压泵的主轴、轴承和缸体等转动部件能够长期处于良好的工作状态,机械性能平稳,振动较小。在柱塞往复运动完成吸排油的过程中,可能产生的气穴、气蚀等问题,可以采用增压油箱和泵内流道的合理设计等手段加以解决。柱塞孔腔与配流盘低压腔接通吸油时,柱塞处于下死点,柱塞腔容积很小,加之三角槽等均压结构,两腔压力很快平衡,微弱的流量脉动可以忽略;柱塞孔腔与配流盘高压腔接通排油时,尽管采取了三角槽、阻尼孔和预压缩等措施,但是高压腔压力仍然高于柱塞孔腔压力,在两腔接通的过程中,出现流量倒灌现象,流量脉动很大,使液压泵成为流体振动的根源。液压泵产生的流量脉动经过管路的作用,形成压力脉动,流体的振动通过管路传至系统。 管路振动的情况比较复杂,液压泵脉动式的流量输出使流体管路和固体管道产生强迫振动。流体管路本身的分布参数特性,使之在管道结构满足谐振条件时,发生自激谐振。液压泵的脉动频率与流体的谐振频率接近时,振动会进一步加强。如果固体管道的固有频率与流体的谐振频率相接近,或者与液压泵的脉动频率相接近,则产生流固耦合共振。机械结构在其固有频率附近的强烈振动,常常导致结构破坏和事故的发生。 3 液压管路系统的一般设计 液压泵的脉动频率f p为 f p=nZ/60(1)式中:n- 液压泵的转速;Z-柱塞数。 飞机液压泵工作时的转速是不断变化的,一般与主发动机转速的70%~100%成比例变化。 流体管路的频率特性为 p e Q e = cos hΓ-Z e sin hΓ - 1 Z e sin hΓcos hΓ p s Q s (2) 式中:p e、Q e—分别为油滤入口的压力、流量; p s、Q s—分别为液压泵出口的压力、流量; Γ—管路的传递算子;Z e —管路的特征阻抗。 根据流体力学理论【1】,由式(2)可以得到流体管路的谐振频率、振幅等分布参数特性。流体与管道的流固耦合作用很复杂,精确的现代分析理论与工程应用尚存在一定距离【2】,固体管道及其支承结构的振动特性,一般结合估算通过实验确定。飞机上的导向管细而长,流体的流速不大,流速对固体管道固有频率的影响通常可以忽略不计,考虑到管道中流体的压力及质量,管道最低阶固有频率f1的估算式为【3】f1= λ 1 L2 EI M (3)式中:λ1—决定于支承条件的配套系数,两端固支时,取2214,一端固支,一端铰支时,取1514, 两端铰支时,取9187,飞机液压管道的支 承属于两端固支的情况; E—管材的弹性模量; I—管路的截面惯性矩; M—管道与流体的单位质量; L—支承点之间管道的长度。 实际管道的固有频率,需要在飞机地面模拟器和 Ξ“九?五”国防重点预研课题“新型液压系统和液压作动器关键技术研究”资助(课题编号:361715)

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

液压噪声分析

液压设备在给人们带来诸多方便同时,液压系统的泄漏,振动和噪声,不易维修等缺点,也为液压系统的应用造成了障碍。尤其在现今随着技术水平不断提高,液压系统的噪声和振动也随之加剧,已经成为了限制液压传动技术发展的重要因数,因此,研究液压系统的噪声和振动有着积极的意义。 1,振动和噪声的危害 液压系统中的振动和噪声是两种并存的有害现像,从本质上说,它们是同一个物理现象的两个方面,两者互相依存,共同作用。随着液压传动的运动速度不断增加和压力不断提高,振动和噪声也势必加剧,振动容易破坏液压元件,损害机械的工作性能,影响到设备的使用寿命,而噪声则可能影响操作者的健康和情绪,增加操作者的疲劳度。 2,振动和噪声的来源 造成液压系统中的振动和噪声来源很多,大致有机械系统,液压泵,液压阀及管路等几方面。 机械系统的振动和噪声 机械系统的振动和噪声,主要是由驱动液压泵的机械传动系统引起的,主要有以下几方面。 1,回转体的不平衡在实际应用中,电机大都通过联轴节驱动液压泵工作,要使这些回转体做到完全的动平衡是非常困难的,如果不平衡力太大,就会在回转时产生较大的转轴的弯曲振动而产生噪声。 2,安装不当液压系统常因安装上存在问题,而引起振动和噪声。如系统管道支承不良及基础的缺陷或液压泵与电机轴不同心,以及联轴节松动,这些都会引起较大的振动和噪声。 2.2液压泵(液压马达)通常是整个液压系统中产生振动和噪声的最主要的液压元件. 液压泵产生振动和噪声的原因,一方面是由于机械的振动,另一方面是由于液体压力流量积聚变化引起的. 1,液压泵压力和流量的周期变化 液压泵的齿轮,叶片及拄塞在吸油,压油的过程中,使相应的工作产生周期性的流量和压力的过程中,使相应的工作腔产生周期的流量和压力的变化,进而引起泵的流量和压力脉动,造成液压泵的构件产生振动,而构件的振动又引起了与其相接触的空气产生疏密变化的振动,进而产生噪声的声压波传播出去. 2,液压泵的空穴现象液压泵在工作时,如果液压油吸入管道的阻力过大,此时,液压油来不及充满泵的吸油腔,造成吸油腔内局部真空,形成负压.如果这个压力恰好达到了油的空气分离

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

液压系统管路设计注意事项样本

液压系统管路设计注意事项 一.液压系统普遍存在的问题 1.可靠性问题( 寿命和稳定性) (1)国产元件质量差, 不稳定; (2)设计水平低, 系统不完善。 2.振动与噪音 (1)系统中存在气体, 没有排净。 (2)吸油管密封不好, 吸进空气。 (3)系统压力高。 (4)管子管卡固定不合理。 (5)选用液压元件规格不合理, 如小流量选用大通径的阀, 产生低频振荡; 系统压力在某一段产生共振。 3.效率问题 液压系统的效率一般较低, 只有80%左右或更低。系统效率低的原因主要由于发热、漏油、回油背压大造成。 4.发热问题 系统发热的原因主要由于节流调速、溢流阀溢流、系统中存在气体、回油背压大引起。 5.漏油问题 (1)元件质量( 包括液压件、密封件、管接头) 不好, 漏油。(2)密封件形式是否合理, 如单向密封、双向密封。 (3)管路的制作是否合理, 管子憋劲。

(4)不正常振动引起管接头松动。 (5)液压元件连接螺钉的刚度不够, 如国内叠加阀漏油。 (6)油路块、管接头加工精度不够, 如密封槽尺寸不正确, 光洁度、形位公差要求不合理, 漏油。 6.维修问题 维修难, 主要原因: (1)设计考虑不周到, 维修空间小, 维修不便。 (2)要求维修工人技术水平高。 液压系统技术含量较高, 要求工人技术水平高, 出现故障, 需要判断准确, 不但减少工作量, 而且节约维修成本, 因为液压系统充满了液压油, 拆卸一次, 必定要流出一些油, 而这些油是不允许再加入系统中使用。另外, 拆卸过程有可能将脏东西带入系统, 埋下事故隐患。因此要求工人提高技术水平, 判断正确非常必要。 7.液压系统的价格问题 液压系统相对机械产品, 元件制造精度高, 因此成本高。二.如何保证液压系统正常使用 液压系统正常工作, 需要满足以下条件: 1.系统干净 系统出现故障, 70%都是由于系统中有脏东西如铁屑、焊渣、铁锈、漆皮等引起。例如, 这类污染物, 如果堵住溢流阀中的小孔( 0.2mm) 就建立不了压力; 如果卡在方向阀阀芯,

飞机液压系统

液压系统 摘要:详细阐述了液压系统的工作原理,飞机液压系统的各组成系统及元件,重点论述了B737-800飞机液压系统的功能、组成、工作特点和使用维护要求。 关键字:液压;液压油箱;B737-8OO; 1 液压系统工作原理 1.1 启动电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 1.2电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。

主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,上位油箱15 的油液经充液阀14 进入主缸上腔。 1.3主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 1.4 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 1.5 泄压 主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 1.6 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不 1.7 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。动。泵1 输出油液经阀6、21中位卸载。

液压系统的振动、噪声诊断与排除

液压系统的振动、噪声诊断与排除 倪元喜马洪茹李学良 摘要:该文主要以液压元件的结构及液压系统的各组成要素为要点分析了液压系统的振动及噪声的产生原因,从原理及实际故障现象等多角度地阐述了该现象的成形,并提 出了部分改善措施。 关键词:噪声、振动、气蚀、液压冲击、判断、处理 一、前言 液压系统是以液体为工作介质进行能量的传递以实现力、位移、速度等机械量的输出,它由液压动力源、各种控制阀、执行机构及其他辅助元件等组成。液压系统在运行中会发出和谐有节奏的声音,而振动、噪声一旦超过了正常状态,则表明系统存在异常。振动、噪声不仅对人的身心健康有害,而且影响系统的工作性能和液压元件的寿命,应及时消除。随着液压设备的高压、高速、大功率化,降低振动和噪声已成为目前液压技术的重大课题之一。 二、振动与噪声的来源 噪声按照表现形式可分为两种:其一是连续不断地发出嗡嗡声,有时还伴随其他杂音;另一种是断续十分刺耳的吱嗡声。按形成原因又可分为机械振动噪声和流体振动噪声。 1、机械振动噪声 由于机械部件的运动或相互间的作用,产生振动而激发的噪声,称为机械噪声。机械振动噪声主要是由于零件之间发生接触、冲击和振动引起的。 ⑴、回转体不平衡。电动机、液压泵、液压马达等高速回转体,如果转动部分不平衡则会产生周期性的不平衡离心力,从而引起转轴的弯曲振动,因而产生噪声。 ⑵、联轴节不同轴。电动机与液压泵不同轴致使联轴器偏斜也会产生振动和噪声。实验证明,当两者同轴度为0.02mm时,就会产生振动,超过0.08mm时,振动噪声较大。 ⑶、电动机噪声。电动机除机械噪声外,还会产生通风噪声(如冷却风扇声和风声)和电磁噪声(电动机通电后的电磁噪声和蝉鸣声)。 ⑷、轴承噪声。轴承在工作过程中也会发出噪声,滑动轴承噪声低于滚动轴承。同一类型的轴承,其内径越大,引起的噪声就越大,内径每增加5mm,其振动级增大1~2dB(分贝)。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

A320飞机液压系统的工作原理

A320飞机液压系统的工作原理 姓名:XXX 学号:XXXX XXXXXXXXXXXXXXXXX 一:摘要 空客A320凭借其在设计上使用大量复合材料作为主要结构材料,更改机身的空间,加宽座椅的宽度,在控制上,其采用了电传操纵(fly-by-wire)飞行控制系统的亚音速民航运输机,代替了过去主要靠机械装置传输飞行员指令来控制飞机的姿态和动作。飞行员的操纵动作被转换成电子信号,经过计算机处理后再驱动液压和电气装置来控制飞机姿态。从而代替了过去的主要由线缆等机械装置来传输飞行员指令,进而控制飞机的姿态和动作。这是第一款使用电传操纵飞行控制系统的大型客机。凭借这些等优势,在国内及世界空客飞机中占有重要一席。本论文主要对其液压系统作介绍。 二:关键字 空客A320 液压系统 三:液压系统构造及工作原理 1:为何要采用液压系统 飞机大型化以后,一对副翼的重量就可达l吨以上,依靠驾驶员操纵控制各操纵面仅凭体力去搬动驾驶杆、踏踩脚蹬、拉动钢索使副翼或方向舵转动,那是绝对办不到的了。此时飞机上就出现了助力机构。飞机上的绝大部分助力机构采用的多为液压传动助力系统。日常生活中,常常可以看到在建设工地上施工的挖掘机,它那巨大的挖斗由伸出缩入的推杆来带动,就是由液压机构来实现的。 2:液压传动原理 液压传动是一种以液体为工作介质,利用液体静压能来完成传动功能的一种传动方式,也称容积式传动。 功用:给飞行操纵系统、起落架收放、前轮转弯、刹车系统和发动机反推装置等提供操纵动力。

3:液压系统的基本组成

(1):动力元件 液压泵,其作用是将机械能转换成液体的压力能。液压泵可分多种,有柱塞泵,齿轮泵等。这些泵在液压系统中都起着转换机械能的作用,但原理各不同,下面介绍齿轮泵和柱塞泵的工作原理图。 a:齿轮泵 齿轮按图示方向旋转 吸油过程:在吸油腔中的啮合 齿逐渐退出啮合,吸油腔容积 增大,形成部分真空,油箱中 的油液在油箱内压力作用下, 克服吸油管阻力被吸进来,并 随轮齿转动; 排油过程: 当油进入排油腔 时由于轮齿逐渐进入啮合,排 油腔容积逐渐减小,将油从排 油口挤压出去。齿轮不断旋转, 油液便不断地吸入和排出。排油腔吸油腔

液压系统的噪音和振动及排除方法

3.为了降低排杂含棉率,增加了二道排杂刀用顺棉板,减少了有效纤维的流失。 4.在排杂刀前侧设计了安全照明灯,以方便用户工作及观察落杂情况。 五、速度继电器的改进 皮清机原先使用的机械式速度继电器不易调整,反应不灵敏,故障率较高,改进后采用了单片机控制的数字式电子速度继电器,这种速度继电器能精确控制给棉传动轴的转速,当转速低于设定值时,电子速度继电器的触点断开,控制电路将给棉电机的电源切断,同时轧花机开箱。电子速度继电器在临沭棉麻公司等用户单位投入运行后,有效地保护了给棉板,深受用户好评。因为继电器是单片机控制的,所以具有很高的精度和灵敏度,是机械式速度继电器和模拟电子速度继电器无法相比的。 液压系统的噪音和振动及排除方法 启东供销机械厂 葛静珍 棉花加工厂大都使用液压打包机将棉纤维打包成型。打包机上的液压系统可能出现的故障是多种多样的。一种故障的产生,其原因也不尽相同,可能是由于一种原因引起,也可能是几种原因的综合结果。因此,出现故障时,必须仔细检查、分析,找出其主要原因,然后加以排除。实践经验表明,噪音是液压系统中最常见的故障之一,有时还伴随着出现振动。产生噪音的原因和排除方法为: 一、液压系统中混入空气而产生噪音 空气进入液压系统的原因,大致有三个方面: 1.大气压下液压油中一般溶解了体积为5%~6%的空气,而且气体在油液中的溶解度与压力成正比。 2.从油箱中进入液压系统:当油箱中油位过低、吸油管浸入油中太短,在吸油口附近形成旋涡使空气吸入油泵;吸油管和回油管在油箱中没有用隔板隔开或相距太近,回油飞溅、搅成泡沫使空气吸入油泵;回油管没有浸入最低油面以下,回油冲击在油面工箱壁上,在油面上产生大量气泡,使空气与油一起吸入系统。 3.由于密封不严、配管接头不严,在系统中低于大气压的部位吸入系统;如油泵的吸油腔、吸油管、压油管中流速高(压力低)的局部区域,停车以后回油腔的油经回油管返回油箱时形成局部真空的地方。 为了防止以上几种现象,应采取以下几种措施: (1)油箱设计要合理,容积要足够大,可采用设有隔板的长油箱,分成回油箱和吸油箱。 (2)油箱中的油液要加到规定的高度,吸油管一定入油池3 5深度。 (3)液压油的规格应符合说明书的要求。各接头要严格密封,防止泵内短时吸进空气。各有关设置要定期清洗,以防堵塞。 二、液压泵也是一个主要噪音源 电网电压发生变化、负载发生变化、本身的压力波动和流量脉动等均能引发液压泵的噪音和振动。电网电压波动将引起液压泵的流量脉动,致使泵的出口及管路压力波动,这是外因引起的流量与压力波动所产生的流体的噪音。 因油区的压力冲击,液压泵也可产生流体噪音。如斜盘式轴向柱塞泵,其缸体在旋转过程中位于上死点时,柱塞腔内的液体压力在与排油腔接通的瞬间,吸油压力突然上升到排油压力,产生较大的压力冲击。同理,在位于下死点时,也产生压力冲击,它们是液压泵的另一个主要噪音源。 要使液压泵的噪音最低,电网容量要足够大;在选择液压泵时,在保证所需的功率和流量的前提下,尽量选转速低的液压泵;也可选用复合泵,提高溢流阀的灵敏度,增设卸荷回路等来降低噪音。 三、控制阀是另一个噪音源 ? 8 1 ?《中国棉花加工》2000年第3期

液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。 实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

振动及液压脉冲影响下的管路应力分析

龙源期刊网 https://www.doczj.com/doc/0d798583.html, 振动及液压脉冲影响下的管路应力分析 作者:赵孟文樊泽明 来源:《山东工业技术》2017年第06期 摘要:液压管路的故障失效及结构损伤,是航空领域非常关心的问题,通常是通过液压 脉冲试验及振动试验进行检验与验证。文章通过理论分析及仿真,研究液压管路在振动及液压冲击影响下的应力变化。分析了无油液振动管路的应力变化、油液压力及液压冲击对管路应力的影响,并进行仿真分析。 关键词:振动;液压冲击;液压管路;应力分析;仿真 DOI:10.16640/https://www.doczj.com/doc/0d798583.html,ki.37-1222/t.2017.06.246 0 引言 飞机包含了很多的液压系统,充油管路的耦合振动,以及液压脉冲产生剧烈的高压力波动,普遍存在于液压系统中,是造成飞机液压管路的故障失效及结构损伤的主要原因,直接影响整个飞机的安全,是航空领域非常关注的问题。目前在新机型设计时,是通过振动台及液压脉冲台对液压导管做试验以检验液压导管的疲劳强度及寿命[1]。本文通过理论分析及仿真, 研究在振动及液压冲击影响下的液压导管的应力变化,有很强的应用价值[2]。 1 管路应力计算 1.1 振动管路的应力分析 管路在外因影响下产生振动,振动形式为垂直方向的正弦振动,管路的运动轨迹为 在t时刻,管路在垂直方向加速度为 对于周期为的振动, 当管路内没有液体(系统压力=0)时,管路所受的应力可通过如下公式计算得到。 当加速度达到最大时,最大。 1.2 油液压强对管路应力的影响 实际应用时,管路内通入额定压力的油液。当管路振动时,管内液体也跟随管路做相同的运动。对于管内液体,其受力图如图1。

飞机液压(带答案)

A207选择题(含94 小题) 1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.B 9.B10.C 11.B12.C13.B14.C15.B16.C17.C18.B19.B20.C 21.C22.C23.C24.B25.C26.B27.D28.D29.C30.C 31.D32.D33.C34.D35.B36.D37.B38.A39.D40.D 41.D42.C43.A44.A45.C46.A47.C48.A49.A50.B 51.A52.D53.B54.B55.B56.A57.D58.C59.A60.D 61.D62.C63.A64.A65.A66.C67.B68.A69.B70.B 71.B72.B73.A74.D75.C76.C77.A78.D79.D80.D 81.B82.C83.B84.B85.B86.D87.C88.B89.B90.B 91.C92.D93.A94.D 1.为保护油泵免受超载而损坏,往往装的机械保险装置是 A、热力释压活门。B、单向活门。 C、剪切销。D、安全活门。 2.卸荷活门与发动机驱动的定量泵结合使用,其目的是 A、防止油流的过度损失。 B、消除油泵的压力脉动。 C、在工作系统不工作时, 卸去系统的压力。 D、在工作系统不工作时, 卸去油泵的工作压力。 3.液压系统使用的"供压组件"是 A、比通常的供压系统能提供更大的压力。 B、指它有一个能产生较大压力的发动机驱动泵。 C、把所有供压附件安置在一起的组合件。 D、指它有一个自增压式油箱。 4.如果壹架飞机液压系统属于定量泵恒压系统,发现比平时卸荷频繁,然而又没有发现不正常的渗漏现象,其最大可能原因是 A、安全活门调节的压力过高。 B、油箱通气管被堵塞。 C、油箱中油量过多。 D、储压器充气压力不足。 5.在液压泵工作时,下列哪些原因最可能引起压力表的过大摆动? A、压力表内的波顿管破裂。 B、储压器充气压力不足。C、供油不足。 D、系统安全活门卡在关闭位。 6.飞机液压供压系统中使用的变流量泵恒压系统 A、一定要用卸荷活门才能保证恒压要求。 B、由于泵内有压力补偿装置,所以不需使用卸荷活门。 C、使用安全活门保证在工作系统不工作时,泵出口压力为恒定。 D、在工作系统不工作时, 泵的出口压力为最小。 7.石油基液压油颜色为 A、紫色。B、兰色。C、绿色。D、红色。 8.除去导管以外,组成一个简单的液压系统至少需要的附件为: A、作动筒、增压油箱、储压器、选择活门。

液压管路设计

液压管路设计 液压管道安装是液压设备安装的一项主要工程。管道安装质量的好坏是关系到液压系统工作性能是否正常的关键之一。 1、布管设计和配管时都应先根据液压原理图,对所需连接的组件、液压元件、管接头、法兰作一个通盘的考虑。 2、管道的敷设排列和走向应整齐一致,层次分明。尽量采用水平或垂直布管,水平管道的不平行度应≤2/1000;垂直管道的不垂直度应≤2/400。用水平仪检测。 3、平行或交*的管系之间,应有10mm以上的空隙。 4、管道的配置必须使管道、液压阀和其它元件装卸、维修方便。系统中任何一段管道或元件应尽量能自由拆装而不影响其它元件。 5、配管时必须使管道有一定的刚性和抗振动能力。应适当配置管道支架和管夹。弯曲的管子应在起弯点附近设支架或管夹。管道不得与支架或管夹直接焊接。 6、管道的重量不应由阀、泵及其它液压元件和辅件承受;也不应由管道支承较重的元件重量。 7、较长的管道必须考虑有效措施以防止温度变化使管子伸缩而引起的应力。 8、使用的管道材质必须有明确的原始依据材料,对于材质不明的管子不允许使用。 9、液压系统管子直径在50mm以下的可用砂轮切割机切割。直径50mm以上的管子一般应采用机械加工方法切割。如用气割,则必须用机械加工方法车去因气割形成的组织变化部分,同时可车出焊接坡口。除回油管外,压力由管道不允许用滚轮式挤压切割器切割。管子切割表面必须平整,去除毛刺、氧化皮、熔渣等。切口表面与管子轴线应垂直。 10、一条管路由多段管段与配套件组成时应依次逐段接管,完成一段,组装后,再配置其后一段,以避免一次焊完产生累积误差。 11、为了减少局部压力损失,管道各段应避免断面的局部急剧扩大或缩小以及急剧弯曲。 12、与管接头或法兰连接的管子必须是一段直管,即这段管子的轴心线应与管接头、法兰的轴心是平行、重合。此直线段长度要大于或等于2倍管径。 13、外径小于30mm的管子可采用冷弯法。管子外径在30~50mm时可采用冷弯或热弯法。管子外径大于50mm时,一般采用热弯法。 14、焊接液压管道的焊工应持有有效的高压管道焊接合格证。 15、焊接工艺的选择:乙炔气焊主要用于一般碳钢管壁厚度小于等于2mm的管子。电弧焊主要用于碳钢管壁厚大于2mm的管子。管子的焊接最好用氩弧焊。对壁厚大于5mm的管子应采用氩弧焊打底,电弧焊填充。必要的场合应采用管孔内充保护气体方法焊接。 16、焊条、焊剂应与所焊管材相匹配,其牌号必须有明确的依据资料,有产品合格证,且在有效使用期内。焊条、焊剂在使用前应按其产品说明书规定烘干,并在使用过程中保持干燥,在当天使用。焊条药皮应无脱落和显著裂纹。 17、液压管道焊接都应采用对接焊。焊接前应将坡口及其附近宽10~20mm处表面脏物、油迹、水份和锈斑等清除干净。 18、管道与法兰的焊接应采用对接焊法兰,不可采用插入式法兰。 19、管道与管接头的焊接应采用对接焊,不可采用插入式的形式。

飞机液压系统供压部分设计

目录 1 概述……………………………………………………………………………… 1 1.1 关于飞机液压系统…………………………………………………………… 1 1.2 液压传动的工作原理和工作特征…………………………………………… 2 1.3 液压传动的优缺点…………………………………………………………… 4 1.3.1 液压系统的优点…………………………………………………………… 5 1.3.2 液压系统的缺点…………………………………………………………… 5 1.4 本课题的任务要求和设计原始数据………………………………………… 6 1.4.1 任务要求…………………………………………………………………… 6 1.4.2 原始数据…………………………………………………………………… 6 1.5 本课题主要研究工作………………………………………………………… 7 2 液压系统设计…………………………………………………………………… 8 2.1 制定系统方案和系统原理图………………………………………………… 8 2.1.1 制定系统方案及拟订液压系统图………………………………………… 8 2.1.2 液压原理图的分析………………………………………………………… 13 2.2 油泵的参数计算和型号选择………………………………………………… 19 2.2.1 液压泵的主要性能参数…………………………………………………… 19 2.2.2 液压泵的转速……………………………………………………………… 20 2.2.3 液压泵的排量及流量……………………………………………………… 20 2.2.4 液压泵种类的选择………………………………………………………… 20 2.2.5 确定液压泵的各参数计算和型号选择…………………………………… 21

相关主题
文本预览
相关文档 最新文档