当前位置:文档之家› 阻尼器在桥梁应用实例

阻尼器在桥梁应用实例

阻尼器在桥梁应用实例
阻尼器在桥梁应用实例

例1:北京某人行天桥

天桥跨度42.0m,两端各悬挑4.0m,桥面宽3.0m,主梁高1.494m,为3室封闭钢箱梁,一般行人的自振频率1.8~2.5Hz,与天桥第一阶频率比较接近。表1是在桥面等间距加幅值为1.5kN的正弦激励后的竖向位移,表中看出在2.5Hz 正弦激励下桥梁发生共振。

天桥第一振型天桥第二振型

表1

在桥箱内布置减振装置,每个天桥布置6套减振装置,每套装置由粘滞阻尼器和TMD(调频质量阻尼器)组成,TMD包括金属质量块和弹簧减振器。采用3种TMD减振装置,每种布置2个,分别为1号减振装置(自振频率1.8Hz)、2号减振装置(自振频率2.0Hz)、3号减振装置(自振频率2.5Hz),表2是减振前后天桥跨中竖向位移比较。

表2

结论:安装消能减振装置能有效削减大跨人行天桥的共振响应,共振工况下减振率为70%,减振效果极佳。

例2:苏通大桥

苏通长江公路大桥位于中国江苏省长江口南通河段,主航道桥桥跨布置为(100+100+300)m+1 088m+(300+100+100)m ,是目前世界上最大跨径的斜拉桥。大桥桥址处建设条件复杂,抗震要求高,设计时,在全漂浮体系基础上世界首创地加设带有附加限位功能的特大型液体黏滞阻尼器。苏通大桥照片见图1所示,苏通大桥使用的液体黏滞阻尼器照片见图2。

图1

图2

根据通过计算分析所得到的液体黏滞阻尼器设计参数要求,设计者决定在一个塔梁连接处顺桥向设置4个液体黏滞阻尼器,全桥共8个。单个阻尼器设计参数见表1。此处该阻尼器还带有限制位移功能,在主梁顺桥向±750 mm的位移内不约束主梁运动,以减小常规作用(温度、正常风、交通荷载)结构受力,当相对位移大于750 mm时,单个阻尼器提供上限9870kN的限位力。表1给出了苏通大桥单个阻尼的性能参数。对加装阻尼器的全桥地震反应计算分析可知,苏通大桥加装阻尼器后,纵向位移降低5914 %,桥塔剪力降低14%,桥塔弯矩降低24%。计算结果表明,这种集限位、阻尼两种功能于一体的液体黏滞阻尼器有效地提高了苏通大桥桥梁

刚度,改善了结构阻尼,解决了该大跨度桥梁设计中遇到的关键技术。

例3:江阴长江大桥

江阴长江公路大桥是我国大陆建成的第一座千米级大型悬索桥。该桥位于长江三角洲地段中部,中跨跨径1385m,矢跨比1/1015,主缆中心距3215m,吊索间距16m,桥塔采用钢筋混凝土门式塔,主梁为扁平闭口流线型钢箱梁。该桥自1999年建成运营几年后,发现主跨两端的伸缩缝在横桥向和纵桥向的变形不均匀,伸缩缝工作状况不正常。经实测主梁最大纵向摆动速度和摆动加速度分别为2167mm/s 和2412mm/s2,梁在支座处的横向摆动速度和横向摆动加速度最大值分别为01225mm/s和01018mm/s2。通过对全桥进行的各个工况下的动力分析和比较,中交公路规划设计院有限公司最终决定在主梁两端伸缩缝处设置4个液体黏滞阻尼器对大桥动力位移进行控制以改善大桥动力性能,表2为经过计算分析最终确定的单个阻尼器技术参数,大桥所采用的阻尼器冲程达到1000mm,是目前世界上行程最长的大型阻尼器之一。江阴长江大桥照片见图3所示,江阴长江大桥使用的液体黏滞阻尼器照片见图4,表2给出了江阴长江大桥单个阻尼器的详细参数。通过加装阻尼器后对全桥动力数值分析表明,液体黏滞阻尼器的使用使得该桥在车辆振动条件下位移减少87%,风振位移响应减少51%,地震位移响应减少56%。这是我国第一次对已建大桥采用阻尼器进行的加固改造,对于我国桥梁上安装液体黏滞阻尼器具有重要的意义。

图3 江阴长江大桥

图4 江阴长江大桥使用的阻尼器

例4:西堠门大桥

西堠门大桥是我国舟山大陆连岛工程中规模最大的跨海特大桥之一。其走向由北到南,北连册子岛,南连金塘岛。该桥跨径布置为(578+1650+485)m。由于地形的原因,主桥在北边跨和中跨的主梁设计为连续加劲梁,北边跨和北塔之间为悬吊结构,设置有横向抗风支座,北塔设有下横梁。因此,加劲梁的实际连续长度为2 228m ,南塔的下横梁和北锚碇上设置反力墙,在加劲梁端和反力墙之间设置阻尼器。经过计算分析,从保护反力墙和抗震角度,阻尼器参数选取为α=110,C =1000,此时,梁端位移为011752m,相对于体系为梁端自由时减小一半,主梁南端反力墙作用力为1955kN,主梁北端反力墙上作用力为2045kN。图5为西堠门大桥图。

图5西堠门大桥

阻尼器用在哪里

阻尼器用在哪里 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。 1、在航天、航空、军工、机械等行业中广泛应用,有着几十年成功应用的历史。 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考 ·在肯定以上成果的基础上被几乎各有关机构,规范审查,肯定并规定了应用办法

·管理部门通过,带来了上百个结构工程实际应用。这些结构工程,成功地经历了地震、大风等灾害考验,十分成功。 2、仓储货架编辑 在重力式货架仓储中,由于货物受到重力影响,在倾斜的仓储滑道中做加速运动,如果任其自由运动, 货物撞击货架,可能会引起货物损坏,操作人员安全隐患以及货架整体结构的损毁。而阻尼器在其中起了非常重要的作用。重力式货架中的阻尼器,又称减速器,主要用于消除重力式货架中货物产生的重力加速度,从而使得货物能够平稳,缓慢的沿轨道下滑,消除安全隐患。保证货物及操作人员的安全性。其中阻尼可分为外置式和内置式。 3、液压阻尼器是一种对速度反应灵敏的振动控制装置; 液压阻尼器主要适用于核电厂、火电厂、化工厂、钢铁厂等的管道及设备的抗振动。常用于控制冲击性的流体振动(如主汽门快速关闭、安全阀排放、水锤、破管等冲击激扰)和地震激扰的管系振动; 液阻尼器对低幅高频或高幅低频的振动不能有效地控

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

在世界桥梁工程的阻尼器

https://www.doczj.com/doc/d91133324.html,/chinese/kangzhen/qitai/anzhuangfangshi.htm 在世界桥梁工程中遇到的桥上应用到的阻尼器有以下几种: ?锁定装置 ?液体粘滞阻尼器 ?熔断阻尼器 ?限位阻尼器 ?摩擦型液体粘滞阻尼器 ?支座式金属屈服阻尼器 前面五种都是主活塞形式的阻尼器。粘滞锁定阻尼器和粘滞阻尼器是最常用的阻尼器,这两种结构可能是完全相同,仅硅油(或胶泥)流动的小孔大小不同,粘滞锁定阻尼器仅是粘滞阻尼器的一种特例。熔断阻尼器和限位阻尼器是实际工程发展出的液体粘滞阻尼器的最新产品。摩擦型液体粘滞阻尼器是最近几年在国内外有的公司生产的一种阻尼器,如果真有需要,泰勒公司可以生产,但并不推荐。支座式金属屈服阻尼器不是本文的内容,我们不作讨论。 锁定(Lock-up)装置(Lock-Up Device (LUD), or Shock Transmission Unit (STU)) Lock-Up 装置,见图4-1,它是一种类似速度开关的限位装置,当桥梁运动到某一速度时启动。锁定装置两个安置点间的相对位移。它的工作原理就像汽车上的安全带。在慢速运动中它不限制。在急速运动中会起到制动作用。这种装置不能耗散能量。用在大桥上的锁定装置,在温度和正常活荷载下可以自由变形,但对于中小地震荷载、较大的风荷载带来的桥梁各部分间的运动和碰撞,可有效地起到减少、转移和限制作用。 图4-1泰勒公司生产的680 吨大型锁定装置及桥上的安装 液体粘滞阻尼器(Liquid Viscous Damper) 在本文的前述文章―结构工程中应用的泰勒公司液体粘滞阻尼器‖中我们已经全面的介绍了液体粘滞阻尼器。他是我们介绍的基本产品,也是要推荐的主要产品。它是个需要并且能够精确计算的定量化的产品,绝不仅是一个定性化的减振器。

市政桥梁设计中的隔震设计分析

市政桥梁设计中的隔震设计分析 隔震设计是市政桥梁安全性能的保障,维护市政桥梁工程的安全运行。目前,随着桥梁建设的发展,市政桥梁设计中提高了对隔震设计的重视度,有利于提高市政桥梁的安全性能,确保其在应用中的稳固性,最大程度的实现了市政桥梁隔震设计的价值。因此,本文通过对市政桥梁设计进行研究,分析隔震设计的具体应用。 标签:市政桥梁隔震设计安全性 市政桥梁工程比较特殊,属于公共建设项目,其在应用中面临着安全性的压力。由于市政桥梁工程的承载比较大,需深化隔震设计的应用,改善市政桥梁的基本性能,预防安全事故的发生。隔震设计是市政桥梁工程中最为关键的一项内容,保障市政桥梁的整体性,通过隔震设计实现了高效率的安全控制,保障市政桥梁设计的安全价值。 1市政桥梁设计中的隔震设计 市政桥梁设计中的隔震设计,主要体现在三个方面,结合市政桥梁设计的案例,重点分析隔震设计。 1.1隔震设计 隔震设计提高了市政桥梁的抗震水平,优化了市政桥梁的质量控制的条件。综合分析市政桥梁设计中的环境因素及需求,确保隔震设计的合理性,完善市政桥梁工程的隔震设计[1]。首先考察市政桥梁工程,规划隔震设计的周期,尽量结合地震对桥梁的影响,确定隔震的周期,用于吸收地震产生的震动能量,保护桥梁工程;然后是隔震施工技术的设计,促使其符合市政桥梁的实际要求,规避震后桥梁的位移、变形风险,同时降低震后修复的难度,落实隔震技术的功能性;最后是隔震的方法设计,隔震方法决定了市政桥梁抗震的能力,分析市政桥梁所处的地理环境,尤其是地质信息,为隔震方法的设计提供基础,依照市政桥梁的受力状态,维持隔震方法的相符性。 1.2装置设计 隔震装置是市政桥梁中的主要构件,保障隔震设计的稳定性。隔震装置具有一定的设计要求,目的是达到市政桥梁隔震的需求,积极应用到市政桥梁工程设计中。隔震装置应用时,需要严格计算刚度、阻尼等,一般在大型的市政桥梁中,还要引入弹性反应谱,致力于降低隔震装置计算中的难度,确保隔震装置达到一定的设计标准,利用隔震装置消除市政桥梁工程中潜在的变形风险,维护市政桥梁工程的整体性。近几年,市政桥梁设计的规范性及难度越来越高,增加了隔震装置的设计压力,隔震装置设计中应考虑桥梁施工的实际情况,评估市政桥梁的基本性能后,才能引入隔震装置,即使市政桥梁工程中出现地震风险,也能在隔

桥梁博士操作-横向分布系数的计算

2015年大学生创新训练计划项目申请书 桥梁博士第二次上机作业 横向分布系数的计算 组长: 学院: 年级专业: 指导教师: 组员: 完成日期:

桥梁博士第二次上机作业 一、作业组成 二、作业合作完成情况 本次作业由3组组员共同完成,任务分配情况如下: 张元松完成实例一(“杠杆法”求横向分布系数),并对计算过程进行截图。 郑 宇完成实例二(“刚性横梁法”求横向分布系数),并对计算过程进行截图。 计时雨完成实例三(“刚接板梁法”求横向分布系数),并对计算过程进行截图。 孙 皓完成实例四(实例四、“铰接板梁法”求横向分布系数),对计算过程进行截图,并进行本次实验报告的撰写任务。 三、上机作业内容 1、任务分析与截面特性计算 本次作业结合老师所给的双向四车道的高速公路分离式路基桥的设计图进行,首先对图纸进行分 第二次作业组成 实例一、“杠杆法”求横向分布系数 实例三、“刚接板梁法”求横向分布系数 实例二、“刚性横梁法”求横向分布系数 实例四、“铰接板梁法”求横向分布系数

析,确定荷载横向分布系数计算所对应的各个截面;然后求出所用到截面的界面特性(抗弯惯性矩和抗扭惯性矩);最后用“桥梁博士”的横向分布计算功能求出各主梁的横向分布系数,为接下来的简支T 梁的配筋计算和结构安全性验算做好准备。 (1)通过CAD绘图的方式求出截面特性 用CAD绘制出桥梁设计图中的跨中截面与支点截面如图1所示。对两个截面分布使用“reg”命令→“massprop”命令,求出两个截面的截面特性如图2所示。 图1 CAD绘制的桥梁单元截面 (a) CAD算出的跨中截面特性 (b) CAD算出的支点截面特性 图2 CAD计算出的桥梁截面特性 (2)通过“桥梁博士”计算出截面图形进行验算 步骤一:打开桥博,点击“新建”出现对话框,如图3所示。点击“桥梁博士截面设计文件”,出现图4界面。

桥梁减隔震装置分类及特点

桥梁减隔震装置 一、桥梁减隔震装置产品分类 桥梁减隔震装置按大类可分为抗震支座、减隔震支座、阻尼器及减隔震伸缩装置。此外,桥梁设计中,将竖向力与水平力分离形成分离式支座,支座本体仅承受竖向力和转角,运营及地震水平力由水平力装置(水平力支座或阻尼器)承受,常见有的“普通钢支座+橡胶隔震支座”、“普通支座+阻尼器”、“普通支座+水平力支座”等。因其为两两组合,本文中不单独列出,各减隔震产品分类如图: 1.1抗震支座 抗震支座又分为抗震盆支及抗震球支两大类,剪切型抗震支座因剪断力一般设计较大,也归抗震支座一类,如图所示: (图中红星标志的为近年来新型产品,下同)

1.2减隔震支座 减隔震支座分为橡胶隔震支座、摩擦摆支座、软钢阻尼支座、速度锁定支座、粘滞阻尼支座等,近期对减少振动方面的支座各厂均有所开发,将减振降噪型支座列入其中,如图所示: 钢丝网支座是最近由同济大学开发的一种新型减隔震支座。十字型摩擦摆是由中规院等联合开发的一种新型摩擦摆支座,分离式摩擦摆支座是为了防止支座在正常运营过程中梁体抬高而新开发出来的一种摩擦摆,以洛阳双瑞、新筑股份、成都济通为代表。

1.3阻尼器 阻尼器分为软钢阻尼器和油阻尼器两大类,桥梁上一般以三角板软钢阻尼器和卡榫软钢阻尼器应用较多,油阻尼器则一般为速度锁定器和粘滞阻尼器。如下图: SMA合金阻尼器及其与支座相结合应用目前在东南大学、重庆大学等多所大学均有研究,但因SMA材料价格太高、而支座吨位较大,目前很难有相应的SMA丝开发出来,目前尚处于微小模型模拟试验研究阶段。 1.4减隔震伸缩装置 以往,桥梁减隔震设计一般集中在支承等方面,而对于桥面部分关注较少,近年来,随着减隔震技术的发展,伸缩装置也开发出了少量减隔震伸缩装置,主要有剪切型和拉索型两大类,如减振降噪支座一般,伸缩装置也在该方面大力发展,将其列入其中,如图:

粘滞阻尼器工作原理及组成

粘滞阻尼器的工作组成及原理 传统抗震方法是依靠构件的弹塑性变形并吸收地震能量来实现的。这种传统设计方法在很多时候是有效的,但也存在着一些问题。随着建筑技术的发展,房屋高度越来越高结构跨度越来越大,而构件端面却越来越小,已经无法按照传统的加大构件截面或加强结构刚度的抗震方法来满足结构抗震和抗风的要求。 粘滞阻尼器是一种速度相关型的耗能装置,它是利用液体的粘性提供阻尼来耗散振动能量,以粘滞材料为阻尼介质的,被动速度型耗能减震(振)装置。主要用于结构振动(包括风、地震、移动荷载和动力设备等引起的结构振动)的能量吸收与耗散、适用于各种地震烈度区的建筑结构、设备基础工程等,安装、维护及更换都简单方便。 粘滞阻尼器由缸筒、活塞、粘滞流体和导杆等组成缸筒内充满粘滞流体,活塞可在缸筒内进行往复运动,活塞上开有适量的小孔或活塞

与缸筒留有空隙。当结构因变形使缸筒和活塞产生相对运动时,迫使粘滞流体从小孔或间隙流过,从而产生阻尼力,将振动能量通过粘滞耗能消掉,达到减震的目的。 粘滞阻尼器的特点是对结构只提供附加阻尼,而不提供附加刚度,因而不会改变结构的自振周期。其优点是1.经济性好,可减少剪力墙、梁柱配筋的使用数量和构件的截面尺寸。2.适用性好,不仅能用于新建土木工程结构的抗震抗风,而且能广泛应用于已有土木工程结构的抗震加固或震后修复工程。3.安装了粘滞性耗能器的支撑不会在柱端弯矩最大时给柱附加轴力。4维护费用低。缺点是暂无。粘滞性阻尼器的最新进展是与磁流变体智能材料的联合使用,通过联合拓宽了粘滞性耗能器的发展空间。 粘滞阻尼器通常和支撑串连后布置于结构中,不同的安装形式直接影响到阻尼器的工作效率。到目前为止,实际工程的应用中多采用斜向型和人字型安装方式,这是由于其构造简单、易于装配。剪刀型和肘节型安装方式能把阻尼器两端的位移放大,即起到把阻尼器的效果放大的作用,具有更好的消能能力,但因受到安装机构造型和施工工艺复杂的限制,运用较少。

机械式熔断装置在桥梁减隔震中的应用

机械式熔断装置在桥梁减隔震中的应用 摘要:桥梁减震在进行桥梁设计时是必须要考虑到的关键问题,所谓的减隔震 技术是指通过采用减隔震装置来尽可能的将结构或构件与可能引起破坏的地震地 面运动或支座运动分离开来,大大减少传递到结构中的地震力和能量。随着研究 的深入,减隔震技术已不单单应用于新建桥梁的抗震设计中并且正在广泛的应用 于桥梁结构的加固设计中。 关键词:减隔震;机械式溶断;球钢支座;桥梁 一、前言 2008年汶川地震后,桥梁及建筑物的震害及抗震技术的需求,越来越多地引起人们的关注。国家颁布JTG/TB02—0l一2008《公路桥梁抗震设计细则》,明 确规定桥梁工程应两水准设防和两阶段设计,桥梁的减隔震技术也迅速发展。通 过引人减隔震装置改变结构在地震中的动力响应,在强震下降低上部结构传递至 下部结构的地震力。从而达到桥梁减震的效果。 二、桥梁减隔震支座的发展现状 自汶川地震后,桥梁的减、隔震设计得到重视,我国先后修订了公、铁路桥 梁的抗震设计规程,对桥梁支座的减隔震提出了相应的要求。为我国桥梁减、隔 震支座的发展提供了良好的契机。我国公、铁路桥梁设计依据的抗震规程主要有: 1、GB50111—2006铁路工程抗震设计规程; 2、JTG/TB02—0l一2008公路桥梁抗震设计细则。根据GB50111-2006铁路 工程抗震设计规程,铁路桥梁抗震按三阶段设计,即: (1)多遇地震(50年):地震后不损坏或轻微损害,能够保持正常使用功能,结构处于弹性工作阶段; (2)设计地震(475年):地震后可能损害,经修复,短期内能恢复正常使用功能,结构整体处于非弹性工作阶段; (3)罕遇地震(2475年):地震后产生较大破坏,但不出现整体倒塌,经 抢修后可限速通过,结构处于弹塑性工作阶段。 根据以上要求,铁路桥梁的减隔震支座应满足以下安全性要求: (1)在多遇地震作用下,桥梁结构的抗震安全应满足GB50111-2006铁路工 程抗震设计规程的要求,减、隔震支座的耗能机构不应影响结构的正常使用功能; (2)在设计地震作用下,桥梁连接构件的抗震安全应满足GB5011l一2006 铁路工程抗震设计规程的要求,减、隔震支座的位移锁定装置得到释放,耗能作 用在地震中得到有效发挥,支座的地震位移小于容许位移; (3)在罕遇地震作用下,结构的抗震性能应满足以下要求:①桥墩的延性 比满足GB50111-2006铁路工程抗震设计规程的相关要求,隔震桥梁钢筋混凝土 桥墩的容许廷性比取2.4;②减、隔震支座的最大位移必须小于装置的容许位移;③减、隔震支座与桥梁之间连接构件的强度满足安全要求。 三、桥梁减震设计 1、减隔震技术并不是适合应用于各种情况。场地比较软弱、不稳定、或延 长桥梁结构周期后容易发生共振等情况,不宜使用隔震技术。因此,在进行桥梁 结构的抗震设计之前需要判断该桥是否适合采用隔震技术。经研究表明,只要满 足下面任何一条条件,就可以尝试采用隔震技术进行桥梁结构的抗震设计。 (1)地震波的角度:适用于能量集中于高频的波。 (2)结构的角度:桥梁是高度不规则的,例如相邻桥墩的高度显著不同,

减震器工作原理详解

汽车悬架知识专题:减震器工作原理详解 悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。 减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。 在汽车悬架系统中广泛采用的是筒式减振器,且在压缩和伸张行程中均能起减振作用叫双向作用式减振器,还有采用新式减振器,它包括充气式减振器和阻力可调式减振器。

1. 活塞杆; 2. 工作缸筒; 3. 活塞; 4. 伸张 阀;5. 储油缸筒; 6. 压缩阀;7. 补偿阀; 8. 流通阀;9. 导向座;10. 防尘罩;11. 油 封 双向作用筒式减振器示意图 双向作用筒式减振器工作原理说明。在压缩行程时,指汽车车轮移近车身,减振器受压缩,此时减振器内活塞3向下移动。活塞下腔室的容积减少,油压升高,油液流经流通阀8流到活塞上面的腔室(上腔)。上腔被活塞杆1占去了一部分空间,因而上腔增加的容积小于下腔减小的容积,一部分油液于是就推开压缩阀6,流回贮油缸5。这些阀对油的节约形成悬架受压缩运动的阻尼力。减振器在伸张行程时,车轮相当于远离车身,减振器受拉伸。这时减振器的活塞向上移动。活塞上腔油压升高,流通阀8关闭,上腔内的油液推开伸张阀4流入下腔。由于活塞杆的存在,自上腔流来的油液不足以充满下腔增加的容积,主使下腔产生一真空度,这时储油缸中的油液推开补偿阀7流进下腔进行补充。由于这些阀的节流作用对悬架

阻尼器

粘滞阻尼器Viscous Damper 一、粘滞阻尼器的基本构造 粘滞阻尼器(或称油阻尼器)的原理与构造如右图所示。我们知道,用水枪喷水时,如果要使水流越快或水的出口越小,需要的力也越强。油阻尼器就是运用了这一原理。一般的油阻尼器用钢制的油缸与活塞代替水枪筒与压杆。并在活塞上设置细小的油孔,代替水的出口。当油体通过狭小的阻尼孔时,阻尼器吸收的能量通过流体抵抗转换为热能。 当油体通过的阻尼孔直径一定时,油阻尼器的抵抗 中文名称:阻尼器 英文名称:damper 定义:利用航空器角速度反馈系统增强角运动阻尼的自动装置。 应用学科:航空科技(一级学科);飞行控制、导航、显示、控制和记录系统(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 阻尼器 阻尼器,是以提供运动的阻力,耗减运动能量的装置。利用阻尼来吸能减震不是什么新技术,在航天、航空、军工、枪炮、汽车等行业中早已应用各种各样的阻尼器(或减震器)来减振消能。从二十世纪七十年代后,人们开始逐步地把这些技术转用到建筑、桥梁、铁路等结构工程中,其发展十分迅速。特别是有五十多年历史的液压粘滞阻尼器,在美国被结构工程界接受以前,经历了一个大量实验,严格审查,反复论证,特别是地震考验的漫长过程。

目录 概述 发展过程 仓储货架 工程结构 分类 展开 概述 发展过程 仓储货架 工程结构 分类 展开 编辑本段概述 瑞安立奇气弹簧基本概念 大家知道,使自由振动衰减的各种摩擦和其他阻碍作用,我们称之为阻尼。而安置在结构系统上的“特殊”构件可以提供运动的阻力,耗减运动能量的装置,我们称为阻尼器。 编辑本段发展过程 ·在航天、航空、军工、机械等行业中广泛应用,几十年成功应用的历史 ·上世纪80年代开始在美国东西两个地震研究中心等单位作了大量试验研 究,发表了几十篇有关论文 ·90年代,美国国家科学基金会和土木工程学会等单位组织了两次大型联合,由第三者作出的对比试验,给出了权威性的试验报告,供教授和工程师们参考

脉冲阻尼器原理及选型

脉动阻尼器 脉动阻尼器是一种用于消除管道内液体压力脉动或者流量脉动的压力容器。可起到稳定流体压力和流量、消除管道振动、保护下游仪表和设备、增加泵容积效率等作用。 脉动阻尼器的原理主要有两种。 1.气囊式:利用气囊中惰性压缩气体的收缩和膨胀来吸收液体的压力或者流量脉动, 此类脉动阻尼器适用于脉动频率小于7Hz的应用,因为如果频率太高则膜片或气囊来不及响应,起不到消除脉动的效果; 2.无移动部件式:利用固体介质直接拦截流体从而达到缓冲压力脉动或流量脉动的效果,此类脉动阻尼器适用于高频脉动的应用。 脉动阻尼器分类: 1.按照缓冲介质分类: 分为压缩惰性气体缓冲式和无移动部件式,其中压缩惰性气体缓冲式又分为膜片式和气囊式等,无移动部件式分为金属结构式和陶瓷结构式等: 分为三元乙丙橡胶、丁纳橡胶、氟橡胶、聚四氟、金属、陶瓷等内部材质类型; 分为单孔式和双孔式; 分为直通式和非直通式; 消除管道振动;减小压力脉动;减小流量浮动;保护下游仪器和设备;装在泵的前端,增加泵的容积效率,提高输出功率。 选择适合的脉动阻尼器,应首先根据现场实际情况和工艺要求确定所需达到的脉动消除率指标,然后根据此技术指标进行定量选型。 准确的脉动阻尼器选型应根据流量、压力、泵类型、泵转速、泵缸数、泵相位差(多级泵)、脉动消除率、应用目的、管道流体成分、管道流体密度、管道流体粘度、管道流体温度等参数综合计算和分析后确定。 通过以上参数,关键需要计算出流体的脉冲量(即1次脉冲所输送的液体体积)和脉动频率。再结合脉动消除率指标,即可初步计算出所需要的脉动阻尼器类型和容积。

例如,要求残余脉动控制在10%以内、脉冲量为1升/次、脉动频率为2次/秒,则脉动阻尼器可选用膜片式或气囊式,容积至少为10升。 根据客户不同的实际应用,最高可以达到99.9%以上的脉动消除率,即残余脉动控制在0.1%以内。 例如:用于消除管道振动推荐残余压力脉动控制在3%以内; 用于保证涡街流量计精度则推荐残余流量脉动控制在0.75%以内。 脉动阻尼器是一种压力容器,由于材料、制造技术及实际应用的限制,脉动阻尼器一般承压在500公斤/平方厘米左右(特殊应用也可以更高),耐温大约数百摄氏度。

桥梁抗震设计讲解

SPCP课题研究论文 课题名称:桥梁震害研究 学生姓名:陈哲许江伟张盼盼李文娟 指导老师:郭青伟郑文豫 所在院系:土木建筑工程学院 年纪专业:14级土木工程 10班

目录 1前言 (4) 2地震对桥梁结构的影响 (4) 2.1引言 (4) 2.2场地运动引起的结构震动(第一种) (4) 2.3场地相对位移引起的结构的变形(第二种影响) (5) 3桥梁的震害原因 (5) 4桥梁的震害现象 (6) 4.1地表断裂 (6) 4.2滑坡 (7) 4.3沙土液化 (7) 4.4软土震陷 (7) 5桥梁震害破坏形式 (7) 6桥梁震害分析 (8) 7桥梁的抗震措施 (8) 7.1桥的选址 (8) 7.2桥位选择 (8) 7.3桥型选择 (8) 7.4桥孔布置 (8) 7.5基础处理 (9) 7.6桥墩处理 (9)

7.7基础抗震措施 (10) 7.8桥台抗震措施 (10) 7.9桥墩抗震措施 (11) 7.10结点抗震措施 (11) 7.11桥梁抗震设计及措施 (11) 8桥梁抗震设计的几点建议 (12) 8.1设计建议 (12) 8.2大型建筑工程强制安装强震仪 (13) 8.3健全工程质量评估装置 (13) 8.4广泛采用减震、隔震技术 (13) 8.5提高国家的抗震标准 (14) 9结论 (14)

1前言 桥梁作为城市的主要交通动脉和重要的社会基础设施,不仅仅具有投资大、公共性强等特点,而且维护管理也显得特别困难。因此,在抗震防灾、危机管理系统中,桥梁成立一种重要的组成部分。因为对于提高其抗震能力是加强区域安全。减轻地震损失的一项重要举措。特别是近年来,我国交通建设事业发展较为迅速,桥梁不管是在数量方面还是延伸长度方面都增长较快,可以说城市高架桥在大中城市已经成为了主要的交通动脉。给居民日常生活活动带来了很多的方便,为国民经济中起到了重要的作用。但是在地震的强烈影响下,桥梁设施会遭到巨大的破坏,甚至倒塌,其所带来的影响常常超过了桥梁因改建或维修所需要的巨额财政支出,由此可见,在我过公路交通建设中,必须加强桥梁的抗震能力,以减少一些损失。 2地震对桥梁结构的影响 2.1引言 地震对桥梁结构的破坏,其主要有以下两种方式:其一种是场地相对位移从而引起的强制变形,第二种就是场地运动发生的结构物震动。前者是由于支点强制变形引起的过大的相对变形或超静定内力致使结构的安全性受到影响,而后者则是以惯性力的方式把地震荷载施加在结构物上,从而导致安全性收到影响。 2.2场地运动引起的结构震动(第一种) 地震时,桥梁结构物遭受到的地震运动主要是因为震源产生的地震波先通过地壳逐渐传入至地下的深层基岩,然后由深层基岩传到地表面土层的场地,因此建筑物在地基上的桥梁结构物在场地运动的影响下而产生震动进而产生变形。对于柔性结构的地震影响来说,不仅仅取决于同场地的震动外,而且还取决于相对于地基的震动但是刚性结构的地震影响应则主要由场地的运动决定。 所以,桥梁结构物受地震惯性力的影响程度不仅仅取决于场地运动的特性,同

摩托车减震器分类和原理

摩托车减震器结构类型及工作原理 2007-03-24 17:16 为了缓和与衰减摩托车在行驶过程中因道路凹凸不平受到的冲击和震动,保证行车的平顺性与舒适性,有利于提高摩托车的使用寿命和操纵的稳定性,摩托车上均设置有减震器装置。本文拟对常见的减震器结构类型、工作原理,以及减震器油的技术要求和如何调配、更换等进行探讨,供广大摩托车用户和车迷朋友们参考。 一、减震器的分类 减震器有许多种类,摩托车中绝大多数采用筒式减震器,只有极少数采用钢板弹簧结构。筒式减震器的型式和品种很多,大体上有以下几种类型: 1、根据安装位置分,有前减震器和后减震器; 2、按结构形式分,有(a)伸缩管式前叉液力减震器(这是目前摩托车中使用最多的前减震器);(b)摇臂式减震器;(c)摇臂杠杆垂直式中心减震器;(d)摇臂杠杆倾斜式中心减震器。 3、按油缸工作位置分,有(a)倒置式减震器(即油缸位置在上方,活塞杆在下方);(b)正置式减震器(油缸位置在下方,活塞杆在上方)。 4、按工作介质分,有(a)弹簧式减震器;(b)弹簧—空气阻尼式减震器(因空气的阻尼力有限,减震效果也不太理想,一般只用于速度不高的轻便摩托车作后减震器);(c)液力阻尼式减震器;(d)油—气组合式前叉减震器。(e)充氮气液压减震器。 5、按衰减力方向分,有(a)单向作用减震器;(b)双向作用减震器。 6、按负载调节式分,有(a)弹簧初始压力调节式;(b)气簧式;(c)安装角度调节式。 世界各国摩托车厂家在相互竞争中,对摩托车的前悬挂装置和后悬挂装置的设计,投入较大且十分考究,采用了更为新颖的变直径和变节距的弹性元件,如油压阻尼器、油—气调节装置、负载调节装置、摇臂杠杆式中心减震装置等先进结构。这些新技术的普及,能迅速衰减因车速、负载及多种路况变化所带来的冲击和震动,将振抗自动地调节到最佳的技术状态,极大地改善了摩托车的减震性能,不同程度地提高了摩托车乘骑的适应性、舒适性、平稳性和安全性。 二、液压阻尼减震器的工作原理 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

液压阻尼减震器的工作原理

液压阻尼减震器的工作原理 Tag:减震器,隔震器,减震,隔震,钢 液压式减震器是目前摩托车使用最为普遍的减震器,现简要介绍其工作原理。 1、液压阻尼式后减震器 液压式减震器的结构同吸入式泵基本相似,不同之处只是液压减震器的钢体上端是封闭的,而阀门上留有小孔。当后轮遇到凸起的路面受到冲击时,缸筒向上移动,活塞在内缸筒里相对往下移动。此时,活塞阀门被冲开向上,内缸筒腔内活塞下侧的油不受任何阻力地流向活塞上侧。同时,这一部分油也通过底部阀门上的小孔流入内、外缸筒之间的油腔内。这样就有效地衰减了凹凸路面对车辆的冲击负荷。而当车轮越过凸起地面往下落时,缸筒也会跟着往下运动,活塞就会相对于缸筒向上移动。当活塞向上移动时,油冲开底部的阀门流向内缸筒,同时内缸筒活塞上侧的油经活塞阀门上的小孔流向下侧。此时当油液流过小孔过程中,会受到很大的阻力,这样就产生了较好的阻尼作用,起到了减震的目的。 2、伸缩管式前*液力减震器 伸缩式前*同前轮和车架是连在一起的,它既起到一部分骨架支撑作用,又起到减震器的作用。随着柄管和套管之间的相互伸缩,前*内的油经设置在隔壁的小孔流动。当柄管压缩时,随着柄管的移动,B室里的油受压后经柄管上的小孔流向C室。同时经自由阀流向A室。油液流动时,受到的阻力衰减了压缩力。当压缩行程快到极限时,柄管末端的锥形油封片就会插上,从而封闭了B室内油的通路。此时,B室油压激剧上升,使其处于被封闭的状态,这样就限制了柄管的行程,有效地防止前*上的可动零件之间的瞬间机械碰撞。 在柄管伸张(即反弹)时,A室内的油经设在前*活塞上部(*近活塞环附近)的小孔流向C室。此时,油液流动所受到的阻力衰减了伸张力。当伸张行程快到极限时,反弹弹簧的伸长吸收了振动能量,而且在这一过程中,油经前*活塞下部的小孔补充到B室,为下一次的工作做好了准备。 三、减震力调节器及防点头装置 1、减震力调节器 根据道路状况和摩托车上负荷的大小,需要对摩托车乘坐的缓冲程度进行调节。减震力调节器主要有凸轮式、螺旋式及气压式和油压式,最常见的是凸轮式。 凸轮式调节器在减震器本体上焊接制动器处装一个波纹阶梯的圆筒凸轮,转动凸轮进行调节。这种结构最简单,且价格低,因而被广泛采用。不过,也有通过拨动手柄来改变凸轮位置进行调节的。 2、防点头装置 防点头(即防俯冲)装置的作用是根据制动力的大小自动减轻制动时俯冲的影响,以及获得舒适的制动感。该机构装在前*下部。前轮受到冲击及轻微制动时,前*管内的油沿着中细箭头的方向流动。紧急制动时,利用制动钳的动作制动钳的销(即活塞)介入,从而堵住减震器油的通路,油从活塞上的油路通过孔阀回到内油管,孔阀的通道比减震器受冲击动作时的油路小,油的流动受到限制,防俯冲装置使减震器受到压缩时的阻尼增大,俯冲得到有效控制。这时,由于制动力的作用,前面的负荷增加,由于制动钳的作用,俯冲力就和阀的挤压力相平衡,即使在动作中受到路面的冲击,由于正常的油路还通着,也可起到一定的缓冲作用。

粘滞阻尼器在斜拉桥减震设计中的应用

粘滞阻尼器在斜拉桥减震设计中的应用 胡庆安朱浩郭彬刘健新 (长安大学公路学院, 西安710064) 摘要: 本文介绍了斜拉桥减震设计的思想以及粘滞阻尼器在斜拉桥减震设计中的应用,并以一座斜拉桥为例,在相同的地震波作用下,对飘浮体系、弹性约束体系和加粘滞阻尼器的半漂浮体系分别进行时程分析,比较了三种体系梁端及桥塔的水平位移,水平惯性力,桥塔的受力情况。研究表明:粘滞阻尼器能够改善斜拉桥的动力特性,不仅使得结构的位移和受力都是最小,而且提高了斜拉桥的抗震能力和耐久性,这种体系最能符合斜拉桥的减震设计思想。 关键词:粘滞阻尼器;斜拉桥;减震设计;时程分析 Application of the viscous damper to the aseismatic design of cable-stayed bridge Hu Qing’an Zhu Hao Guo Bin Liu Jianxin (Highway college, Chang’an University, Xi’an 710064 ) Abstract: This text introduced the aseismatic design of cable-stayed bridge and the applying of the viscous dampers to the aseismatic design of cable-stayed bridge. And based on an example, under same seismic excitation, time-history analysis was used to several structural systems, the floating system, elastic restriction system and the half-floating system with the viscous dampers, and the horizontal displacement, the inertial force and the stress of the bridge tower of these systems were compared. The research shows that the viscous dampers can mend the dynamical characteristic of cable-stayed bridge system, by this it can not only minimize both the displacement and stress of this system ,but also improve the aseismatic capability and wear of the bridge, so this kind of system can accord with the idea of the aseismatic design most. Key words: viscous damper; cable-stayed bridge; aseismatic design; time-history analysis 由于斜拉桥的地震惯性力主要集中在桥面系,而地震惯性力是通过斜拉索和支座分别传递给桥塔、边墩,再由桥塔、边墩传递给基础承受。通过大量的分析、研究表明:在斜拉桥的主梁与桥塔联结处以及墩台顶部合理地安装减震、耗能装置,不仅可以保证斜拉桥在地震作用下通过这些装置耗散地震能量,更重要的是还可以改变结构的动力特性,从而减小结构的地震响应。 斜拉桥的整体抗震性能一般从两个方面进行评价,即内力和位移。减震设计思想是,在地震作用下,斜拉桥的内力和位移都是越小越好。但通常情况下这两个方面往往是相互矛盾的。要使得内力反应小,往往要付出较大位移作为代价,反之也一样。不同结构体系的斜拉桥,由于梁、塔、索的结合方式不同,体系的刚度也不同,则桥梁的位移也不同。对于飘浮体系,其刚度小,周期长,位移却很大;对于塔梁间有弹性约束的体系,随着弹性约束刚度增大,体系的整体刚度增大,周期将随之减小,桥梁的位移也将减小,但桥面系的水平惯性力却随着弹性约束刚度的增大而增大,从而传递到塔柱的惯性力也增大,因此塔底截面的应力将增大[1]。

液压减震器的工作原理

液压减震器的工作原理 减震器主要有弹簧和阻尼器两个部分组成,弹簧的作用主要是支撑车身重量,而阻尼器则是起到减少震动的作用。 阻尼”在汉语词典中的解释为:“物体在运动过程中受各种阻力的影响,能量逐渐衰减而运动减弱的现象”。阻尼器就是人造的物体运动衰减工具。 为了防止物体突然受到的冲击,阻尼在我们现实生活中有着广泛的应用,比如汽车的减震系统,还有弹簧门被打开后能缓缓地关闭等等。 阻尼器的种类很多,有空气阻尼器、电磁阻尼器、液压阻尼器等等。我们车上使用的是液压阻尼器。 大家知道,弹簧在受到外力冲击后会立即缩短,在外力消失后又会立即恢复原状,这样就会使车身发生跳动,如果没有阻尼,车轮压到一块小石头或者一个小坑时,车身会跳起来,令人感觉很不舒服。有了阻尼器,弹簧的压缩和伸展就会变得缓慢,瞬间的多次弹跳合并为一次比较平缓的弹跳,一次大的弹跳减弱为一次小的弹跳,从而起到减震的作用。 液压阻尼器利用液体在小孔中流过时所产生的阻力来达到减缓冲击的效果。 图一红圈中是活塞,它把油缸分为了上下两个部分。当弹簧被压缩,活塞向下运行,活塞下部的空间变小,油液被挤压后向上部流动;反之,油液向下部流动。 不管油液向上还是向下流动,都要通过活塞上的阀孔。油液通过阀孔时遇到阻力,使活塞运行变缓,冲击的力量有一部分被油液吸收减缓了。

下面是压缩行程示意图,表示减震器受力缩短的过程。图二为活塞向下运行,流通阀开启,油缸下部的油液受到压力通过流通阀向油缸上部流动。 图三为活塞向下运行,压力达到一定程度时,压缩阀开启,油缸下部的油液通过压缩阀流向油缸外部储存空间。图中红色大箭头表示活塞运动方向,红色小箭头表示油液流动方向。

相关主题
文本预览
相关文档 最新文档