当前位置:文档之家› 空间几何体 - 简单 - 讲义

空间几何体 - 简单 - 讲义

空间几何体 - 简单 - 讲义
空间几何体 - 简单 - 讲义

空间几何体

知识讲解

一、构成空间几何体的基本元素

1.几何体的概念

概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等.

2.构成几何体的基本元素:点、线、面

(1)几何中的点不考虑大小,一般用大写英文字母A B C

,,来命名;

(2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l

,,或用直线上两个点AB PQ

,表示;

一条直线把平面分成两个部分.

(3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分);

其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的;

平面一般用希腊字母αβγ

,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字

母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分.

3.用运动的观点理解空间基本图形间的关系

理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体.

二、多面体的结构特征

1.多面体

D

C

B

A

α

1)多面体的定义

由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类

按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体.

按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体

定义:表面经过连续变形可以变成球体的多面体叫做简单多面体;

欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体

定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等.

2.棱柱

1)棱柱的定义

由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高.

下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA

'',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.

2)棱柱的性质:棱柱的两个底面是全等的多边形,对应边互相平行,侧面都是平行四边形,侧棱平行且相等. 3)棱柱的分类

按底面分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……; 按侧棱是否与底面垂直分类:侧棱与底面不垂直的棱柱叫斜棱柱,侧棱与底面垂直的棱柱叫直棱柱;

底面是正多边形的直棱柱叫正棱柱; 4)棱柱的记法

①用表示两底面的对应顶点的字母表示棱柱; ②用棱柱的对角线端点的两个字母表示棱柱.

例如:上面的棱柱是斜四棱柱,记成棱柱''''ABCD A B C D 或棱柱'AC 等. 5)特殊的四棱柱:

3.棱锥

1)棱锥的定义

当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.它有一个面是多边形,其

D C B

A

H

A '

D '

B '

C'

平行六面体

四棱柱

底面是平行四边形

侧棱与 底面垂直

正四棱柱

底面是平行四边形

直平行六面体

底面为 正方形

直四棱柱

侧棱与 底面垂直

底面为 长方形

长方体

底面是正方形

侧面也为 正方形

正方体

棱长都相等的长方体

余各面都是有一个公共顶点的三角形.棱锥中有公共顶点的各三角形叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;多边形叫做棱锥的底面;相邻侧面的公共边叫做棱锥的侧棱;棱锥中过不相邻的两条侧棱的截面叫做棱锥的对角面;过顶点且与底面垂直相交的直线在顶点与交点间的线段或距离叫做棱锥的高. 2)棱锥的分类

底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……;底面是正多边形,顶点与底面中心的连线垂直于底面的棱锥叫正棱锥.正棱锥的各个侧面都是全等的等腰三角形,它们底边上的高都相等,称为正棱锥的斜高.

3)棱锥的记法

用顶点和底面各顶点的字母表示或者用表示顶点和底面的一条对角线端点的字母表示.如上图的五棱锥记为棱锥S ABCDE -或棱锥S AC -.

4.棱台

1)棱台的定义

棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面;其余各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;与棱台的底面垂直的直线夹在两个底面之间的线段或距离称为棱台的高. 2)棱台的性质

棱台的各侧棱延长后交于一点,即棱台的上下底面平行且对应边成比例; 3)棱台的记法

用上下底面的字母表示或者用一条对角线两个端点的字母来表示.

对角面SAC

E

侧棱侧面

底面ABCDE

H

S

D

C

B

A

4)正棱台

由正棱锥截得的棱台叫做正棱台.正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.

右图为一个正三棱台,记为棱台ABC A B C '''-,侧棱AA ',BB ',CC '延长后必交于一点.O ,

O '为上下底面的中心,它们的连线O O '是棱台的高,H H '是棱台的斜高.

三、旋转体的结构与特征

1.圆柱、圆锥和圆台

定义:将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台.这条旋转轴叫做几何体的轴,轴的长即为该旋转体的高.垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做侧面的母线;圆柱、圆锥、圆台一般用表示它的轴的字母来表示. 性质:①平行于底面的截面都是圆;

②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形.

2.球

球的定义:半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球(或球体),半圆

H

H'

O'O

C'B'

A'

C

B

A

S

O

O'

O

A

A'

A

旋转而成的曲面叫做球面.半圆的圆心称为球心,球心与球面上一点的连线段称为球的半径,

连结球面上两点且过球心的线段叫作球的直径.一般用球心的字母表示一个球.

四、三视图

1.投影

定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.

2.平行投影

定义:我们把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投涉线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影. 性质:若图形中的直线或线段不平行于投射线时,平行投影具有以下性质: ①直线或线段的平行投影仍是直线或线段; ②平行直线的平行投影是平行或重合的直线;

③平行于投射面的线段,它的投影与这条线段平行且等长; ④平行于投射面的平面图形,它的投影与这个图形全等;

⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.

3. 正投影

概念:在平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影. 性质:①垂直于投射面的直线或线段的正投影是点;

F

M

F '

M '

l

②垂直于投射面的平面图形的正投影是直线或直线的一部分.

4.中心投影

定义:一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影.中心投影的直观性强,看起来与人的视觉效果一致,常在绘画时使用,在立体几何中,一般用平行投影原理来画图.

5.三视图

1)正视图:光线从几何体的前面向后面正投影得到的投影图形称为几何体称为正视图(主视图).

2)侧视图:光线从几何体的左面向右面正投影得到的投影图形称为几何体称为侧视图(左视图).

3)俯视图:光线从几何体的上面向下面正投影得到的投影图形称为几何体称为俯视图.将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图. 如右图为圆锥的三视图:

5.三视图的对应关系

关系:正俯视图长相等、正侧视图图的高相等、俯侧视图图的宽相等,简称“长对正,宽平齐,高相等”或说“主左一样高,主俯一样长,俯左一样宽”.

五、直观图

1.定义:用来表示空间图形的平面图形,叫做空间图形的直观图.

俯视图

左视图

主视图

画法:斜二测画法和正等测画法

2.斜二测画法规则

1)在已知图形所在的空间中取水平平面,作相互垂直的轴Ox ,Oy ,再作Oz 轴,使90xOz ∠=?,90yOz ∠=?.

(三维空间中) 2)画直观图时,把Ox ,Oy ,Oz 画成对应的轴O x O y O z '''''',,,使45x O y '''∠=?或135?,90x O z '''∠=?,x O y '''所确定的平面表示水平平面.

(二维平面上) 3)已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成平行于x '轴,'y 轴或z ' 的线段.并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.

4)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.

5)画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.

五、简单空间几何体的表面积和体积

1.直棱柱与圆柱的侧面积

()S S ch =直棱柱侧圆柱,其中c 为底面的周长,h 为直棱柱(圆柱)的高,也即侧棱(母线)长;

2.正棱锥(圆锥)的侧面积

11

''22

S ch nah ==正棱锥侧,其中a 为底面边长,'h 为斜高;

1

π2

S cl rl ==圆锥侧,其中c 为底面周长,r 为圆锥的底面半径,l 为母线长;

3.正棱台(圆台)的侧面积

1(')'(')'22

n

S c c h a a h =+=+正棱台侧,其中,'a a 分别是正棱台上下底面的边长,'h 为斜高;

4.球面面积:24πS R =球,R 为球的半径.

5.柱体(棱柱,圆柱)体积公式:V Sh =柱体,其中S 为底面积,h 为高;

6.棱体(棱锥,圆锥)的体积公式:13

V Sh =棱体,其中S 为底面积,h 为高;

7.台体(棱台,圆台)的体积公式: 1

(')3V h S S =台体,其中',S S 分别是台体

上,下底面的面积,h 为台体的高;

8.球的体积公式:34π3

V R 球,R 为球的半径

典型例题

一.选择题(共8小题)

1.(2015?新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()

A.B.C.D.

【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,

∴正方体切掉部分的体积为×1×1×1=,

∴剩余部分体积为1﹣=,

∴截去部分体积与剩余部分体积的比值为.

故选:D.

2.(2016?汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()

A.1 B.2 C.3 D.4

【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2

由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形

由于此侧棱长为,对角线长为2,故棱锥的高为=3

此棱锥的体积为=2

故选:B.

3.(2018?郑州一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()

A.10cm3B.20cm3C.30cm3D.40cm3

【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:

棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,

∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).

故选:B.

4.(2015?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()

A.8cm3B.12cm3C.D.

【解答】解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形高为2的正四棱锥,

所求几何体的体积为:23+×2×2×2=.

故选:C.

5.(2016?新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()

A.17πB.18πC.20πD.28π

【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.

它的表面积是:×4π?22+=17π.

故选:A.

6.(2016?新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()

A.12πB.π C.8πD.4π

【解答】解:正方体体积为8,可知其边长为2,

正方体的体对角线为=2,

即为球的直径,所以半径为,

所以球的表面积为=12π.

故选:A.

7.(2015?新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()

A.1 B.2 C.4 D.8

【解答】解:由几何体三视图中的正视图和俯视图可知,

截圆柱的平面过圆柱的轴线,

该几何体是一个半球拼接半个圆柱,

∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,

又∵该几何体的表面积为16+20π,

∴5πr2+4r2=16+20π,解得r=2,

故选:B.

8.(2017?浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()

A.+1 B.+3 C.+1 D.+3

【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,

故该几何体的体积为××π×12×3+××××3=+1,

故选:A.

二.填空题(共4小题)

9.(2017?上海)已知球的体积为36π,则该球主视图的面积等于9π.【解答】解:球的体积为36π,

设球的半径为R,可得πR3=36π,

可得R=3,

该球主视图为半径为3的圆,

可得面积为πR2=9π.

故答案为:9π.

10.(2011?南通三模)底面边长为2m,高为1m的正三棱锥的全面积为m2.【解答】解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.

则SO⊥HC,且,

在Rt△SHO中,.

于是,,.

所以

全面积

故答案为

11.(2016?黄浦区一模)两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为.

【解答】解:设大球的半径为r,

则根据体积相同,可知,

即,.

故答案为:.

12.(2015?盐城校级模拟)已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为2π.

【解答】解:根据题意,圆柱的底面半径r=1,母线长l=2r=2

∴圆柱的体积为V=Sl=πr2l=π×12×2=2π.

故答案为:2π.

三.解答题(共3小题)

13.(1965?全国)如图所示的二视图表示的立方体是什么?求出它的体积.

【解答】解:二视图表示的是一个正六棱锥,

其棱长为2a.

底面边长为a,

故底面积,

棱锥的高,

故正六棱锥的体积,

=.

14.已知正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)的底面边长为a,侧棱长为a

(1)求它的外接球的体积

(2)求他的内切球的表面积.

【解答】解:(1)由题意,四棱锥为正四棱锥,

∵该四棱锥的侧棱长为a,底面是边长为a的正方形,

∴四棱锥的高为a,

设外接球的半径为R,则有R2=(a)2+(a﹣R)2,

∴R=a,

∴外接球的体积为=;

(2)设内切球的半径为r,则

∴r=a

∴表面积为4πr2=.

15.根据下列对于几何体结构特征的描述,说出几何体的名称.

(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;

(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.

【解答】解:(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形,

由各个侧面都是矩形,得出侧棱垂直于底面,是直棱柱;

所以这样的几何体是正六棱柱;

(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形,

这样的几何体是正四棱锥.

空间几何体 - 简单 - 讲义

空间几何体 知识讲解 一、构成空间几何体的基本元素 1.几何体的概念 概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等. 2.构成几何体的基本元素:点、线、面 (1)几何中的点不考虑大小,一般用大写英文字母A B C ,,来命名; (2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l ,,或用直线上两个点AB PQ ,表示; 一条直线把平面分成两个部分. (3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分); 其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的; 平面一般用希腊字母αβγ ,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字 母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分. 3.用运动的观点理解空间基本图形间的关系 理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体. 二、多面体的结构特征 1.多面体 D C B A α

1)多面体的定义 由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类 按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体. 按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体 定义:表面经过连续变形可以变成球体的多面体叫做简单多面体; 欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体 定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等. 2.棱柱 1)棱柱的定义 由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高. 下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA '',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.

空间几何体经典试题

空间几何体 考点一:空间几何体与三视图 1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”. 2.要熟悉各种基本几何体的三视图.同时要注意画三视图时,能看到的轮廓线画成实线,看不到的轮廓线画成虚线. 例题1.(2016·高考天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() 例题2.(2015·高考北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为() A.1 B.2C.3D.2 练习1.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形: 其中可以作为该几何体的俯视图的图形个数是() A.5B.4 C.3 D.2 练习2.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的俯视图可能是()

考点二 空间几何体的表面积与体积 1.求解几何体的表面积或体积 (1)对于规则几何体,可直接利用公式计算. (2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解. (3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用. ★1.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面; 2.在求几何体的表面积和体积时,注意等价转化思想的运用,如用“割补法”把不规则几何体转化为规则几何体、立体几何问题转化为平面几何问题等. 例题3.(2016·高考全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ) A .18+365 B .54+185 C .90 D .81 练习3.(2016·高考全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的 半径.若该几何体的体积是 28π3,则它的表面积是( ) A .17π B .18π C .20π D .28π 练习4.(2016·高考山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )

空间几何体的结构及视图金题讲义及参考答案

空间几何体的结构及视图金题讲义及 参考答案 考点梳理 一、第一章《空间几何体》的知识结构 本讲知识内容:柱、锥、台、球的结构特征;空间几何体三视图和直观图,能 识别三视图所表示的空间几何体。 二、知识梳理 1.空间几何体的结构特征 (1)棱柱的结构特征 (2)棱锥的结构特征

定义:有一个面是多边形,其余各面都是有一个公共顶点 ....的三角形,由这些面所围成的几何体叫做棱锥。 (3)圆柱的结构特征 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转形成的面所围成的旋转体叫圆柱. (4)圆锥的结构特征 定义:以直角三角形的一条直角边所在的直线为轴旋转,其余两边旋转形成的面所围成的旋转 体叫圆锥. (5)棱台的结构特征 概念:棱锥被平行于棱锥底面的平面所截后,截面和底面之间的部分 (6)圆台的结构特征 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

(7)球的结构特征 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体,叫球体,简称球. 2.空间几何体的投影和三视图 ? ? ? ? ? 正视图:光线从几何体的前面向后面正投影. 三视图左视图: 光线从几何体的左面向右面正投影. 俯视图:光线从几何体的上面向下面正投影, 规律: (1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; (2)俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; (3)左视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度. 金题精讲 题一 题面:下列几何体各自的三视图中,有且仅有两个视图相同的是() A.①② B.①③ C.①④ D.②④ 题二

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

空间几何体的表面积和体积考点讲解及经典例题解析

空间几何体的表面积和体积习题讲解 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 考查形式: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c'、c分别表示上、下底面周长,h表斜高,h'表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式

表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,1r 、2r 分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420)(2z y x zx yz xy )2() 1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

空间几何体(讲义及答案)(1)

空间几何体(讲义) >知识点睛 一、空间儿何体的结构特征 棱 特殊的多面体: 柱:斜棱柱、直棱柱、正棱柱、正方体 锥:正棱锥、正四面体 J正四棱柱:底面是正方形的直棱柱 1正方体(正六面体):侧棱长与底边长相等的正四棱柱 j正三棱锥:底面是正三角形,顶点在底面的射影是底面中心 I正四面体:侧棱长与底边长相等的正三棱锥

正棱柱 A B 正方体 S B S 直棱柱 正四面体 正三棱锥 2.简单组合体

3.球 (1)球的截面性质: ①经过球心的截面截得的圆叫做球的大圆,不过球心的截面 截得的圆叫做球的小圆; ②球心和截得的小圆圆心的连线垂直于截面. (2)位置关系: ①外接球:多面体的各个顶点都在球面上; ②内切球:多面体的各个面都与球相 切.二、空间儿何体的表面积与体积 J 空间儿何体的表面积(也称全面积)(底面周长为C) S|畀柱= -------------- ;S閱锥= S惆台=7t(r'-+r+/-7 + rZ). 2空间儿何体的体积 DL 川/厂 T---- I ]少 1、■ I r --- A B C

心= -------------- ;%= ----------------- ; (底面积为S,高为/I) 八棱长为小 V =V =1(S'+ 辰+S)/7(上下底面积分别为S』,高为")?梭台恻台3 3球的表面积与体积 S 球= ____________' V球= ______________ ?

有一个底面为多边形,其余各面都是 有一个公共顶点的三 角形,由这些 面所W 成的儿何体是棱锥 用一个平面去截棱锥,棱锥底面与截面之间的部分是棱台 棱柱的侧 面都是平行四边形,而底面不是平行四边形 棱柱的侧棱都相等,侧面都是全等的平行四边形 3.下列命题: ① 底面是等边三角形,侧面都是等腰三角形的三棱锥是正三 棱锥; ② 所有棱长都相等的直棱柱是正棱柱; ③ 若一个四棱柱有两个侧面垂直于底面,则该四棱柱为直四 棱柱; ④ 所有棱长都相等的正三棱锥是正四面体; ⑤ 一个棱锥可以有两个侧面和底面垂 直.其中正确的有() A. 1个 B. 2个 C. 3个 D. 4个 >精讲精练 1.下列说法中,正确的是( A B C. D 2.如图所示的儿何体中是棱柱的有( C. 3个 D. ③ A ?1个 B ?2个 ? ④

空间几何体经典习题

正视图 俯视图 侧视图 空间几何体(经典习题) 一、选择题: 1、半径为R 的半圆卷成一个圆锥,则它的体积为() A 3R B 3R C 3R D 3R 2、一个正方体的顶点都在球面上,它的棱长为2cm ,则球的表面积是( ) A.28cm π B.212cm π C.216cm π D.220cm π 3、圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则 圆台较小底面的半径为() A .7B.6C.5D.3 4、棱台上、下底面面积之比为1:9,则棱台的中截面分棱台成两部分的体积之比是() A .1:7B.2:7C.7:19D.5:16 5、一简单组合体的三视图及尺寸如图示(单位:cm )则该组合 体的体积为() A.720003cm B.640003cm C.560003cm D.440003cm 6、如图是某几何体的三视图,其中正视图是腰长为2的 等腰三角形,俯视图是半径为1的半圆,则该几何体的 体积是() A .3 B .12π C . 3D .6

A B D C E F 2 2 2 正视侧视 1 1 俯视 俯视图 2 2 正(主)视图 2 2 2 侧(左)视图 2 2 2 7、如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,//EF AB ,32 EF =,且EF 与平面ABCD 的距离为2,则该多面体的体积为() A .92 B.5 C.6D. 15 2 8、一个棱锥的三视图如图,则该棱锥的体积是() A.34B.3 8C.4D.8 9、如图是一个空间几何体的三视图,则该几何体的侧面积为() A.43 B.43 第8题第9题 10、如图为一平面图形的直观图,则此平面图形可能是选项中的( ) 11、棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8 个三棱锥后 ,剩下的凸多面体的体积是() A 、23B 、76C 、45D 、56 12、在一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞D 、E 、F ,且知 SD :DA=SE :EB=CF :FS=2:1,若仍用这个容器盛水,则最多可盛原来水的() A 、 2923B 、2719C 、3130D 、27 23 13、一空间几何体的三视图如图所示则该几何体的体积为(). A.223π+ B.423π+ C.232π+ D.23 4π+ 2 2 侧(左)视 2 2 2 正(主) 俯视

空间几何体的结构的教学设计

人教版必修2“空间几何体的结构(一)”的教学设计 一、设计思想 立体几何初步是几何学的重要组成部分,也是新课程改动较大的内容之一.《空间几何体的结构》是新课程立体几何部分的起始课程,是立体几何课程的重要内容,根据新课程的要求,这一部分的教学,就是加强几何直观的教学,适当进行思辨论证,引入合情推理.基于这样的要求,《空间几何体的结构》一课的设计,笔者以培养学生的几何直观能力,抽象概括,合情推理能力,空间想象能力为指导思想,运用建构主义教学原理,用观察实物抽象出空间图形----用文字描述空间图形-----用数学语言定义空间图形这三部曲来构建课堂主框架.每一个概念的得出都与实物相结合,让学生经历观察、归纳、分类、抽象、概括这一过程.整个设计从增强学生参与数学学习的意愿入手,在学生明确学习任务的基础上,在有序列地解决问题中展开学习,运用激活、展示、应用、和整合策略,以师、生、文本三者间的多维对话为手段,最终达到提高学生参与数学学习能力的目标,取得教学的实效性.过程中让学生体验有关的数学思想,提高学生自主学习、分析问题和解决问题的能力,培养学生合作学习的意识. 二、教材分析 本节课《空间几何体的结构》选自普通高中课程标准实验教科书《数学》人教A版必修2第一章的第一节,课标对空间几何体的结构的教学要求为:认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构,发展几何直观能力.教材首先让学生观察现实世界中实物的图片,引导学生将观察到的实物进行归纳、分类、抽象、概括,得出柱体、锥体、台体的结构特征,在此基础上给出由它们组合而成的简单几何体的结构特征.《省学科教学指导意见》将这一节内容安排为两课时,笔者的设计的是第一课时,本节内容在义务教育数学课程“空间与图形”已有所涉及,但要求不同,素材更为丰富,即区别在于学习的深度和概括程度.笔者认为教学时,不能认为这部分的要求是降低了,讲课时一带而过,要领会新课标的意图,加强几何直观的训练,在引导学生直观感受空间几何体结构特征的同时,学会类比,学会推理,学会说理. 三、学情分析 学生在义务教育阶段学习“空间与图形”时,已经认识了一些具体的棱柱(如正方体、长方体等),对圆柱、圆锥和球的认识也比较具体,能从具体的物体抽象出相应的几何体模型,但没有学习柱体、锥体的定义,只停留在“看”的层面.本节课对它们的研究的更为深入,给出了它们的结构特征.同时,还学习了棱台的有关知识,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多,复杂程度也加大.学生在学习本课时,通过观察实物抽象出空间图形是容易的,但要上升到用数学语言定义空间图形就比较困难.所以笔者让学生在课前先做一些柱体、锥体、台体的模型,教学过程中,每一个空间图形的定义,都通过学生观察他们自己所做的模型,结合教师、教材提供的图片,再讨论得出.

空间立体几何高考知识点总结与经典题目

空间立体几何 知识点归纳: 1. 空间几何体的类型 (1)多面体:由若干个平面多边形围成的几何体,如棱柱、棱锥、棱台。 (2)旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。 如圆柱、圆锥、圆台。 2. 一些特殊的空间几何体 直棱柱:侧棱垂直底面的棱柱。正棱柱:底面多边形是正多边形的直棱柱。 正棱锥:底面是正多边形且所有侧棱相等的棱锥。 正四面体:所有棱都相等的四棱锥。 3. 空间几何体的表面积公式 棱柱、棱锥的表面积:各个面面积之和 _ 2 圆柱的表面积:S =2 rl 2 r2圆锥的表面积:S =理「I ?二r 2 2 圆台的表面积:S =理rl 7 r?二RI ?二R 球的表面积:s= 4 R2 4 ?空间几何体的体积公式 1 柱体的体积:V = S底 h 锥体的体积:v = - S底h 3底 1 ---------- 、, 4 3 台体的体积:V = —( S上?S上S T S下)h 球体的体积:V R 3 '3 5.空间几何体的三视图 正视图:光线从几何体的前面向后面正投影,得到的投影图。 侧视图:光线从几何体的左边向右边正投影,得到的投影图。 俯视图:光线从几何体的上面向右边正投影,得到的投影图。 画三视图的原则: 长对正、宽相等、高平齐。即正视图和俯视图一样长,侧视图和俯视图一样宽,侧视图和正视图一样高。 6 .空间中点、直线、平面之间的位置关系 (1) 直线与直线的位置关系:相交;平行;异面。

(2)直线与平面的位置关系:直线与平面平行;直线与平面相交;直线在平面内。 (3)平面与平面的位置关系:平行;相交。 7. 空间中点、直线、平面的位置关系的判断 (1)线线平行的判断: ①平行公理:平行于同一直线的两直线平行。 ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相 交,那么这条直线和交线平行。 ③面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ④线面垂直的性质定理:垂直于同一平面的两直线平行。 (2)线线垂直的判断: ①线面垂直的定义:若一直线垂直于一平面,这条直线垂直于平面内所有直线。 ②线线垂直的定义:若两直线所成角为,则两直线垂直 ③一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ①线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平 面平行。 ②面面平行的性质定理:两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ①线面垂直的判定定理:如果一直线和平面内的两相交直线垂直,这条直线就垂直于这 个平面。 ②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ④如果两个平面垂直,那么在一个平面内垂直于交线的直线必垂直于另一个 (5)面面平行的判断:

必修2第1讲空间几何体培训讲义无答案.doc

第一章空间几何体 空间几何体 一、空间几何体的结构 (-)多面体与旋转体:多面体:棱柱、棱锥、棱台; 旋转体:圆柱、圆锥、圆台、球; 另一种分类方式:①柱体:棱柱、圆柱; %1椎体:棱锥、圆锥; %1台体:棱台、圆台; %1球 简单组合体:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 (二)柱、锥、台、球的结构特征 1.棱柱:①直棱柱斜棱柱正棱柱②三棱柱、四棱柱、五棱柱、六棱柱等等。 棱柱的性质:①两底面是对应边平行的全等多边形; %1侧面、对角面都是平行四边形; %1侧棱平行且相等; %1平行于底面的截面是与底面全等的多边形。 2.棱锥:三棱锥、四棱锥、五棱锥、六棱锥等等 (1)棱锥的性质:①侧面、对角面都是三角形; %1平行于底面的截面与底面相似,其相似比等于顶点到截面E巨 离与的比的方* (2)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。 %1正棱锥的高,斜高和斜高在底面上的射影组成一个直角三 角形,正棱锥的高,侧棱,侧棱在底面内的射影也组成一 个直角三角形。 %1正棱锥的侧棱与底面所成的角都相等。 %1正棱锥的侧面与底面所成的二面角都相等。 3.圆柱与圆锥:圆柱的轴圆柱的底面圆柱的侧面圆柱侧面的母线 4.棱台与圆台:统称为台体 (1)棱台的性质:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点. (2)圆台的性质:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延氏线交于一点;母线长都相等.

5.球:球体球的半径球的直径.球心

O—A 二、空间几何体的三视图和直观图 1.中心投影平行投影正投影 2.三视图的画法:长对正、高平齐、宽相等。 3.直观图:斜二测画法,直观图中斜坐标系尤力项,两轴夹角为45。; %1原来与x轴平行的线段仍然与x平行且长度不变; %1原来与y轴平行的线段仍然与y平行,长度为原来的一半。 三、空间几何体的表面积和体积 1.柱体、锥体、台体表面积求法:利用展开图 2.柱体、锥体、台体表面积体积公式,球体的表面积体积公式: 几何体表面积相关公式体积公式 棱柱S全=2S底+ S侧,其中S侧=/侧枝长&直截面周长V = S\h 棱锥S全=,底+ S侧V = —SDh3 棱台s全=s上底+ S下底+ S侧 v =L(s‘+ Js’s +s)/z 圆柱 S全=2、r1 + 2/r rl (r:底面半径,1:母线长=方:高) V = sh =兀广h 圆锥 S 全=7T r 2 + 7T r 1 (r:底面半径,7:母线长) V = —sh = —7rr2h 3 3 圆台 S全=勿(,"+尸2+,,/+〃) (r:下底半径,广上底半径,7:母线长) V = -($ '+ Js 'S + S)h 3球体S球面=4勿A?4正视图(从前向后)反映了物体上下高度、左右长度的关系; 侧视图(从左向右)反映了物体左右长度、前后宽度的关 系; 俯视图(从上向下)反映了物体上下高度、前后宽度的关系。 i MX 大 I

空间几何体的三视图经典例题

空间几何体的三视图经典例题

————————————————————————————————作者:————————————————————————————————日期: ?

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

\o\ac(○,1) 首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x)=f(x) 或f(-x)-f(x) =0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)= 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,?如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y=f[g(x)]定义域的某个区间,B 是映射g:x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y=f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: 错误!任取x1,x ∈D,且x1<x2;错误!作差f(x1)-f(x2);错误!变形 2 (通常是因式分解和配方);

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

空间几何体的表面积和体积经典例题(教师讲义打印一份)

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2016年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 侧棱长。 2.旋转体的面积和体积公式 12 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420)(2z y x zx yz xy )2()1(

由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .2 3 B .3 2 C .6 D . 6 解析:设长方体共一顶点的三边长分别为a =1,b = 2,c =3,则对角线l 的长为

20届高考数学一轮复习讲义(提高版) 专题9.3 空间几何体外接球和内切球(原卷版)

9.3 空间几何外接球和内切球 一.公式 1.球的表面积:S =4πR 2 2.球的体积:V =43πR 3 二.概念 1. 2. 考向一 长(正)方体外接球 【例1】若一个长、宽、高分别为4,3,2的长方体的每个顶点都在球O 的表面上,则此球的表面积为__________. 【举一反三】 1.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 2.如图是一个空间几何体的三视图,则该几何体的外接球的表面积是________.

考向二棱柱的外接球 【例2】直三棱柱ABC?A′B′C′的所有棱长均为2√3,则此三棱柱的外接球的表面积为()A.12πB.16πC.28πD.36π 【举一反三】

1.设直三棱柱ABC-A1B1C1的所有顶点都在一个球面上,且球的表面积是40π,AB=AC=AA1,∠BAC=120°,则此直三棱柱的高是________. 2.直三棱柱ABC?A1B1C1中,已知AB⊥BC,AB=3,BC=4,AA1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为__________. 考向三棱锥的外接球 类型一:正棱锥型 【例3-1】已知正四棱锥P ABCD -的各顶点都在同一球面上, 体积为2,则此球的体积为() A. 124 3 π B. 625 81 π C. 500 81 π D. 256 9 π 【举一反三】 1.已知正四棱锥P ABCD -的各条棱长均为2,则其外接球的表面积为( )

A. 4π B. 6π C. 8π D. 16π 2.如图,正三棱锥D ABC -的四个顶点均在球O 的球面上,底面正三角形的边长为3,侧棱长为则球O 的表面积是( ) A .4π B . 323 π C .16π D .36π 类型二:侧棱垂直底面型 【例3-2】在三棱锥P ABC -中, 2AP =, AB = PA ⊥面ABC ,且在三角形ABC 中,有()cos 2cos c B a b C =-(其中,,a b c 为ABC ?的内角,,A B C 所对的边),则该三棱锥外接球的表面积为( ) A. 40π B. 20π C. 12π D. 203 π 【举一反三】

高中数学选修21空间向量与立体几何知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1. P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

空间几何体的三视图经典例题

一、教学目标 1. 巩固空间几何体的结构及其三视图和直观图 二、上课内容 1、回顾上节课内容 2、空间几何体的结构及其三视图和直观图知识点回顾 3、经典例题讲解 4、课堂练习 三、课后作业 见课后练习 一、上节课知识点回顾 1.奇偶性 1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。 如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。 2)利用定义判断函数奇偶性的格式步骤:

○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论: 若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数 3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称; 2.单调性 1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数); 2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。 3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射 g : x→u=g(x) 的象集: ①若u=g(x) 在A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数; ②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。 4)判断函数单调性的方法步骤 利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤: ○1任取x1,x2∈D,且x1

高考数学讲义空间几何体.知识框架

空间几何体的结构与三 视图 要求层 次 重难点 柱、锥、台、球及其简 单组合体 A ①认识柱、锥、台、球及其简单组合体 的结构特征,并能运用这些特征描述现 实生活中简单物体的结构. ②能画出简单空间图形(长方体、球、 圆柱、圆锥、棱柱等的简易组合)的三 视图,能识别上述的三视图所表示的立 体模型,会用斜二侧法画出它们的直观 图. ③会用平行投影与中心投影两种方法, 画出简单空间图形的三视图与直观图, 了解空间图形的不同表示形式. ④会画某些建筑物的视图与直观图(在 不影响图形特征的基础上,尺寸、线条 等不作严格要求). 三视图 B 斜二测法画简单空间 图形的直观图 B 空间几何体的表面积与体积球、棱柱、棱锥的表面 积和体积 A 了解球、棱柱、棱锥、台的表面积和体 积的计算公式(不要求记忆公式)高考要求 模块框架 空间几何体

一、空间几何体 1.几何体 只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等. 2.构成几何体的基本元素:点、线、面 ⑴几何中的点不考虑大小,一般用大写英文字母A B C L ,,来命名; ⑵几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l L ,,或用直线上两个点AB PQ L ,表示; 一条直线把平面分成两个部分. ⑶几何中的面不考虑厚薄,分平面(部分)和曲面(部分); D C B A α 其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的; 平面一般用希腊字母αβγL ,,来命名, 或者用表示它的平面四边形的顶点或对角顶点的字母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分. 3.用运动的观点理解空间基本图形间的关系 在几何中,可以把线看成点运动的轨迹,点动成线; 把面看成线运动的轨迹,线动成面; 把几何体看成面运动的轨迹(经过的空间部分),面动成体. 4.从长方体实例看空间几何体的基本元素 如图的长方体通常记为ABCD A B C D ''''-, D'C'B'A' D C B A 它有六个面(即围成长方体的各个矩形),十二条棱(相邻两个面的公共边),八个顶点(棱与棱的公共点). 看长方体的棱:AA BB CC DD ''''∥∥∥,AB AB ''L ∥; AA AB AB BC '⊥⊥L , (AA '与BC 有什么关系呢?可以引出两条直线的一种新关系:异面) 看长方体的面:平面ABCD 平行于平面A B C D '''',平面ABBA ''平行于平面DCC D ''L 棱'A A 垂直于底面ABCD ,棱AB 垂直于侧面BCC B ''L 5.截面 一个几何体和一个平面相交所得的平面图形(包括它的内部),叫做这个几何体的截面,如图. 知识内容

相关主题
文本预览
相关文档 最新文档