当前位置:文档之家› 【拉布索思】谐响应中阻尼的设置及其工程应用

【拉布索思】谐响应中阻尼的设置及其工程应用

【拉布索思】谐响应中阻尼的设置及其工程应用
【拉布索思】谐响应中阻尼的设置及其工程应用

【拉布索思】谐响应中阻尼的设置及其工程应用

讨论背景

这里主要讨论的是ANSYS(Workbench)中模态叠加法(包括瞬态中用模态叠加)的阻尼比(包括α、β阻尼)设置问题,不考虑材料的阻尼比。

各阻尼比的解释

这里会把阻尼都写成阻尼比的形式,因为阻尼比最直观,也可以在实验中得到。那么,总阻尼比为:

其中,

是常值阻尼比,是作用于所有阶的模态,而且值是恒定的,在Constant Damping Ratio 设置;

是第i阶模态的阻尼比,用来设定某些阶的阻尼比,要通过命令MDAMP设置(命令解释请看help,命令使用实例请看下面例子);

,这是β阻尼相应的阻尼比,也是作用于所有阶的模态,但值随频率增大而线性增大。HELP中说,在很多实际结构问题中,α会被忽略,所以上式中就没有α只有β,我是这么猜的,因为通常实际问题的频率都在几十到几千赫兹不等,那么就

比较小,可以忽略。反正,在Workbench界面中是没有α的设置项的,默认α=0,要设的话就要加命令,这里也不讨论α了。那么β值就决定了这个阻尼比,而因为β值是恒定的,所以这个阻尼比会随频率增大而线性增大,就能起到抑制高频的作用。AWB中有两种输入β阻尼的方法,一是直接输入β值(Direct Input),二是输入某个频率下的阻尼比(Damping

vs Frequency),系统就会根据来计算出β值,界面中的Beta Damping Measure

就是。通过两种输入方法设置了β值后,系统就会自动求出各阶的β阻尼比,个人喜欢用第二种方法,因为设置阻尼比更直观,结合使用另外两个阻尼比时会更方便;

注意,三个阻尼比的效果是叠加的。

为什么要设置阻尼?

首先,加阻尼对共振频率的影响很小,比如是固有频率乘以,所以阻尼对共振频率的影响可以忽略。那我认为,阻尼的主要作用是压低共振处的幅值,使频响曲线变得更平缓。而实际结构中一定有阻尼,所以分析中适当设置一定的阻尼会比较接近实际。如果阻尼都取为0(默认值)的话,频呼曲线的峰值会相当大,理论上是无穷大的。(小插曲:我想过用单自由度的弹簧质量系统计算,将固有频率调成整数,然后做谐响应,看它算到这个

频率的时候会不会报错。但发现,固有频率中π是无理数,所以频率调不成整数。

然后我就在模态分析的Solution Information里找到那个13位的固有频率,让谐响应经过这个频率,出来峰值很高但还是没报错,于是我把这个数再细分成1000份,那就是精度有16位了,呵呵,这时不会报错,但在固有频率处就会出现了很奇特的现象,这里卖个关子,大家有兴趣的话自己试试吧。)

那么阻尼应该设置多大才合适呢,阻尼比应该设置哪个呢?

现在阻尼问题都研究得不是很透彻,并没有很多的理论支持,所以在做项目时老板都是叫我多取几个值试试的。但也不是说完全没有根据,首先,阻尼比通常都比较小,比如我做的实验测的阻尼比大概在K*0.001(1

这里讨论的是三个阻尼比,要设置哪个或哪些阻尼比就要看你想实现怎样的效果。常值阻尼比是作用于所有阶模态的,就是把所有的峰都压下去,这个比较常用,没什么目标效果的话可以单独用这个,避免某些阶峰值太高而影响曲线的显示效果;各阶模态阻尼比是作用于你要设定的某些阶的阻尼比,可以方便地压低个别阶的峰值,但如果阶数较多,设置会比较麻烦,宜与其它阻尼比一起用;“β阻尼比”作用于所有阶,值随频率增大而线性增大,有抑制高频的效果,不宜在高频响应比较弱的情况使用。

算例

文字可能并没有表述得很清晰,下面就用一个三自由度的弹簧质量系统来作为例子讨论一下这些阻尼比。

模型、频率、振型:

无阻尼情况如下图。为什么第二阶最高?因为频率分辨率是20Hz,所以当频率到2240Hz 时“最接近”(不是“等于”,有效位数显示问题)第二阶固有频率(~2240Hz)。

下面是各种情况的对比图,为便于观察,后者情况的曲线将右移。下方图均为阻尼比设置方法。

常值阻尼比0.04 vs 常值阻尼比0.004(图中可以看出阻尼比为0.04时第二、三阶已不明显)。

常值阻尼比0.004 vs β阻尼比800Hz-0.004(即β=1.5915e-006,三阶阻尼比分别约为0.004,0.0112,0.016)(可以看出β阻尼把高频压得更低)。

常值阻尼比0.002 &β阻尼比800Hz-0.002 vs各阶模态阻尼比0.004,0.0076,0.01(可以验算一下,这两种情况的阻尼值应该是一致的)。

下面是我认为比较“好看”的频响曲线:各阶模态阻尼比0.02,0.007,0.002。因为从这个图很容易看出结构有三个共振频率,并能大概读出其数值。另外,由于这里的响应都是最上面那个“质点”的响应,它对第一阶频率最敏感,第二阶次之,第三阶最弱,所以在调整阻尼比时最好能像下图那样保留这个特点。

工程项目

下图是我做的一个项目的扫频试验结果,有了这个试验结果我们可以初步确定阻尼比并适当地调整各个阻尼比。

首先利用半功率点法估计阻尼比。这里用图中明显的第一个峰来计算,公式为

,其中ω是固有频率,ω1和ω2是幅值为0.707倍峰值是对应的两个频率,详看

相关资料。因为这里没有数据,只有这么一个图,就大概估计了一下阻尼比。当设定常值阻尼比为0.003时,有限元分析得到的频响曲线如下。

从以上两图可知,这样设阻尼比是有问题的,于是再适当地修改了阻尼比,设置如下。

此阻尼比对应的频响曲线如下,与试验结果大致匹配(由于结构复杂、规模庞大,难以做到十分准确)。

以上内容可能存在不少错误理解,若发现,希望大家批评指正!

欢迎参与相关问题的讨论和下载算例模型文件:

https://www.doczj.com/doc/0d5684846.html,/thread-1017756-1-1.html

参考文献:

(Help地址)// Structural Analysis Guide // 1. Overview of Structural Analyses // 1.4. Damping (Help地址)// Theory Reference // 15. Analysis Tools // 15.3. Damping Matrices

《工程振动试验分析》李德葆,陆秋海。

Simwe仿真论坛

拉布索思

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

阻尼器用在哪里

阻尼器用在哪里 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。 1、在航天、航空、军工、机械等行业中广泛应用,有着几十年成功应用的历史。 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法

·管理部门通过,带来了上百个结构工程实际应用。这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。 2、仓储货架编辑 在重力式货架仓储中,由于货物受到重力影响,在倾斜的仓储滑道中做加速运动,如果任其自由运动, 货物撞击货架,可能会引起货物损坏,操作人员安全隐患以及货架整体结构的损毁。而阻尼器在其中起了非常重要的作用。重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。保证货物及操作人员的安全性。其中阻尼可分为外置式和内置式。 3、液压阻尼器是一种对速度反应灵敏的振动控制装置; 液压阻尼器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。常用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动; 液阻尼器对低幅高频或高幅低频的振动不能有效地控

某教学楼应用阻尼器的抗震性能分析

龙源期刊网 https://www.doczj.com/doc/0d5684846.html, 某教学楼应用阻尼器的抗震性能分析 作者:徐倩 来源:《建筑与装饰》2016年第06期 摘要传统的抗震结构体系通常是加大结构本身的性能来抵御地震作用,消能减震结构体系是通过给结构添加消能减震装置来耗散地震能量达到抗震目的。黏滞阻尼器具有构造简单、材料经济、环境影响小、便于施工、减震效果明显、对原结构干扰小的优点,目前在很多领域都有应用。 关键词黏滞阻尼器;弹性时程分析;弹塑性时程分析 1 前言 黏滞耗能阻尼器的研发和应用,等于给建筑或桥梁装上了"安全气囊"。在地震来临时,阻尼器最大限度吸收和消耗了地震对建筑结构的冲击能量,大大缓解了地震对建筑结构造成的冲击和破坏。 2 工程概况 小学教学楼2#楼占地1087.68平方米,建筑面积5510.06平方米。本工程抗震设防烈度为8(0.2g),地震分组:第三组,场地类别:Ⅱ类。教学楼的3D模型图如图1所示。 3 确定阻尼器的参数和数量及安装位置和型式 阻尼器的安装位置:楼层平面内的布置遵循“均匀、分散、对称”的原则[1]。阻尼器竖向布置应先对非减震结构进行计算分析,确定层间位移角最大楼层,将阻尼器安装在此楼层处,安装数量根据具体情况而定,然后再对安装了阻尼器的结构进行分析,再将阻尼器安装到此时层间位移角最大楼层,如此循环直到将所有阻尼器安装完毕[2-3]。阻尼器连接单元在模型中的模拟形式如下图2所示,表1 黏滞阻尼器技术参数及布置表: 4 结构弹性时程分析 《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波《建筑抗震设计规范》(GB50011-2010)[4]5.1.2条规定,采用5条天然波2条人工波 在表2和图3. 在ETABS分析中,弹性时程分析采用软件所提供的快速非线性分析(FNA)方法,得出层间位移角表3 。

弹簧质量阻尼实验指导书范本

弹簧质量阻尼实验 指导书

质量-弹簧-阻尼系统实验教学指导书 北京理工大学机械与车辆学院 .3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为 m 的滑块、一个刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ?? ? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应:

() ()sin()) )] t t x t t d e ζωτ τ ζω ττ +∞ -- = ? - =- +- ? 2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,

在世界桥梁工程的阻尼器

https://www.doczj.com/doc/0d5684846.html,/chinese/kangzhen/qitai/anzhuangfangshi.htm 在世界桥梁工程中遇到的桥上应用到的阻尼器有以下几种: ?锁定装置 ?液体粘滞阻尼器 ?熔断阻尼器 ?限位阻尼器 ?摩擦型液体粘滞阻尼器 ?支座式金属屈服阻尼器 前面五种都是主活塞形式的阻尼器。粘滞锁定阻尼器和粘滞阻尼器是最常用的阻尼器,这两种结构可能是完全相同,仅硅油(或胶泥)流动的小孔大小不同,粘滞锁定阻尼器仅是粘滞阻尼器的一种特例。熔断阻尼器和限位阻尼器是实际工程发展出的液体粘滞阻尼器的最新产品。摩擦型液体粘滞阻尼器是最近几年在国内外有的公司生产的一种阻尼器,如果真有需要,泰勒公司可以生产,但并不推荐。支座式金属屈服阻尼器不是本文的内容,我们不作讨论。 锁定(Lock-up)装置(Lock-Up Device (LUD), or Shock Transmission Unit (STU)) Lock-Up 装置,见图4-1,它是一种类似速度开关的限位装置,当桥梁运动到某一速度时启动。锁定装置两个安置点间的相对位移。它的工作原理就像汽车上的安全带。在慢速运动中它不限制。在急速运动中会起到制动作用。这种装置不能耗散能量。用在大桥上的锁定装置,在温度和正常活荷载下可以自由变形,但对于中小地震荷载、较大的风荷载带来的桥梁各部分间的运动和碰撞,可有效地起到减少、转移和限制作用。 图4-1泰勒公司生产的680 吨大型锁定装置及桥上的安装 液体粘滞阻尼器(Liquid Viscous Damper) 在本文的前述文章―结构工程中应用的泰勒公司液体粘滞阻尼器‖中我们已经全面的介绍了液体粘滞阻尼器。他是我们介绍的基本产品,也是要推荐的主要产品。它是个需要并且能够精确计算的定量化的产品,绝不仅是一个定性化的减振器。

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

实验三 弹簧阻尼器机构的动力学模拟

实验三 弹簧阻尼器机构的动力学模拟 一、实验目的 1.掌握多体动力学分析软件ADAMS 中实体建模方法; 2.掌握ADAMS 中施加约束和驱动的方法; 3.计算出弹簧阻尼机构运动时,弹簧振子的位移、速度、加速度和弹簧位移与弹簧力的对应关系。 二、实验设备和工具 1.ADAMS 软件; 2.CAD/CAM 机房。 三、实验原理 按照弹簧阻尼器机构的实际工况,在软件中建立相应的几何、约束及驱动模型,即按照弹簧阻尼器机构的实际尺寸,建立弹簧、阻尼器和质量块的几何实体模型;质量块的运动为上下作自由衰减运动,可以理论简化为在质量块与大地之间建立平动副,弹簧、阻尼器共同连接到连接大地和质量块上;然后利用计算机进行动力学模拟,从而可以求得质量块在弹簧阻尼器连接下任何时间、任何位置所对应的位移、速度加速度,以及弹簧中位移和弹性恢复力之间的对应关系等一系列参数,变换弹簧、阻尼器和质量块的参数可以进行多次不同状态下的模拟。 四、实验步骤 1.问题描述 图3-1为弹簧阻尼器机构简图,M 为振子,质量为187.224kg ;弹簧刚度K =5N/mm ,阻尼器阻尼为C =0.05N/mm ,弹簧空载长度为400mm ,求当弹簧阻尼机构振动时,铰接点A 处的支撑力。 2. 启动 ADAMS M :187.224Kg K :5.0N/mm C :0.05N-sec/mm L0:400mm F0:0 图3-1 弹簧阻尼器机构示意图

2.1 运行ADAMS2005,在欢迎界面中,选择Create a new model, Model name 输入spring_mass; 2.2 确认Gravity(重力)文本框中是Earth Normal(-Global Y),Units (单位)文本框中是MMKS(mm,kg,N,s,deg)。 3. 建立几何模型 3.1单击F4显示坐标窗口; 3.2在主工具箱中选择Box 工具按钮建立一质量块,用默认尺寸即可; 3.3 在屏幕任意位置点击鼠标创建质量块; 3.4 右键点击质量块,选择part_2,然后选择Rename,更名为mass; 3.5 右键点击质量块,选择mass,然后选择Modify。在打开的对话框中修改Define mass by 项为User Input,在Mass栏输入187.224; 3.6 选择右视图按钮查看质量块的位置,进行调整栅格位于质量块的中心。选择Edit菜单下的Move项,在对话框中选择Relocate the项为Part,右键点击右侧文本框选择Part,出现Guesses然后选择mass ,如图3-2所示。 图3-2 选择移动质量块 3.7 在Translate下方的数字栏中输入-100,或者输入100再单击前面的按钮,如图3-3所示; 图3-3 移动对话框

调谐高质量阻尼器(TMD)在高层抗震中地应用

调谐质量阻尼器(TMD)在高层抗震中的应用 摘要:随着经济的发展,高层建筑大量涌现,TMD系统被广泛应用。越来越多的学者对TMD系统进行研究和改进。本文介绍了TMD系统的基本工作原理,总结了其各种新形式,分析了它的研究现状,并指出了两个新的研究方向等。 关键词:TMD系统高层建筑抗震原理发展应用 The use of the tuned mass damper in the seismic resistance of the high-rise building Abstract:With the economic development, the high-rise buildings spring up, then, the tuned mass dampers are extensively used. More and more scholars research and improve the tuned mass damper. This thesis introduces the operating principle of the tuned mass damper,summarizes many new forms of the tuned mass damper, analyzes its research status and even points out two new research directions. Keyword: the tuned mass damper the high-rise building seismic resistance principle development use 1.引言 随着社会经济的快速发展,城市人口密度不断增长,城市建筑用地日益紧张,高层建筑成为城市化发展的必然趋势[1-3]。高层及超高层建筑的不断涌现,加上建筑物的高度和高宽比的增加以及轻质高强材料的应用,导致结构刚度和阻尼不断下降。建筑物在强风或地震等激励作用下的动力反应强烈,难以满足建筑结构安全性、舒适性和使用性的要求。传统的采用提高结构强度和刚度来抗风抗震的设计方法,存在着一定的弊端[1]:(1)经济性差;(2)安全性难以保证。这主

弹簧-高质量-阻尼实验指导书

质量-弹簧-阻尼系统实验教学指导书 北京理工大学机械与车辆学院 2016.3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为m 的滑块、一个 刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ??? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应: ()()sin()))] t t x t t d e ζωττζωττ +∞ --=? -= -+-?

2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。此步是为了使控制器得到一段时间的数据,并不会驱动电机运动。 (4)点击Data菜单,选择Data Acquisition,设置选取Encoder#1 ,然后OK离开;从Utility菜单中选择Zero Position使编码器归零。 (5)从Command菜单中选择Execute,用手将质量块1移动到2.5cm左右的位置(注意不要使质量块碰触移动限位开关),点击Run, 大约1秒后,放开手使其自由震荡,在数据上传后点击OK。 (6)点击Plotting菜单,选择Setup Plot,选取Encoder #1 Position;然后点击Plotting菜单,选择Plot Data,则将显示质量块1的自由振动响应曲线。(7)在得到的自由振动响应曲线图上,选择n个连续的振幅明显的振动周期,计算出这段振动的时间t,由n/t即可得到系统的频率,将Hz转化为rad/sec即为系统的振动频率ω。

阻尼器

粘滞阻尼器Viscous Damper 一、粘滞阻尼器的基本构造 粘滞阻尼器(或称油阻尼器)的原理与构造如右图所示。我们知道,用水枪喷水时,如果要使水流越快或水的出口越小,需要的力也越强。油阻尼器就是运用了这一原理。一般的油阻尼器用钢制的油缸与活塞代替水枪筒与压杆。并在活塞上设置细小的油孔,代替水的出口。当油体通过狭小的阻尼孔时,阻尼器吸收的能量通过流体抵抗转换为热能。 当油体通过的阻尼孔直径一定时,油阻尼器的抵抗 中文名称:阻尼器 英文名称:damper 定义:利用航空器角速度反馈系统增强角运动阻尼的自动装置。 应用学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 阻尼器 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。

目录 概述 发展过程 仓储货架 工程结构 分类 展开 概述 发展过程 仓储货架 工程结构 分类 展开 编辑本段概述 瑞安立奇气弹簧基本概念 大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。 编辑本段发展过程 ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研 究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考

耗能阻尼器的减振及其在实际工程中的应用

耗能阻尼器的减振及其在实际工程中的应用 摘要:本文介绍了多种阻尼器的力学性能和其优缺点,为不同环境下选用合适的阻尼器减震装置提供方便。 关键词:耗能减震阻尼器工程应用 从动力学观点看,耗能装置的作用相当于增大结构的阻尼,从而减小结构的反应。由于其装置简单、材料经济、减振效果好、使用范围广等特点,在实际结构控制中具有广泛的应用前景。耗能减震装置的种类繁多,其常用的主要有:金属耗能阻尼器、摩擦耗能阻尼器、粘弹性阻尼器和粘滞阻尼器。 1金属耗能阻尼器 金属耗能阻尼器是利用金属不同形式的弹性滞回变形来消耗能量。由于金属在进入塑性状态后具有良好的滞回特性,并在弹塑性滞回变形过程中吸收大量能量,因而被用来制造不同类型和构造的耗能减震器。目前已开发和利用的主要有:扭转梁耗能器、弯曲梁耗能器、U行钢板耗能器、钢棒耗能器、圆环耗能器、双圆环耗能器、加劲圆环耗能器、X型和三角形耗能器等。 金属耗能阻尼器在实际工程中的应用:金属耗能阻尼器中的无粘结支撑在日本、台湾和美国都得到推广应用【1】。低屈服点钢耗能器、蜂窝状耗能器在日本多栋建筑中得到应用【2】。台湾金华休闲购物中心。本工程采用三角形加劲耗能装置,共270组。在地震(PGA=0.39)作用下,最大层间位移也未超过规范规定的0.014rad。潮汕星河大厦。大厦为地下一层,地上原设计为22层。后来在施工过程中业主要求增加3层。为了使加层后的结构满足抗震设防要求,安装了28组耗能阻尼器。装上阻尼器后,在大震作用下,结构的顶层位移和层间位移角均满足要求。2000年建成的日本新住友医院,采用低屈服点剪切板耗能器进行结构减震控制。结构在短边方向采用低屈服点剪切板耗能器,采用附加短柱的形式布置。在加入耗能器后,结构的层间位移减小30%,控制效果明显。 2摩擦阻尼器 摩擦阻尼器是应用较早和较广泛的阻尼器之一。摩擦阻尼器是一种位移相关型的阻尼器,它是利用两块固体之间相对滑动产生的摩擦力来耗散能量。其基本理论是建立在以下假设的基础上: (1)总的摩擦力不依赖于物体接触面的面积; (2)总的摩擦力与在接触面上的总的法向力成比例;

阻尼器在结构抗震中的应用

阻尼器在结构抗震中的应用研究 摘要:本文介绍了结构抗震控制理论及主要控制形式,阐述了粘弹性阻尼器的耗能减震原理和有限元计算算模型,并且运用midas软件对一五层钢筋混凝土框架结构设置粘弹性阻尼器前后进行模拟分析,通过对其动力性能进行对比,对抗震性能进行了评估,为粘弹性阻尼器在结构抗震中的应用提供参考。 关键词:阻尼器 ;抗震; 控制 abstract: this paper introduces the structural seismic control theory and control form, elaborated the viscoelastic damper energy dissipation principle and finite element calculation model, and use midas software to one five storey reinforced concrete frame structure with viscoelastic dampers and simulation analysis, based on its dynamic performance are compared, the seismic performance is evaluated, for viscoelastic dampers for seismic application provides the reference. key words: damper; seismic; control 中图分类号:tu352.1+1文献标识码:a 文章编号:2095-2104(2012) 1 前言 地震是危及人民生命和财产的突发式自然灾害。因此,结构控制在结构工程中的应用越来越重要。结构振动控制(简称为结构控

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

粘滞阻尼器在斜拉桥减震设计中的应用

粘滞阻尼器在斜拉桥减震设计中的应用 胡庆安朱浩郭彬刘健新 (长安大学公路学院, 西安710064) 摘要: 本文介绍了斜拉桥减震设计的思想以及粘滞阻尼器在斜拉桥减震设计中的应用,并以一座斜拉桥为例,在相同的地震波作用下,对飘浮体系、弹性约束体系和加粘滞阻尼器的半漂浮体系分别进行时程分析,比较了三种体系梁端及桥塔的水平位移,水平惯性力,桥塔的受力情况。研究表明:粘滞阻尼器能够改善斜拉桥的动力特性,不仅使得结构的位移和受力都是最小,而且提高了斜拉桥的抗震能力和耐久性,这种体系最能符合斜拉桥的减震设计思想。 关键词:粘滞阻尼器;斜拉桥;减震设计;时程分析 Application of the viscous damper to the aseismatic design of cable-stayed bridge Hu Qing’an Zhu Hao Guo Bin Liu Jianxin (Highway college, Chang’an University, Xi’an 710064 ) Abstract: This text introduced the aseismatic design of cable-stayed bridge and the applying of the viscous dampers to the aseismatic design of cable-stayed bridge. And based on an example, under same seismic excitation, time-history analysis was used to several structural systems, the floating system, elastic restriction system and the half-floating system with the viscous dampers, and the horizontal displacement, the inertial force and the stress of the bridge tower of these systems were compared. The research shows that the viscous dampers can mend the dynamical characteristic of cable-stayed bridge system, by this it can not only minimize both the displacement and stress of this system ,but also improve the aseismatic capability and wear of the bridge, so this kind of system can accord with the idea of the aseismatic design most. Key words: viscous damper; cable-stayed bridge; aseismatic design; time-history analysis 由于斜拉桥的地震惯性力主要集中在桥面系,而地震惯性力是通过斜拉索和支座分别传递给桥塔、边墩,再由桥塔、边墩传递给基础承受。通过大量的分析、研究表明:在斜拉桥的主梁与桥塔联结处以及墩台顶部合理地安装减震、耗能装置,不仅可以保证斜拉桥在地震作用下通过这些装置耗散地震能量,更重要的是还可以改变结构的动力特性,从而减小结构的地震响应。 斜拉桥的整体抗震性能一般从两个方面进行评价,即内力和位移。减震设计思想是,在地震作用下,斜拉桥的内力和位移都是越小越好。但通常情况下这两个方面往往是相互矛盾的。要使得内力反应小,往往要付出较大位移作为代价,反之也一样。不同结构体系的斜拉桥,由于梁、塔、索的结合方式不同,体系的刚度也不同,则桥梁的位移也不同。对于飘浮体系,其刚度小,周期长,位移却很大;对于塔梁间有弹性约束的体系,随着弹性约束刚度增大,体系的整体刚度增大,周期将随之减小,桥梁的位移也将减小,但桥面系的水平惯性力却随着弹性约束刚度的增大而增大,从而传递到塔柱的惯性力也增大,因此塔底截面的应力将增大[1]。

弹簧-质量-阻尼实验指导书

质量-弹簧-阻尼系统实验教学指导书 理工大学机械与车辆学院 2016.3

实验一:单自由度系统数学建模及仿真 1 实验目的 (1)熟悉单自由度质量-弹簧-阻尼系统并进行数学建模; (2)了解MATLAB 软件编程,学习编写系统的仿真代码; (3)进行单自由度系统的仿真动态响应分析。 2 实验原理 单自由度质量-弹簧-阻尼系统,如上图所示。由一个质量为m 的滑块、一个 刚度系数为k 的弹簧和一个阻尼系数为c 的阻尼器组成。系统输入:作用在滑块上的力f (t )。系统输出:滑块的位移x (t )。 建立力学平衡方程: m x c x kx f ??? ++= 变化为二阶系统标准形式: 22f x x x m ζωω?? ? ++= 其中:ω是固有频率,ζ是阻尼比。 ω= 2c m ζω= = 2.1 欠阻尼(ζ<1)情况下,输入f (t )和非零初始状态的响应: ()()sin()))] t t x t t d e ζωττζωττ +∞ --=? -= -+-?

2.2 欠阻尼(ζ<1)情况下,输入f(t)=f0*cos(ω0*t) 和非零初始状态的的响应: 022 3 00 22222 00 222222 2 ()cos(arctan()) 2f [(0)]cos() [()(2)] sin( t t x t t x e k e ζω ζω ζωω ω ωω ζωω ωωζωω - ? - =- - ++ -+ +) 输出振幅和输入振幅的比值:A= 3 动力学仿真 根据数学模型,使用龙格库塔方法ODE45求解,任意输入下响应结果。 仿真代码见附件 4 实验 4.1 固有频率和阻尼实验 (1)将实验台设置为单自由度质量-弹簧-阻尼系统。 (2)关闭电控箱开关。点击setup菜单,选择Control Algorithm,设置选择Continuous Time Control,Ts=0.0042,然后OK。 (3)点击Command菜单,选择Trajectory,选取step,进入set-up,选取Open Loop Step 设置(0)counts, dwell time=3000ms,(1)rep, 然后OK。此步是为了使控制器得到一段时间的数据,并不会驱动电机运动。 (4)点击Data菜单,选择Data Acquisition,设置选取Encoder#1 ,然后OK离开;从Utility菜单中选择Zero Position使编码器归零。 (5)从Command菜单中选择Execute,用手将质量块1移动到2.5cm左右的位置(注意不要使质量块碰触移动限位开关),点击Run, 大约1秒后,放开手使其自由震荡,在数据上传后点击OK。 (6)点击Plotting菜单,选择Setup Plot,选取Encoder #1 Position;然后点击Plotting 菜单,选择Plot Data,则将显示质量块1的自由振动响应曲线。 (7)在得到的自由振动响应曲线图上,选择n个连续的振幅明显的振动周期,计算出这段振动的时间t,由n/t即可得到系统的频率,将Hz转化为rad/sec即为系统的振动频率ω。

阻尼器使用中的失效实例

返工就发 就是 不仅 公司 缓冲 液体阻尼汰的计主 料“阻尼器的使工的事故:美国发生了严重漏图4-1美土耳其某公是另一个严重实际上,阻仅原来的设置? 结构刚度? 不均匀破? 变形加大? 支座阻尼硅油和硅胶司容易的买到50年代开始冲器,至今仍60年代,泰体弹簧和阻尼尼器成功的改的产品。这种主要是他们解据介绍,有 “putty”来实使用并不是总国一个原来生漏油(见图4-美国加州某漏公路桥上安置重教训[11]。阻尼器并不像置目的达不到度改变,周期破坏,引起扭大引起伸缩缝尼器失效引起胶材料,作为化到,一种是粉始,泰勒最先仍用这种材料泰勒阻尼器发尼器的要求。随改用了液体硅落后四十多年解决不了高压有的生产厂家 实现这一屈服阻尼器使是一帆风顺生产其他减振-1)影响了使漏油的阻尼器置的支座屈服钢 像有的人想象到,还可能会产期改变,地震扭转等附加力缝处磨损破坏起桥梁的破坏化工原料阻尼粉色胶泥状物质先把硅胶用于料作填充器。 发现这种材料随着硅油及密硅油。也就是说年的材料和技压下的密封问题家,如已经破产 服的,这种硅使用中的失,国际上已经振器的公司为使用。现在已器 图钢阻尼器在地的是个可有可产生预想不到震力加大,引力; 坏; 坏。 尼器内用的硅质,一种无色于减振装置中料的温度稳定密封材料及办说,这是四十技术为什么还题。 产的Colebr 硅胶不适合用失效实例 经发生过多起为加州一个大已经重新更换4-2 土耳其地震中破坏,可无的产品。到的坏作用。引起破坏;硅油和硅胶两色透明粘滞性。作为一次定等性能极差办法的研究成十几年前,就还有这么多厂rand Device 用于长期使用起由于阻尼器大桥安置的阻换翻新改造。其某公路桥在引起桥面严。经设计的阻。如: 两种材料,都性液体。 性减振没有很,无法达到有成功,泰勒公就已经被美国厂家仍然应用,就是用装置 用的锁定装置器漏油,导致失阻尼器,仅仅两 在地震中的破严重破坏(图阻尼器一旦失都可以在美国很高参数要求有高精度要求公司在液体弹国等先进生产用?如前所述置内填充硅胶 置,其理由是失效,两年,坏 4-2)失效,杜帮求的求的弹簧和厂淘述,估胶材 :

浅谈阻尼器的类型和原理分析

广州大学 研究生文献综述论文题目浅谈阻尼器的类型 学院土木工程学院 班级名称2016级专硕一班 学号2111616149 学生姓名陆富龙 2016 年12 月18 日

关于阻尼器的类型总结 摘要:随着抗震在结构中的重要性越来越重要,高强轻质材料的采用,高层、超高层等高柔结构及特大跨度桥梁不断涌现,相关的研究也越来越多,从结构抗震到结构的减震再到结构的隔振,各种的理念层出不穷,然在抗震中,现在比较方便和比较常用的就是在建筑结构上加入阻尼器,用以吸收地震或风震产生的能量,以提高结构的抗震性能,随着科技的发展,各种阻尼器不断的更新创新,运用各种的原理来优化阻尼器,对于形式多样、要求各异的工程结构,如何在推广应用消能技术时,选择适合的阻尼器类型并进行阻尼器的合理优化设计将关系到这一技术的发展前景,具有重要的现实意义,值得进一步探讨研究。 关键词:阻尼器,类型,适用 Abstract:with the earthquake is becoming more and more important in the importance of the structure, high-strength lightweight material used, high-rise structure and extra long-span Bridges and super-tall soft, related research also more and more, from the structure seismic to structure of shock absorption and vibration isolation of the structure, various LiNianCeng out one after another, but in the earthquake, is now more convenient and more commonly used in building structures with dampers, earthquake or wind to absorb energy, to improve the seismic performance of structure, with the development of science and technology, the updating and innovation of various dampers, use all kinds of the principle to optimize damper, for a variety of forms and requirements of different engineering structure, how to promote application of energy dissipation technology, select the appropriate type of damper and the optimization of damper design will be related to the development prospects of this technology, has important practical significance and worthy of further research are discussed. Keywords:damper,type,apply

相关主题
文本预览
相关文档 最新文档