当前位置:文档之家› 热敏电阻材料与应用

热敏电阻材料与应用

热敏电阻材料与应用
热敏电阻材料与应用

热敏电阻材料与应用

一、传感器定义和分类

1、传感器的定义

国家标准 GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。

2、传感器的分类

目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:

(1)、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器。(2)、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。

(3)、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和“0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。

3、传感器的静态特性

传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。

4、传感器的动态特性

所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

5、传感器的线性度

通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。

6、传感器的灵敏度

灵敏度是指传感器在稳态工作情况下输出量变化△ y 对输入量变化△ x 的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度 S 是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化 1mm 时,输出电压变化为 200mV ,则其灵敏度应表示为 200mV/mm 。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高

的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

二、热敏电阻的定义

热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。

三、热敏电阻的材料简介

敏感陶瓷是某些传感器中的关键材料,用于制作敏感元件,敏感陶瓷多属于半导体陶瓷,是继单晶半导体材料之后,又一类新型多晶半导体电子陶瓷。

敏感陶瓷是根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、电压及某些气体,某种离子的变化特别敏感这一特性,按其相应的特性,可把这些材料分别称为热敏、湿敏、光敏、压敏、气敏及离子敏感陶瓷。

热敏陶瓷是半导体陶瓷材料中的一类,其电阻率约为10-4~107?.cm。

陶瓷材料可以通过掺杂或者使化学计量比偏离而造成晶格缺陷等方法获得半导性。

半导体陶瓷的共同特点是:它们的导电性随环境而变化,利用这一特性,可制成各种不同类型的陶瓷敏感器件,如热敏、气敏、湿敏、压敏、光敏器件等。

热敏半导体陶瓷材料就是利用它的电阻、磁性、介电性等性质随温度而变化,用它作成的器件可作为温度的测定、线路温度补偿及稳频等,且具有灵敏度高、稳定性好、制造工艺简单及价格便宜等特点。

四、热敏电阻的分类

按照热敏陶瓷的电阻-温度特性,一般可分为三大类:

1、电阻随温度升高而增大的热敏电阻称为正温度系数热敏电阻,简称PTC热敏电阻;

2、电阻随温度的升高而减少的热敏电阻称为负温度系数热敏电阻,简称NTC热敏电阻;

3、电阻在某特定温度范围内急剧变化的热敏电阻,简称为CTR临界温度热敏电阻。

热敏电阻的应用

五、PTC热敏陶瓷

1、PTC热敏电阻的基本特性

(1)电阻—温度特性

其电阻—温度曲线(R-T曲线)见图8-1。

居里温度Tc可通过掺杂来调整。

(2)电阻温度系数α

是指零功率电阻值的温度系数,其定义为:

αT=1/R T*dR T/dT

对于PTC,αT=2.303/(T2-T1)*lgR2/R1

(3)室温电阻:是指25℃时的零功率电阻率ρa。

(4)耐压特性:是指PTC热敏电阻陶瓷所承受的最高电压V max。

(5)电流-时间特性

(6)放热特性

2、PTC热敏陶瓷材料

PTC热敏电阻器有两大系列:一类是采用BaTiO3为基材料制作的PTC;另一类是以氧化钒为基的材料。

(1) BaTiO3陶瓷产生PTC效应的条件

当BaTiO3陶瓷材料中的晶粒充分半导化,而晶界具有适当绝缘性时,才具有PTC效应。PTC效应完全是由其晶粒和晶界的电性能决定,没有晶界的单晶不具有PTC效应。

(2)陶瓷的半导化

由于在常温下是绝缘体,要使它们变成半导体,需要一个半导化。所谓半导化,是指在禁带中形成附加能级:施主能级或受主能级。在室温下,就可以受到热激发产生导电载流子,从而形成半导体。形成附加能级的方法:通过化学计量比偏离和掺杂。

A、化学计量比偏离

在氧化物半导体陶瓷的制备过程中,通过控制烧结温度、烧结气氛以及冷却气氛等,产生化学计量的偏离。

B、掺杂

在氧化物中,掺入少量高价或低价杂质离子,引起氧化物晶体的能带畸变,分别形成施主能级和受主能级。从而形成n型或p型半导体陶瓷。

(3) BaTiO3陶瓷的半导化

一般采用掺杂施主金属离子。在高纯BaTiO3陶瓷中,用La3+、Ce4+、Sm3+、Dy3+、Y3+、Sb3+、Bi3+等置换Ba2+。或用Nb5+、Ta5+、W6+等置换Ti4+。掺杂量一般在0.2%~0.3%之间,稍高或稍低均可能导致重新绝缘化。

(4) BaTiO3PTC陶瓷的生产工艺

以居里点Tc为100℃的PTC BaTiO3陶瓷为例。

(1-y)(Ba1-x Ca x Ti1.01O3).ySrSnO3+0.002La2O3+0.006Sb2O3+0.0004MnO2+0.0025SiO2+0.00167Al2O3+0 .001Li2CO3

A、原料:一般应采用高纯度的原料,特别要控制受主杂质的含量,把Fe、Mg等杂质含量控制在最低限度。一般控制在0.01mol%以下。

B、掺杂:施主掺杂物La2O3、Nb2O5、Y2O3等宜在合成时引入,含量在0.2~0.3mol%这样一个狭窄的范围内。

C、瓷料制备及成型:传统的工艺难以解决纯度和均匀性的问题,现已经开始采用液相法。

D、烧成:PTC陶瓷必须在空气或氧气氛中烧成。

(5)影响PTC热敏陶瓷性能的影响

A、组成对居里温度的影响

不同的PTC热敏陶瓷对Tc(开关温度)有不同的要求。通过控制BaTiO3的居里点可以解决。改变Tc称“移峰”,通过改变组成,即加入某些化合物可以达到“移峰”的目的,这些加入的化合物称为“移峰剂”。

“移峰剂”具有与Ba2+、Ti4+离子大小、价态相似的金属离子,可以取代Ba2+、Ti4+离子,形成连续固溶体。如PbTiO3(高于120℃,Tc=490℃)、 SrTiO3(低于120℃,Tc=-150℃)。

B、晶粒大小的影响

晶粒大小与正温度系数、电压系数及耐压值有密切的关系。一般说来,晶粒越细小,晶界的比重越大,外加电压分配到每个晶粒界面层的电压就越小。因此,晶粒细小可降低电压系数,提高耐压值。

BaTiO3热敏陶瓷的PTC特性的高低,与陶瓷的晶粒大小密切相关。研究表明,晶粒在5um左右的细晶陶瓷具有极高的正温度系数。

要获得细晶陶瓷,首先要求原料细、纯、匀、来源稳定,其次可通过添加一些晶粒生长抑制剂,达到均匀细小净粒结构的目的。此外,加入玻璃形成剂和控制升温速度也可以抑制晶粒长大。

C、化学计算比(Ba/Ti)的影响

在TiO2稍微过量时通常会呈现最低体积电阻率;在Ba过量时体积电阻率往往会增高,且使瓷料易于实现细晶化。

D、Al2O3对PTC陶瓷的影响

Al3+在BaTiO3基陶瓷中有三种存在位置:①当TiO2高度过量时,Al3+有可能被挤到BaTiO3晶格的Ba2+位置,这时Al3+的作用是施主;②在Al2O3-SiO2-TiO2掺杂的PTC瓷料中,Al3+处于玻璃相中,能够起到吸收受主杂质、纯化主晶相的作用;③在未引入SiO2、且TiO2也不过量的情况下,Al3+

将取代BaTiO3晶格中的Ti4+,起受主作用。显然,①、②种情况下对PTC瓷料的半导化起有益作用。③是有害的。

3、PTC热敏电阻的应用

为温度敏感特性的应用、延迟特性的应用及加热器方面的应用。

(1)、温度监控传感器

(2)、彩色电视机消磁

(3) 、电冰箱起动器

(4)、PTC陶瓷作为发热体

六、NTC热敏电阻陶瓷

1、NTC热敏电阻的定义

NTC热敏电阻陶瓷是指随温度升高而其电阻率按指数关系减小的一类陶瓷。

R T=R0exp(B/T-B/T0)

B=lgR T-lgR0/(1/T-1/T0)

R T、R0为温度T、T0时热敏电阻的电阻值(Ω),B热敏电阻常数(K)。

热敏电阻常数B可以表征和比较陶瓷材料的温度特性,B值越大,热敏电阻的电阻对于温度的变化率越大。一般常用的热敏电阻陶瓷的B=2000~6000K,高温型热敏电阻陶瓷的B值约为10000~15000K。

NTC热敏电阻陶瓷大多数是尖晶石结构或其它结构的氧化物陶瓷,主要成分是CoO、NiO、MnO、CuO、ZnO、MgO、Fe2O3、Cr2O3、ZrO2、TiO2等。其主要成分和应用见表8-3。分为三大类:低温型、中温型及高温型陶瓷。

2、中温NTC热敏电阻陶瓷

1)材料体系:

二元系:CuO-MnO-O2

CoO-MnO-O2

NiO-MnO-O2

三元系: MnO-NiO-CoO-O2

MnO-NiO-CuO-O2

MnO-CuO-CoO-O2

2)NTC热敏电阻陶瓷的导电机理:

(i)化学计量比偏离

采用氧化或还原气氛烧结,分别产生p型和n型半导体,形成电子或空穴导电。

(ii)掺杂

在主成分中引入少量与主成分金属离子种类不同、电价不等的金属离子,产生不等价置换,从而产生产生p型和n型半导体,实现电子或空穴导电。

3、高温NTC热敏电阻陶瓷

一般要求为:熔点高、性能稳定、热敏感性高、电阻温度系数大、元件烧成后,与电极的接触状态好、可通过调整配方和晶粒度能够改变电阻的温度特性。

材料体系有以下两类:

ZrO2-CaO、ZrO2-Y2O3等萤石型结构陶瓷

以Al2O3、MgO为主要成分的尖晶石型陶瓷

4、NTC热敏电阻陶瓷的应用

1)温度补偿:

用于石英振荡器(2~3个NTC)

2)抑制浪涌电流:

用于控制开关电源、电机、变压器等在接通瞬时产生的大电流。

3)温度检测

用于热水器、空调、厨房设备、办公用品、汽车电控等。

片式NTC热敏电阻主要应用在移动电话、手提电脑、液晶显示器、个人计算机、传真机以及汽车工业,其中44%用于通讯领域,26%用于汽车工业,30%用于消费类电器。近年来,由于移动通讯、计算机、消费类电子产品(如彩电、VCD、DVD、LD、CD等)、办公自动化设备、汽车电子装备以及军用无线电设备和航空、航天高新数字电子技术产品在我国的迅猛发展,国内市场对片式化NTC热敏电阻的需求与日俱增,市场前景大为看好。因此,国内外对片式NTC热敏电阻的需求以每年20~30%的速率递增。

5.NTC热敏电阻陶瓷的生产工艺及特点

1)电极制备:与银形成可靠的欧姆电极

2)阻值调整:

3)敏化处理:

七、展望与总结

1、市场展望

PTCR 的今后市场规模, 一方面随着消费类产品的发展与产量的增长, 将继续得到同步的增长; 另一方面, 随着 PTCR 扩大在投资类和其它各个领域 ( 包括军用、宇航用电子品) 内的推广应用, 将促进其市场规模进一步增长。其中, PT CR 开拓在汽车工业上的应用, 将会成为今后较大的潜在市场。PTCR 在汽车上的应用如表 2 所示, 有广泛的应用前景。根据有关部门调查统计, 目前国内对热敏电阻器 (含NTC) 的年需求量大约在 1. 5亿只左右。

2、技术展望

从PTC 今后市场需要和扩大其应用来看, 对其性能的要求会愈来愈高。这些要求包括低阻、电阻温度系数大、升阻比大、耐压高、承受大电流和冲击电流能力强、长期使用稳定性好、精度高、寿命长、可靠性高、电阻温度特性的线性好等。根据不同用途, 对上述要求有所侧重。如用作开关元件, 趋向大功率、大电流控制方面, 除了要求低阻、高耐压、高精度外, 还需通过元件比电阻的分布, 使元件发热均匀以及元件趋向SMD 化;用作发热体元件, 为了充分发挥自控特点, 要求开发低热阻、高响应的PTC 发热体, 为提高发热效率和缩小发热体积, 需开发大功率高温PT C 材料等

陆侃

通信工程一班

E09680118

热敏电阻材料与应用

热敏电阻材料与应用 一、传感器定义和分类 1、传感器的定义 国家标准 GB7665-87 对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: (1)、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器。(2)、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅热电偶等传感器。 (3)、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和“0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 3、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。 4、传感器的动态特性 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 5、传感器的线性度 通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。 6、传感器的灵敏度 灵敏度是指传感器在稳态工作情况下输出量变化△ y 对输入量变化△ x 的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度 S 是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化 1mm 时,输出电压变化为 200mV ,则其灵敏度应表示为 200mV/mm 。 当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高

NTC热敏电阻[概念_计算方法_应用场合]

NTC负温度系数热敏电阻[概念,计算方法,应用场合] NTC负温度系数热敏电阻 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数 -2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量 功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数(e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

基于热敏电阻的温度控制器设计

基于热敏电阻的温度控制器设计 王芬 电子信息学院测控技术与仪器1031班 摘要:介绍一种以单片机为核心的温度控制系统。该系统利用热敏电阻的阻值随温度的变化转化为频率的变化,再由单片机处理后显示温度值,并 实时处理。可以通过编程实现设置和显示温度的上下限和加热控制。测量 范围为10度到80度,适合用于空调机内部。 关键字:单片机、温度、控制系统、非线性、线性化 1 引言 在现实生活中,温度的监测和控制在纺织工业、林业、化工、各种军用、民用房以及气象和模拟人工气侯环境中等方面都有着广泛的应用。因此,能否有效地对这些领域的环境温度进行实时监测,是一个必须解决的重要课题目前,国际上新型温度测控系统从集成化向智能化、网络化的方向飞速发展,小型、低功耗、高可靠性、低成本的温度测控系统已经越来越受到关注,并广泛应用于工业控制和自动化测量系统中,给人们的生活带来了根本性的变化。基于其现实的诸多作用,设计了该温度控制器,也可在此基础上修改为其他非电量的测量系统。 2本系统工作原理 基于热敏电阻的温度控制器系统由前向通道、单片机、后向通道组成。前 向通道是单片机对被测控温度的输入通道,后向通道是单片机把处理后的数字 量进行传递、输出显示、控制和调节的通道。其结构框图如图1所示: 图1. 基于热敏电阻的温度控制器系统结构框图 3硬件的实现 3.1 温度传感器 温度传感器采用负温度系数的热敏电阻(NTC),NTC的温度系数大,价格低

廉,用此制造的测温、控温装置在科研、生产等方面使用非常广泛。但由于NTC 的温度特性存在严重的非线性,其非线性曲线图如图2所示。因此必须对系统进行线性化处理,线性化处理的方法很多。有硬件电路的互补法,软件上的最小二乘法等。下面文章将介绍一种新的方法。 图2:NTC 的非线性曲线图 通过观察由理想情况的测得的热敏电阻t R 和温度T 的多组数据,在Excel 上拟和出得出t R 与T 的曲线图,根据图形观察得到t R 和T 的表达式为: t a bT R c dT += + (1) 再通过C 语言编程计算出表达式中的系数a,b,c 和d 。再根据R/F 转换器中 1 0.7(2) t f C R R = + (2) 精确计算出参数C 和t R ,就能得到f 与T 的线性表达式。 T mf n =+ (3) (3)式中的系数m 和n 可通过(1)式和(2)式计算得到。 3.2 R/F 转换器 本系统的特点是用555定时器构成的多谐振荡器能产生矩形脉冲波,把NTC 电阻的变化直接转换为频率的变化,通过555的3脚接到单片机P3.4口定时/计数器0来对R/F 的脉冲计数,计数结果即为A/D 转换的结果。555内部的比较器灵敏度较高,而且采用差分电路形成,它的振荡频率受电源和温度的变化的影响很小。这种方法省去了传统方法中的的放大电路,采样保持器,放大器,A/D 转换器,不论是在硬件电路还是在软件设计上都的到了简化。R/F 转换器的原理图如图3:

基于热敏电阻和传感器的测温电路(1)

基于热敏电阻和传感器的测温电路 实验目的: (1)了解和掌握热敏电阻的测试范围、精确度、灵敏度,对测温用敏感元件反应速度以及环境条件来合理的选择测温的传感器和测量方法。 (2)对温度测量装置的设计方法进行对比,选取准确度和精度较高的装置。(3)了解传感器的特性,基本物理量的测试,熟悉对电路的基本知识的运用。 实验用具: 热敏电阻,AD590集成温度传感器,数字万用表,恒温水浴,标准电阻,测量放大器,0--100℃分度值为0.1℃标准水银温度计。 实验要求: 设计一套对温度的实时测量和控制的装置,要求有如下指标: (1)测温范围:10--80℃; (2)精确度:1.5℃; (3)灵敏度:0.2℃; (4)响应时间:<5s; 实验原理: 1、测温传感器的选择 由于该装置是要求实时测量和显示温度值,因而需要将温度这个模拟量转变为电学量输出的传感器较为合适。从对测温灵敏度及响应时间考虑,所选择的传感器体积要小,温度变化0.2℃时,显示应能分辨。所以,比较合适的是珠状热敏电阻和新型的集成温度传感器AD590。 2、热敏电阻的阻值随温度变化的特性曲线及线性化 半导体热敏电阻具有很高的负电阻温度系数,其灵敏度要比电阻式热敏电阻高得多,而且体积可以做的很小,其电阻随温度有如下的数学表达式 R t(T)=R20b(1/T-1/T20) (1) 式中,R t(T)是摄氏温度为t(热力学温度为T)时的电阻值,R20是温度为20℃ 时的电阻值,T为热力学温度,T20为t=20℃时的热力学温度,b为半导体材料物理特性有关的常量。

3、AD590集成温度传感器介绍 集成温度传感器AD590将温敏晶体管与相应的辅助电路集成在同一芯片上,它能直接给出正比于绝对温度的理想线性输出,一般用于-50℃-- +150℃之间温度测量,温敏晶体管是利用管子的集电极电流恒定时,晶体管的基极——发射极 电压与温度成线性关系。为克服温敏晶体管生产时V b的离散性,均采用了特殊的差分电路。集成温度传感器有电压型和电流型二种,电流输出型集成温度传感器,在一定温度下,它相当于一个恒流源。因此它具有不易受接触电阻、引线电阻、电压噪声的干扰.具有很好的线性特性。因此,接数字电压表,就便于进行温度的测量和显示。 实验内容及步骤: 一、用热敏电阻设计测温电路 电路原理图: 由(1)式可知,半导体热敏电阻的电阻值随温度的变化是非线性的。因为用热敏电阻做作传感器测温时,其电阻的变化应纯粹由环境温度的变化所引起, 故工作电流会很低,才不会对热敏电阻本身加热,一般I应小于10-5A。 对于如此小的量,用数字万用表的电流档测量的准确度就不高,这时采用放大电路,把电流的变化量转化为电压的变化量,此时,为便于读数和预测,就必须要求该电路是线性电路。即,通过线性化网络校正,使输出电压与环境温度的变化基本上呈线性关系。 对于给定的热敏电阻,测定出其电阻随温度变化的特征曲线,对应热敏电阻 的经验公式,确定R20及b。 由(1)式可知,R与(1/T)成正比关系。在电压一定时,流过电路的电流就与温度T成正比。故加在R1之间的电压U与温度T成正比。 这里,采用最小二乘法拟合一条线性直线,设拟合直线为 U=k*T +b (2)

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

NTC热敏电阻参数及其对照表

10K NTC热敏电阻参数及其对照表常温下R25℃ = 10K B(25-85)=3435

10K NTC热敏电阻负温度系数(NTC电阻随着温度的升高而降低)温度传感器探头是基于一个10K的±1% @ 25oC传感器-即电阻值在25oC 是10K,一般用途的温度测量,NTC温度传感器可以在很宽的温度范围内工作(-40 + 125°C)他们是稳定的,年/阻值漂移小于1PPM。10K NTC热敏电阻产品尺寸图: 10K 3435NTC热敏电阻特点: 1:MF52系列产品为径向绝缘引线,使用时无需引脚绝缘处理 2:产品稳定性好,可靠性高,年漂移率小于1PPM 3:热敏电阻阻值范围宽:1KΩ~1000KΩ 4:阻值及B值精度高,一致性好 6:体积小热感应时间快灵敏度高,便于自动化安装 7:使用温度范围-40℃~+125℃ R25=10K B=3435NTC热敏电阻应用范围: ?充电器、温湿度计、美容仪器、电源、电子玩具 ?气体分析计手机电池、NB电池、电动车电池、医疗仪器 ?太阳能热水器、冷藏库、汽车、複印机、传真机 ?电子体温计、电子炉台、电子锅、电热水瓶

?即热式热水器、瓦斯热水器、电毯、空调 ?3C家电产品、石油暖炉、打印机 103F3435NTC热敏电阻机械性能标准: MF52产品型号说明 MF 52 103 F 3435 ①② ③ ④ ⑤ ①MF ——负温度系数(NTC)热敏电阻编号。 ②52——树脂封装小黑头热敏电阻(包括漆包线、小皮线) ③103 ——热敏电阻的标称阻值(10K欧),表示该电阻标称阻值为:10×103(Ω)。 ④F——电阻值的误差(精度)为:S=±0.5% F=±1%,G=±2%,H=±3%,J=±5% ⑤3435——电阻的热敏指数(材料系数)B值为:343×10(K) R25=10K B=3435NTC热敏电阻阻温特性R/T表:

ntc热敏电阻作用 7个常见例子

ntc热敏电阻作用7个常见例子 负温度NTC热敏电阻利用其特性,在N多种场合、N多种产品中发挥重要的作用。随温度的增大、阻值变小;温度下降,阻值变大~ NTC热敏电阻在体温探头的作用 体温探头其温度精度达到±0.1℃。这对NTC热敏电阻的要求是:体积小,高精度,高可靠,良好的耐热循环能力. 档监护仪采用双道体温测量电路,用于重症病人监护方面.它要求一个体温探头能同时提供双道测量温度,以配合监护仪的双道测量电路. 传统的做法,是将两粒NTC热敏电阻并联起来,制作成一个体温探头。但因受其尺寸限制,这种做法不能适应其小型化要求。 一是测量精度更准确,因其两粒芯片所测温度可以作对比,可以更能准确的测量出实际温度。二是可靠性更强,在工作中,即使其中一粒芯片突然失效,另一粒芯片仍可继续工作。 NTC热敏电阻医用植入式传感器 植入式传感器应当体积小,重量轻,并且和身体兼容,同时还要求其功率非常小。更重要的是,它们不能随着时间的推移而衰变。由于这类传感器属于第Ⅲ类医疗器械,因此需要有食品及药物管理局(FDA)的批准才能使用。一般来讲,这类传感器价格非常昂贵,而且需要专家做外科手术进行移植。 NTC热敏电阻和体液相接触的外用传感器 有几类一次性传感器是附在体外使用的,但是它们却是和体液相接触的。比如一次性血压传感器(DSP),(见图5)。这类传感器用于外科手术和重症监护,以便持续地监控病人的血压情况。这是在给病人进行静脉输液(IV)的同时测量

其血压的最理想方式。这类传感器需要每24个小时更换一次,以保证传感器的清洁卫生。这类传感器被连到一个监控器上,以便记录下所有的信息。还有其它几类与药物或是体液相接触的传感器。 NTC热敏电阻 "临时性"插入传感器 这类传感器要求能够通过切口插入体内(典型的方式是通过导管插入)。和植入式传感器相比,这种传感器的危险性不高。这种传感器的应用也很敏感,同样需要食品及药物管理局的批准才能使用。根据外科手术的不同,这些传感器可能会发挥几分钟到几个小时的功效。在理想情况下,这些传感器不需要外部动力进行驱动,但是如果必要的话,也可以通过外部途径进行驱动。 NTC热敏电阻太阳能热水器水温水位传感器 传感器就是一种能够感受水温水位,并且将感受到的水温水位转变成变化的电信号的仪器。在太阳热水器的发展史上,水温水位传感器一直起着举足轻重的作用,热水器的智能化、人性化都与水温水位传感器密不可分,水温水位测控仪更是离不开水温水位传感器,水温水位传感器工作稳定是对整个热水器智能控制的保障。 NTC热敏电阻在电源电路中的作用 NTC电阻串联在交流电路中主要是起"电流保险"作用. 压敏电阻并联在交流侧 电路中主要是起"限制电压超高"作用. 采用NTC抑制开机浪涌的电源设备,不能够频繁的开关机.需要等NTC冷却,恢复至其冷态阻值后,才能再次开机.要不,安装NTC的意义就没有了 NTC热敏电阻在医疗电子体温计中的应用 现在,很多大型医院都采用电子式体温计,这种温度传感器测量时间短、测量精度高、读数方便,并且还具有记忆功能,在临床上使用方面,性能突出。它通常由感温探头、信号处理单元、显示屏、电源四部分构成。感温探头是敏感部件,一般选用一个或几个高精度快速反应的热敏电阻,它直接关系到输出温度的准确性和响应速度;信号处理单元内部有加热和预测两种算法。

热敏电阻在日常生活中的应用

热敏电阻在日常生活中的应用 20093615559杨娜热敏电阻按照温度系数的不同分为: 正温度系数热敏电阻(简称PTC热敏电阻) 负温度系数热敏电阻(简称NTC热敏电阻) 主要应用范围包括 电磁炉、电压力锅、电饭煲、电烤箱、消毒柜、饮水机、微波炉、电取暖机、工业、医疗、环保、气象、食品加工设备等家用电器的温度控制及温度检测以及办公自动化设备(如复印机、打印机)、仪表线圈、集成电路、石英晶体振荡器和热电偶的等温度检测及温度补偿; 1.过液面控制 将两只负温度系数热敏电阻置于容器高、低液面安全位置,并施加定值加热电流。处于底部浸没于液体中的热敏电阻表面温度与周界温度相同,而处于高处暴露于空气中的热敏电阻表面温度则高于周界温度。若液面淹没高处电阻,使其表面溢度下降阻值增高,判断电路可利用阻值变化而及时通知报警装置,动作电路切断进液管路,起到过液面保护作用。若液面下降到低位,底部热敏电阻逐渐暴露于空气中,此时表面温度升高阻值下降,判断电路可利用阻值变化而及时通知动作电路打开进液管路供液。 2.温度测量 作为测量温度的热敏电阻一般结构简单,价格低廉。由于本身阻值较大,所以可忽略连接处的接触电阻,并可应用在数千米之外的远距离遥测过程。 3.温度补偿 利用负温度特性,可在某些电子装置中起到补偿作用。当过载而使电流和温度增加时,热敏电阻阻值加大反向下拉电流,起到补偿、保护等作用。此时应注意热敏电阻需串接在电子线路中。 4.温度拉制 在机电保护与控制中,常将临界点热敏电阻串接在继电器控制回路中,当某一设备遇突发性故障发生过载时,引起温度增高。若达到临界点阻值突然下降,继电器电流超过动作电流额定值而动作,起到切断、保护作用。 5.温度保护 热敏电阻在一些设备的功能管理中起着非常关键的作用,如无线话机、笔记本计算

热敏电阻及其原理应用

热敏电阻及其原理应用 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。 1简介 热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。[1] 利用的原理是温度引起电阻变化.若电子和空穴的浓度分别为n、p,迁移率分别为μn、μp,则半导体的电导为: 因为n、p、μn、μp都是依赖温度T的函数,所以电导是温度的函数,因此可由测量电导而推算出温度的高低,并能做出电阻-温度特性曲线.这就是半导体热敏电阻的工作原理. 热敏电阻包括正温度系数(PTC)和负温度系数(NTC)热敏电阻,以及临界温度热敏电阻(CTR)。 2特点 ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;④使用方便,电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂的形状,可大批量生产; ⑥稳定性好、过载能力强。 3工作原理 热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。

热敏电阻

一、温度监测 (一)了解热敏电阻测量和控制温度的工作原理; (二)测定温度—电流(电压)关系曲线。 二、材料 热敏电阻(NCT100K)(1个);测量线路板(1块);微安表(50)(1个);坐标纸(1张);水银导电计(1支);直流电源(4—6V) (1个);恒温自动控制器 (1套) ;导线 (若干)。 三、原理 (一)热敏电阻 测量温度一般使用的温度计,除了常用的水银或酒精制成的温度计外,还有用其他材料制成的温度计。如热电偶、光测高温计、定容气体温度计等。热敏电阻温度计也是一种常用的测温仪器,它是利用半导体制成感温元件,它的电阻称为热敏电阻。其阻值随温度升高而减小,具有负的温度系数。电阻变化的范围比一般具有正温度系数的金属电阻大。例如,当温度变化1℃时,热敏电阻的阻值变化范围可达3%—6%。而且阻值可以很大,体积可以很小,灵敏度高,热惯性小,价格又低,这些特点使它在生产与科研中有了广泛的应用。

T0-热敏电阻的温度特性可用下式近似表示:

从用途上分,NTC热敏电阻可以分为温度感知型NTC和功率型NTC RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp:以自然数 e 为底的指数( e = 2.71828 …)。 摄氏温度t(c)和绝对温度T(K):T(K)=t(c)+273.15 RT=10000*exp3700*(1/T-1/298.15) 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数B 本身也是温度 T 的函数。 第四节温度感知型NTC应用电路

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

热敏电阻应用举例

2.57能否举一个例子说明PTC热敏电阻的应用? PTC热敏电阻应用举例 PTC热敏电阻可用于计算机及其外部设备、移动电话、电池组、远程通讯和网络装备、变压器、工业控制设备、汽车及其它电子产品中,作为开关类的PTC陶瓷元件,具有开发功能。使电器设备避免过流、过热损坏;作为加热类的PTC陶瓷元件,它是一种温度自控的发热体,大量用于暖风机、电吹风、电蚊香、电熨斗等需要保持恒定温度的电器上,可省去一套温控线路。 (1)负载过电流、过热保护 右图为热敏电阻对负载电路的保护示意图。热敏电阻动作后,电路中电流有了大幅度的降低,因而可同时起到过热保护和过流保护两种作用。热敏电阻也适用于手提电脑及手机中 的锂离子电池和镍氢电池的短路及发热保护。 当手机电池过充电或短路时,电池发热,电池内部线路板上的PTC阻值上升,将电流限制在安全范围内。某些水货手机电池内部用普通电阻代替PTCR,在发生短路故障时,保护作用很差。 (2)PTCR在电视机PTC消磁电路中的应用

彩色显像管的栅网、、荫罩等部件都是用金属材料做成的,易受到地磁场或机内、外杂散磁场的影响,会使这些金属部件磁化,使图像色彩出现异常,因此彩色电视机都设有自动消磁电路。附着在显像管上的消磁线圈与PTCR串联组成消磁电路。刚开机时, PTCR 冷电阻很小(约为12~18Ω),流过消磁线圈的50Hz电流很大,产生很强的交变磁场,电流同时也流过PTCR,使其温度上升,其阻值在几秒内迅速增大,电流逐渐减小,呈衰减波形,磁场逐渐减弱起到消磁的作用。为了减小维持电流,可紧贴PTCR旁边,设置一个小功率加热电阻,使PTCR在电视机工作期间一直保持较高的温度,流过消磁线圈的电流可维持在很小的水平,以减小耗电。 电视机消磁电路用PTC热敏电阻 PTC消磁电路的电流时间曲线 PTC在电动机起动电路中的应用

热敏电阻的工作原理

热敏电阻的工作原理 热敏电阻是一种敏感元件,根据温度系数的不同可分为正温度系数热敏电阻(PTC)和负温度系数热敏电阻(NTC)。热敏电阻的典型特征是温度敏感性,在不同温度下电阻值不同。正温系数热敏电阻器(PTC)在较高温度下阻值较高,负温系数热敏电阻器在较高温度下阻值较低。它们属于半导体器件。 但需要指出的是,热敏电阻不属于进出口关税项目85.41中的半导体器件。 热敏电阻的主要特点是: 热敏电阻 热敏电阻 ①灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; ②工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~-55℃; ③体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; ④使用方便,电阻值可在0.1~100kΩ间任意选择; ⑤易加工成复杂的形状,可大批量生产; ⑥稳定性好、过载能力强。 2工作原理

热敏电阻将长期处于不动作状态;当环境温度和电流处于c区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作。热敏电阻在环境温度相同时,动作时间随着电流的增加而急剧缩短;热敏电阻在环境温度相对较高时具有更短的动作时间和较小的维持电流及动作电流。 1、ptc效应是一种材料具有ptc(positive temperature coefficient)效应,即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有ptc效应。在这些材料中,ptc效应表现为电阻随温度增加而线性增加,这就是通常所说的线性ptc效应。 2、非线性ptc效应经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性ptc效应,相当多种类型的导电聚合体会呈现出这种效应,如高分子ptc热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。 3、高分子ptc热敏电阻用于过流保护高分子ptc热敏电阻又经常被人们称为自恢复保险丝(下面简称为热敏电阻),由于具有独特的正温度系数电阻特性,因而极为适合用作过流保护器件。热敏电阻的使用方法象普通保险丝一样,是串联在电路中使用。 当电路正常工作时,热敏电阻温度与室温相近、电阻很小,串联在电路中不会阻碍电流通过;而当电路因故障而出现过电流时,热敏电阻由于发热功率增加导致温度上升,当温度超过开关温度(ts,见图1)时,电阻瞬间会剧增,回路中的电流迅速减小到安全值.为热敏电阻对交流电路保护过程中电流的变化示意图。热敏电阻动作后,电路中

(完整word版)NTC热敏电阻5K,10K,50K,100K阻值与温度对应RT表.doc

TEMPERATURE VS RESISTANCE TABLE Resistance5k Ohms at 25deg. C Resistance Tolerance+ / - 1 % B Value3470K at 25/50 deg. C B Value Tolerance+ / - 1 % Temp. Rmax Rnor Rmin (deg. C) (k Ohms) (k Ohms) (k Ohms) -20 37.7588 36.6476 35.5656 -19 35.8710 34.8331 33.8218 -18 34.0895 33.1199 32.1745 -17 32.4076 31.5016 30.6178 -16 30.8191 29.9724 29.1460 -15 29.3184 28.5270 27.7542 -14 27.9000 27.1602 26.4374 -13 26.5589 25.8672 25.1911 -12 25.2904 24.6438 24.0113 -11 24.0903 23.4857 22.8939 -10 22.9545 22.3890 21.8353 -9 21.8790 21.3502 20.8321 -8 20.8605 20.3659 19.8810 -7 19.8954 19.4328 18.9791 -6 18.9808 18.5481 18.1235 -5 18.1137 17.7090 17.3115 -4 17.2913 16.9127 16.5408 -3 16.5111 16.1570 15.8089 -2 15.7708 15.4395 15.1138 -1 15.0679 14.7581 14.4533 0 14.4005 14.1108 13.8255 1 13.7666 13.4956 13.2286 2 13.1642 12.9108 12.6610 3 12.5917 12.3547 12.1210 4 12.0473 11.8258 11.6072 5 11.529 6 11.3226 11.1181 6 11.0372 10.8436 10.6524 7 10.5685 10.3877 10.2089 8 10.1225 9.9535 9.7863 9 9.6977 9.5399 9.3837 10 9.2932 9.1458 8.9998

热敏电阻常识

热敏电阻的工作原理是根据这种特殊的电阻在不同温度下所具有的阻值不同而来测量环境温度的。 半导体热敏电阻的主要特性 解:半导体热敏电阻是利用半导体材料的热敏特性工作的半导体电阻。它是用对温度变化极为敏感的半导体材料制作成的,其电阻值随温度变化而发生极为明显的变化。 热敏电阻是非线性电阻,它的非线性特性基本上表现在电阻与温度的关系不是直线关系,而是指数关系,电压、电流的变化不服从欧姆定律。 按电阻温度系数不同,热敏电阻分为正温度系数热敏电阻和负温度系数热敏电阻两种。在工作温度范围内,正温度系数热敏电阻的阻值随温度升高而急剧增大,负温度系数热敏电阻的阻值随温度升高而急剧减小。敏感电阻: 敏感电阻是指器件特性对温度,电压,湿度,光照,气体,磁场,压 力等作用敏感的电阻器。敏感电阻的符号是在普通电阻的符号中加一斜线,并在 旁标注敏感电阻的类型,如:t. v等。 命名方法: 根据电子工业部的规定,敏感电阻的命名由4部分组成: 第一部分:M敏感元件 第二部分:类别:Z正温度系数热敏电阻F负温度系数热敏电阻Y压敏电阻S湿 敏电阻Q气敏电阻G光敏电阻C磁敏电阻L力敏电阻 第三部分:用途和特征(热敏)1普通用2稳压用3微波测量用 4旁热式5测温用 6控温用7消磁用8线性用 9恒温用0特殊用 (压敏)W稳压用G高压保护用P高频用N高能用K高可靠用L 防雷用H灭弧用Z 消噪用B补偿用C 消磁用光敏1,2,3紫外线4,5,6可见光7,8,9红外线 第四部分:序号 热敏电阻: 是一种阻值随温度变化的元件,阻值随温度增加而上升的为正温度系 数热敏电阻,简称PTC 反之称为负温度系数热敏电阻NTC 热敏电阻主要参数的定义: 标称阻值:指在环境温度为25C时电阻的阻值。

NTC热敏电阻RT对照表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0 1.7944 -11.5 59.3908 29.0 8.4063 69.5 1.7636 -11.0 57.8038 29.5 8.2281 70.0 1.7334 -10.5 56.2639 30.0 8.0541 70.5 1.7037 -10.0 54.7694 30.5 7.8842 71.0 1.6747 -9.5 53.3189 31.0 7.7184 71.5 1.6462 -9.0 51.9111 31.5 7.5565 72.0 1.6183 -8.5 50.5445 32.0 7.3985 72.5 1.5910 -8.0 49.2178 32.5 7.2442 73.0 1.5641 -7.5 47.9298 33.0 7.0935 73.5 1.5378 -7.0 46.6792 33.5 6.9463 74.0 1.5120 -6.5 45.4649 34.0 6.8026 74.5 1.4867 -6.0 44.2856 34.5 6.6622 75.0 1.4619 -5.5 43.1403 35.0 6.5251 75.5 1.4375 -5.0 42.0279 35.5 6.3912 76.0 1.4136 -4.5 40.9474 36.0 6.2604 76.5 1.3902 -4.0 39.8978 36.5 6.1326 77.0 1.3672 -3.5 38.8780 37.0 6.0077 77.5 1.3447 -3.0 37.8873 37.5 5.8858 78.0 1.3225 -2.5 36.9246 38.0 5.7666 78.5 1.3008 -2.0 35.9892 38.5 5.6501 79.0 1.2795 -1.5 35.0801 39.0 5.5363 79.5 1.2586 -1.0 34.1965 39.5 5.4251 80.0 1.2381 -0.5 33.3378 40.0 5.3164 80.5 1.2180 0.0 32.5030 40.5 5.2102 81.0 1.1983

最新NTC热敏电阻原理及应用86865

N T C热敏电阻原理及应用86865

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近 理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计 的测量功率测得的电阻值。 仅供学习与交流,如有侵权请联系网站删除谢谢13

电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K ) B 值被定义为: RT1 :温度 T1 ( K )时的零功率电阻值。 仅供学习与交流,如有侵权请联系网站删除谢谢13

相关主题
文本预览
相关文档 最新文档