当前位置:文档之家› 椭圆齿轮-曲柄摇杆打纬机构的分析与设计

椭圆齿轮-曲柄摇杆打纬机构的分析与设计

椭圆齿轮-曲柄摇杆打纬机构的分析与设计
椭圆齿轮-曲柄摇杆打纬机构的分析与设计

摘要

目前在织机中有三种类型:分别是剑杆织机、喷水织机和喷气织机,剑杆织机因结构简单,成本低而应用广泛。我国是一个纺织大国,但由于我国在现代剑杆织机研究不足,当今剑杆织机机构的知识产权不在我国,就不可能将企业做大、做出品牌。要改变中高级剑杆织机生产设备主要依靠进口的局面,必须走自主创新的道路,需要从剑杆织机核心机构开始做基础性研究工作。剑杆织机的打纬机构主要有三种:共轭凸轮机构、四连杆机构和六连杆机构。

本文综述了目前国内外织机发展的现状和打纬机构的研究情况,提出了一种新的打纬机构:椭圆齿轮-曲柄摇杆打纬机构。为分析该机构的打纬性能,建立了机构的运动学数学模型,列出位移、速度和加速度方程。采用Visual Basic 6.0软件编写了辅助分析软件,得到打纬机构的运动学特性曲线。

了解和分析机构参数对运动规律的影响,通过对机构运动目标的确定,来优化打纬机构的各参数,本文采用基于VB6.0编写的可视化软件进行人机交互对话优化方法,结合实际设计时的结构限制,取得了一组最佳参数。

关键字:打纬机构;椭圆齿轮;曲柄摇杆;运动学分析;参数分析

Abstract

At present,there are three types looms,namely the rapier,water and air-jet looms,rapier has broad application because of its simple structure and low cost.China is a big textile country,but because lacking research in modem rapier,rapier in today’s intellectual property is not in ou r country,which restricted the domestic enterprises become strong and make famous brand,to change the situation that high product equipment of rapier mainly depends on imports,must take the road of independent innovation and should start do basic research from core component of the rapier.Rapier of the beating—up mechanism has three main types:conjugate cam,four-bar linkage and six—bar linkage.

This paper reviewed the current development of looms boom domestic and foreign and also the situation of the beating-up mechanism study,present a new type beating-up mechanism:elliptical gear—crank-rocker beating—up mechanism,and then establish the kinematics mathematical model of beating—up mechanism,and the equation of displacement ,velocity and acceleration will be list,for analysis the performance of beating—up mechanism,kinematics analysis of the new beating-up mechanism was made with Visual Basic 6.0 software,output beating-up mechanism’s kinematics curve.

Understand and analyses the effect of parameters on law of motion, by exterminating the target of mechanism motion, based on the visualization software of VB6.0 for interactive dialogue optimization methods,obtained a set of best Parameters with the structure restrictions while doing actual design.

Key words:beating--up mechanism;elliptic gear;crank-rocker;kinematics analysis;parameter analysis ;

目录

摘要

Abstract

第一章绪论 (1)

1.1引言 (1)

1.2几种典型的打纬机构 (2)

1.2.1 概述 (2)

1.2.2 四连杆打纬机构 (2)

1.2.3 六连杆打纬机构 (5)

1.2.4 共轭凸轮打纬机构 (6)

1.3打纬机构国内外研究现状 (7)

第二章椭圆齿轮-曲柄摇杆打纬机构运动学建模 (8)

2.1椭圆齿轮一曲柄摇杆打纬机构简介 (8)

2.2机构运动学目标 (8)

2.3椭圆齿轮一曲柄摇杆的打纬机构运动学模型的建立 (9)

2.3.1从动椭圆齿轮角位移、角速度和角加速度数学模型建立 (9)

2.3.2摇杆的角位移、角速度和角加速度数学模型建立 (11)

2.3.3 打纬点的角位移、角速度和角加速度数学模型建立 (12)

第三章辅助分析软件的功能及其使用方法 (14)

3.1 打纬机构运动学辅助分析初始界面 (14)

3.2打纬机构运动学辅助分析运行界面 (15)

3.3 打纬机构运动学辅助分析模拟界面 (15)

3.4进步界面 (16)

第四章机构参数对运动规律的影响 (18)

4.1 椭圆偏心率k的影响 (18)

4.2 初始安装角δ的影响 (18)

4.3 曲柄、连杆长度的影响 (19)

4.4 摇杆运动性能分析 (20)

第五章机构的结构设计 (22)

5.1 箱体的设计 (22)

5.1.1 箱体的结构约束 (22)

5.1.2 新机构参数的选择 (23)

5.1.3 箱体的结构设计 (23)

5.2 椭圆齿轮的三维模型建立 (24)

5.3 曲柄的设计和图纸 (25)

5.4 摇杆的设计和图纸 (26)

5.5轴的设计和图纸 (27)

5.5.1 轴的材料选择 (27)

5.5.2 轴的结构设计 (27)

5.5.3提高轴的强度措施 (28)

5.5.4轴的强度校核 (29)

5.6 三维装配图 (29)

第六章总结 (31)

参考文献 (32)

致谢 (33)

第一章绪论

1.1引言

我国是纺织大国,纺织品的出口量位居世界第一,同时也是纺织机械进口大国,据我国海关统计,2011年1-11月我国纺织机械进出口总额为53.83亿美元,同比增长59.56%。其中进口金额为38.1亿美元,纺织机械出口金额为15.73亿美元[1]。在1:3的纺织机械中,织机位居第二,为5.29亿美元,占18.14%,同比增长17.86%,主要是喷气织机、剑杆织机和片梭织机。2008年上半年我国纺织机械及其零附件出口额8.10亿美元,同比增长6.60%,6月出口额为1.28亿美元。2010年1-11月我国纺织机械进出口额为38.10亿美元,同比增长65.69%。

我国有不少织机生产厂家,但其产品大多是中低档水平,且没有形成世界知名品牌。虽然有一些厂家开始生产高档织机,如中国纺织机械集团有限公司和经纬纺织机械股份有限公司,但其产品在可靠性和耐久性方面却远远不如进口产品,特别是不能长时间高速运转(在演示和展销期间可以高速运转),究其原因,除了关键零部件的材质和热处理不过关外,对核心工作部件的工作机理没有进行深入的研究,造成运动构件之间受力不良也主要原因之一。因此虽国内机织在价格上具有优势(如国产剑杆织机价格平均在12万元/台,而2010年进口的剑杆织机平均价格为5.45万美元),但很多企业还是青睐进口产品。

出现这种状况的原因是,国内织机厂家自主创新能力差。到2004年4月,在我国申请有关剑杆织机机构的相关专利共35件,其中国外在华侨申请11件,且这11件已经进入实用和推广。国内企业对核心机构(如打纬和引纬机构)的研究还停留在测绘和仿制阶段,这不仅带来侵权法律问题,不可能将企业做大、做出品牌,同时也由于没有从理论上进行深入研究,对其中的核心技术没有完全掌握,就仿制不了预想的性能和可靠性。可见织机的研究必须走自主创新的道路,必须从核心执行机构创新开始,运用计算机分析软件获得最佳参数,取得自主知识产权,然后再研究其工作机理、优化性能和提高可靠性,才能创自己的品牌和名牌产品。

1.2几种典型的打纬机构

1.2.1 概述

打纬机构是织机的主要机构之一,作用是将织机主轴的匀速旋转运动转化为摇轴的非匀速摆动,把新引入的纬纱推向织口形成织物,要求钢扣在后心位置要有停顿时间或“近似停顿”时间,以便有充分的时间完成打纬运动。

为了实现理想的打纬运动,并使打纬机构符合织造工艺要求,达到最佳经济效益,对打纬机构的工艺要求如下:

(1)有利于打紧纬纱

钢筘将引入梭口的纬纱打向织口,打纬机构的打纬力必须要适应所织织物的要求,如:紧密厚重的织物要求打纬力坚实有力;轻薄织物要求打纬柔和。同时在经纱方向要求钢筘必须具有足够的刚度,方可打紧纬纱。

(2)尽可能减小打纬动程

打纬动程:筘座从后止点摆动到前止点,钢筘上的打纬点在织机前后方向上的水平位移量。打纬动程越大,筘座运动的加速度也越大,不利于高速织造。

(2)筘座的转动惯量和筘座运动的最大加速度

在保证打紧纬纱的前提下,应尽量减小筘座的转动惯量及最大加速度,以减小织机的振动和动力消耗。

(3)筘座运动应尽可能与开口、引纬相配合

在满足打纬条件下,尽可能提供大引纬角,以保证引纬顺利进行。扩大引纬角,织机主轴一回转中引纬的时间增长,有利于增大织机幅宽,提高车速,降低梭子飞行速度及减少机物料消耗。

(5)打纬机构应力求结构简单坚固,操作安全装配方便。

目前织机上常用的打纬机构有连杆打纬机构和共轭凸轮打纬机构。连杆纬机构基本是四连杆非分离筘座式和六连杆式;共轭凸轮打纬机构则基本是分离筘座式[2]。

1.2.2 四连杆打纬机构

TP500(意大利SMIT公司)型剑杆织机采用四连杆打纬机构,该结构简单,制

造容易,但在曲柄后止点附近时,筘座无静止时间,如果允许5mm左右的打纬位移,能实现65°左右的“近似停顿”时间,性能比共轭凸轮打纬机构差,它主要用于非分离式筘座。

OA—曲柄;AB—连杆;OC—打纬杆

图1-1 TP500型号剑杆打纬机构简图

图1-2为K251型有梭丝织机的四连杆打纬机构。主轴1上的曲柄2,其颈上包有轴承3,经钢片夹4与牵手5相连接。牵手5的另一端活套在筘座脚6的牵手栓7上。两只筘座脚6则借托脚8固装在摇轴9上。当主轴转动时,通过曲柄2、牵手5及牵手栓7使筘座脚6绕摇轴9的中心摆动,从而使固装在筘座脚上的筘座10、钢筘11随之前后摆动,实现将纬丝推向织口。

1—主轴; 2—曲柄; 3—轴承; 4—钢片夹; 5—牵手; 6—筘座脚;

7—牵手栓; 8—托脚; 9—摇轴; 10—筘座; 11—钢筘; 12—筘帽

图1-2 有梭丝织机四连杆打纬机构

图1-3为应用于喷水织机中的四连杆打纬机构,这种打纬机构称为内藏式四连杆打纬机构。Zh205型喷水织机和ZW型喷水织机都采用了这类打纬机构,这些机构都采用短牵手和短筘座脚。为适应高速,其曲柄、牵手和筘座脚等密封在机架箱形墙板中,以油浴润滑。

1—钢筘; 2—筘座; 3—夹片; 4—辅助筘座脚; 5—钢管; 6—曲柄

图1-3 喷水织机四连杆打纬机构

图1-4中A为曲轴中心,D为摇轴中心,C为牵手栓中心,AB为曲柄半径,BC为牵手,CD为筘座脚[3]。牵手的长短是以牵手长度BC与曲柄半径AB的比值大小来表示的。当BC/AB<3时,就称为短手打纬机构。牵手越短,筘座在后死心附近的运动就越慢,慢到一定程度就可以看成是静止不动。但是牵手缩短后,机构的压力角θ增大,机构的传力情况恶化,因此,近似静止时间与压力角是一对相互牵制的矛盾。

图1-4 短牵手打纬机构示意简图

随着织机幅宽的增加及车速的提高,对摇轴的相对静止时间及停歇质量提出了更高的要求,因此,在许多的织机中选用了六连杆的打纬机构,这类机构停歇时间更长,停歇质量明显提高,例如,毕加诺PAT-W型喷气织机的六连杆打纬机构在后心附近相对静止角为180°,筘座摆角相对误差为8.3%[4]。而且筘幅大于230cm的宽幅织机,一般也采用六连杆打纬机构,该打纬机构能在较高的车速下提供足够长的引纬时间,以满足宽幅织物的引纬需要[5]。

图1-5为PAT型喷气织机六连杆打纬机构原理图。该机构由曲柄摇杆机构和双摇杆机构组成。主轴回转中心O1、曲柄1、第一连杆2、第一摇杆3、摇杆中心O2为曲柄摇杆(四连杆)机构。而摇杆中心O2、第一摇杆3、第二摇杆5和第二连杆4为双摇杆机构。O3为摇轴中心,带动筘座和异形筘摆动。这种机构允许5mm左右的打纬位移,能实现120°左右的“近似停顿”时间,其性能优于四连杆打纬机构,但比共轭凸轮打纬机构差,另外该机构铰链点较多,累计误差大,因此加工精度要求比四连杆打纬机构高[6]。

1—主轴; 2—第一连杆;3—第一摇杆; 4—第二连杆;5—第二摇杆;6—异形筘;

O1—主轴回转中心;O2—摇杆中心;O3—摇轴中心

图1-5 PAT型喷气织机六连杆打纬机构原理图

无论是四连杆还是六连杆打纬机构,其筘座在后心处无绝对静止时间,只有相对静止时间。虽然六连杆打纬机构的筘座在后心的相对静止时间比四连杆打纬机构有所延长,但还是不能满足那些引纬机构固定在机架上的织机,如片梭织机和大多数剑杆织机的引纬要求。但是共轭凸轮打纬机构就很容易满足打纬要求的运动规律,能实现240°左右的完全停顿时间,如SM93(意大利SOMET公司)、TT一96(浙江泰坦)和GA731(杭纺机)等就采用该类型机构,不过凸轮廓线加工精度要求相当高,如存在误差就产生冲击,机构振动大,使织物产生“开车稀密路”疵点,反而限制了车速的提高。目前,国内的凸轮制造技术水平与国外相比还有一定差距,国内企业一般还没有真正设计意义上的凸轮产品,通常是通过反复测绘反求而进行制造,不知其机理,因此加工出来的凸轮产品性能差,关键技术掌握在一些专业的凸轮制造厂家和科研机构中,无法通过技术引进来提高我国的制造水平。

1—主轴;2—主凸轮;3、8—转子;4—筘座脚;

5—摇轴;6—筘座;—钢筘;9—副凸轮

图1-7 TT96型剑杆织机上的共轭凸轮打纬机构

齿轮机构及其设计分析

(八)齿轮机构及其设计 1、本章的教学要求 1)了解齿轮机构的类型及应用。 2)了解齿廓啮合基本定律。 3)深入了解渐开线圆柱齿轮的啮合特性及渐开线齿轮的正确啮合条件、连续传动条件等。 4)熟悉渐开线齿轮各部分名称、基本参数及各部分几何尺寸的计算。 5)了解渐开线齿廓的展成切齿原理及根切现象;渐开线标准齿轮的最少齿数;及渐开线齿轮的变位修正和变位齿轮传动的概念。 6)了解斜齿圆柱齿轮齿廓曲面的形成、啮合特点,并能计算标准斜齿圆柱齿轮的几何尺寸。 7)了解标准支持圆锥齿轮的传动特点及其基本尺寸的计算。 8)对蜗轮蜗杆的传动特点有所了解。 2、本章讲授的重点 本章讲授的重点是渐开线直齿圆柱齿轮外啮合传动的基本理论和设计计算。对于其他类型的齿轮及其啮合传动,除介绍它们与直齿圆柱齿轮啮合传动的共同特点外,则着重介绍他们的特殊点。 3、本章的教案安排 本章讲授12-14学时,安排了六个教案,习题课穿插在课堂教学中进行,其中教案JY8-5(2)可根据学时及专业的不同选讲。此外本章有两个实验:齿轮范成实验和齿轮基本参数测绘。 [教案JY8-1(2) ] 1)教学内容和教学方法 本讲的教学内容有:齿轮机构的类型及应用;齿轮的齿廓曲线;渐开线的形成及其特性。 1、齿轮机构的应用及分类 齿轮机构是在各种机构中应用最广泛的一种传动机构。它可用来传递空间任意两轴间的运动和动力,并具有功率范围大、传动效率高、传动比准确、使用寿命长、工作安全可靠等特点。齿轮机构的应用既广,类型也多。根据空间两轴间相对位置的不同,齿轮机构的基本类型如下:(1)用于平行轴间传动的齿轮机构 外啮合齿轮传动,两轮转向相反; 内啮合齿轮传动,两轮转向相同。 齿轮与齿条传动。 斜齿轮传动。 人字齿轮传动。 (2)用于相交轴传动的齿轮机构 直齿圆锥齿轮传动。 曲线圆锥齿轮(又称弧齿圆锥齿轮)能够适应高速重载的要求,故目前也得到了广泛的应用。 (3)用于交错轴间传动的齿轮机构 交错轴斜齿轮传动。 蜗杆传动。 准双曲面齿轮传动。

基于MATLAB的曲柄摇杆机构优化设计方案.doc

得分课程作业 曲柄摇杆优化设计 姓名: XX 学号: XXXXX 班级: XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1 问题重述 2.2 问题分析 3数学模型的建立 3.1 设计变量的确定 3.2 目标函数的建立 3.3 约束条件的确定 3.4 标准数学模型 4使用 MATLAB编程求 解 4.1 调用功能函数 4.2 首先编写目标函数 M 文件 4.3 编写非线性约束函数 M 文件 4.4 编写非线性约束函数 M 文件 4.5 运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1. 1摘要 : 为分析机构能够满足给定的运动规律和运动空间的要求 , 运用 Matlab 优化工具箱进行多约束条件下的连杆机构预定轨迹优化设计的方法 , 从而得到最接近给定运动规律的杆长条件 , 使机构的运动分析直观、简单和精确,提高了曲柄摇杆机构的设计精度和效率。 2问题研究 2.1 问题重述 要求设计一曲柄摇杆机构,当曲柄由0 转到 0 +90°时,摇杆的输出角实现 如下给定的函数关系: 02 (0 )2 3 式中0 和0 分别为对应于摇杆在右极限位置时曲柄和摇杆的位置角,它们是机 架杆 l 4为原线逆时针度量的角度,见图 1。 45°,即: 要求在该区间的运动过程中的最小传动角不得小于 min [ ] 45 通常把曲柄的长度当成单位长度,即l 1 。另外,根据机构在机器中的许可=1 空间,可以适当预选机架杆的长度,现取l 4 。 =5 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0转到0 90 时,要求摇杆的输出角最优地实现一个给定的运动规律f。这里假设要求: E f 2 3 2 0( 1) 图 1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角f和实际输出角 E F的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中, l1 、 l2 、 l3 、 l4 分别是曲柄、连杆、 AB BC 摇杆 CD和机架 AD的长度。这里规定0 为摇杆在右极限位置0 时的曲柄起始位置角,它们由 l1、 l 2、 l3和 l4确定。 3 数学模型的建立

曲柄摇杆机构设计方法汇编

XXX 曲柄摇杆机构设计方法作者姓名:XXXX 专业名称:机械工XXXX及自动化指导教师:XXXX讲师

摘要 曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。 本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。 关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument. In view of the crank rocker mechanism of velocity fluctuation velocity coefficient and the design of crank rocker mechanism by track point, Analysis the mechanism of the stroke number ratio K ,the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle of crank rocker and the frame length on and display function is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design. Key words: crank,rocker,travel speed,design

曲柄连杆机构课程设计

工程软件训练 目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8) 4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 1

工程软件训练 第5章曲柄连杆机构的创建 (11) 5.1 活塞的创建 (11) 5.2 连杆的创建 (11) 5.3 曲轴的创建 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13) 2

工程软件训练 第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 3

基于某MATLAB的曲柄摇杆机构优化设计

课程作业 曲柄摇杆优化设计 :XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数 M 文件 4.3编写非线性约束函数 M 文件 4.4编写非线性约束函数 M 文件 confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1) 图1曲柄摇杆机构简图

对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始 运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初 始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()2222212432301242125arccos 2101l l l l l l l l l l ?????++-+-+==????++???????? (3) ()()222221243230343125arccos 210l l l l l l l l l φ???? +--+--==???????????? (4) 因此,只有2l 、3l 为独立变量,则设计变量为[][]1223T T x x x l l ==。 3.2 目标函数的建立 目标函数可根据已知-的运动规律与机构实际运动规律之间的偏差最小为指标来建立,即: ()()2 1 min m Ei i i f x φφ==-→∑(5) 式中,Ei φ-期望输出角; m-输出角的等分数; i φ-实际输出角,由图 1 可知:

平面齿轮机构设计(甲类精制)

平面齿轮机构设计 一、特点: 1)功率和速度范围↑。 2)η↑。 3)寿命长。 4)保证精确角速比,传动比i。 5)制造设备要求↑(专门机构,刀具),成本↑,装配要求↑。 二、分类 1、按两齿轮轴相对位置分:平行,相交,交叉。平行(外啮合,内啮合):直齿,斜齿,人字齿,图8-1(a,b,c);相交:直齿圆锥,斜齿圆锥,曲齿圆锥,图8-4(a,b,c);交错:螺旋(图8-5),蜗轮蜗杆(图8-7),双曲线体(图8-6)。 2、按两齿轮相对运动:a).平面运动机构(平行轴);b).空间运动机构(其他:相交,交叉)。 3、按齿廓曲线分:渐开线,摆线,圆弧。 §7-2 齿廓啮合基本定理与渐开线齿廓(图8-8) 一、齿廓啮合基本定理(齿廓曲线与齿轮传动比关系) 一对齿轮啮合传动是靠主动轮的齿廓推动从动轮的齿廓来实现的,所以

当主动轮按一定角速度转动时,从动轮转动角速度显然与两轮齿廓的形状有关,也就是说:两齿轮传动时,其传动比变化规律与两轮齿廓曲线有关。 两轮角速比称传动比:i=ω1/ω2=常数。 如图:为一对互相啮合的齿轮: 主动轮1,ω1方向 从动轮2,ω2 方向 两轮齿齿廓C1,C2在K点接触,两轮在K点的线速度分别为V k1,V k2,过点k作两齿廓公法线n-n,要一对齿廓能连续地接触传动,它们沿接触点的公法线方向是不能有相对运动的。否则,两齿廓将不是彼此分离就是互相嵌入,因而不能达到正常传动目的。这就是说,要使两齿廓能够接触传动,则V k1和V k2在公法线n-n方向的分速度应相等,所以两齿廓接触点间的相对速度V k2k1只能沿两齿廓接触点的公切线方向,设以η表示两齿廓在接触点的公法矢量,则有:V k2k1 xη=0。 这就是齿廓的啮合基本要求,上式为齿廓啮合基本方程式,由于V k1和V k2在公法线方向分速度应相等。 故:

发动机曲柄连杆机构的设计

. 摘要 以桑塔纳2000AJR型发动机为例,基于相关参数对发动机曲柄滑块机构主要零部件进行结构设计计算,同时进行强度、刚度等方面的校核,并进行相关力学分析和机构运动仿真分析,以达到良好的生产经济效益。 目前国外对发动机曲柄连杆机构的动力学分析的方法很多,而且已经完善和成熟,但仍缺乏一种基于良好生产效益、经济效益上的综合性分析,本次设计在清晰、全面剖析的基础上,有机地将各研究模块联系起来,达到既简便又清晰的设计目的,力求为发动机曲柄滑块机构的设计提供一种综合全面的思路。 分析研究的主要模块分为以下三个部分:第一,对发动机曲柄滑块机构进行力学分析,着重分析活塞的位移、速度、加速度以及工质的作用力和机构的惯性力;第二,进行曲柄滑块机构活塞组、连杆组以及曲轴的结构设计,并对其强度和刚度进行校核;第三,应用Pro∕Engineer 建立曲柄滑块机构主要零部件的几何模型,并利用Pro/Mechanism进行机构仿真。 关键词:发动机;曲柄滑块机构;力学分析;机构仿真

目录 第一章绪论 (1) 1.1国外发展现状 (1) 1.2研究的主要容 (1) 第二章总体方案的设计 (2) 2.1原始参数的选定 (2) 2.2原理性方案设计 (2) 2.3 结构的设计 (3) 2.4 确定设计方案 (3) 第三章中心曲柄连杆机构的设计 (5) 3.1 气缸的作用力分析 (5) 3.2 惯性力的计算 (5) 第四章活塞以及连杆组件的设计 (8) 4.1 设计活塞组件 (8) 4.2 设计活塞销 (9) 4.3 活塞销座 (9) 4.4 连杆的设计 (9) 第五章曲轴的设计 (11) 5.1 曲轴的材料的选择 (11) 5.2 确定曲轴的主要尺寸和结构细节 (11) 第六章曲柄连杆机构的创建 (13)

曲柄连杆机构课程设计

曲柄连杆机构课程 设计

目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8)

4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 第5章曲柄连杆机构的创立 (11) 5.1 活塞的创立 (11) 5.2 连杆的创立 (11) 5.3 曲轴的创立 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13)

第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,经过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 经过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以

基于MATLAB的曲柄摇杆机构优化设计

课程作业 曲柄摇杆优化设计 姓名:XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数M 文件 4.3编写非线性约束函数M 文件 4.4编写非线性约束函数M 文件confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1. 1 摘要: 为分析机构能够满足给定的运动规律和运动空间的要求,运用Matlab 2 2.1 0(32 π ψψ+ =式中0?和0ψ得小于45=≥][min γγ空间,可以适当预选机架杆的长度,现取l 4 =5。 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

图1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开始 运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度 1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初 始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为: ()()()()2222212432301242125arccos 2101l l l l l l l l l l ?????++-+-+==????++???????? (3)

齿轮机构及其设计

第十章 齿轮机构及其设计 本章学习任务:齿廓啮合定律,渐开线齿形,渐开线圆柱齿轮各部分名称和尺寸,渐开线直齿圆柱齿轮机构的啮合传动,其他齿轮机构的啮合特点。 驱动项目的任务安排:完善项目中齿轮机构的详细设计。 10.4 其他齿轮机构的啮合特点 10.4.1平行轴斜齿圆柱齿轮机构 1.齿面的形成及啮合特点 图10-26 渐开螺旋面的形式 图10-27 一对斜齿轮的啮合情况 图10-28 斜齿轮齿面接触线 如图10-26所示,当发生面S 在基圆柱上相切并作纯滚动时,发生面上一条与基圆柱母线成角的直线KK 在空间所展开的轨迹为斜齿轮的齿廓曲面。从端面上看(垂直于轴线的b β平面)各点的轨迹均为渐开线,只是各渐开线的起点不同而已。由于斜线KK 在其上各点依次和基圆柱相切,因此各切点在基圆柱上形成螺旋线,线上各点为渐开线的起始点,00k k 00k k 它们在空间展开的曲面为渐开螺旋面。角称为基圆柱上的螺旋角。 b β一对平行轴斜齿轮啮合传动时,可以看成发生面(啮合面) 分别与两个基圆圆柱相切并作纯滚动,发生面上的斜线KK 分别在两基圆柱上形成螺旋角相同,方向相反的渐开螺旋面,

如图10-27所示。这对齿轮的瞬时接触线即为KK 线,即一对斜齿轮啮合时其接触线为一斜直线。由于一对斜齿轮的轮齿是反向倾斜的(一个左旋,另一个右旋),因此啮合时,是由前端面进入啮合,由后端面退出啮合,其接触线由短变长,再由长变短变化,图10-28为齿轮啮合时从动轮上接触线的情况,这种接触方式使齿轮传动的冲击与振动减小,传动较平稳,故斜齿轮传动适用于高速传动。 从端面上看,斜齿圆柱齿轮传动与直齿圆柱齿轮传动相同,啮合线为两基圆内公切线,所以斜齿轮传动能保证准确的传动比。传动过程中,具有啮合角不变及中心距可分性等特点。 2.标准参数及基本尺寸 (1)标准参数 由于斜齿轮的轮齿倾斜了角,切制斜齿轮时,刀具沿着螺旋线方向b β进刀,此时轮齿的法面参数与刀具的参数一样。因此斜齿轮的标准参数为法面参数,即法面 模数,法面压力角,法面齿顶高系数,法面顶隙系数为标准值。 n m n α*an h *n c (2)分度圆柱螺旋角及基圆柱螺旋角 与直齿圆柱齿轮一样,斜齿轮的基本尺寸是以其分度圆为基准圆来计算的。斜齿轮分度圆柱上的螺旋线的切线与其轴线所夹之锐角称为分度圆柱螺旋角(简称螺旋角)用表示。与间的关系如图10-29所示,可得: ββb β (10-21) tan tan cos b t ββα= (a ) (b ) 图10-29 斜齿轮的螺旋角 图10-30 斜齿轮的端面压力角与法面压力角 式中,,,其中L 为螺旋线的导程,对同一个斜齿轮而言,任一圆 tan d L πβ=tan b b d L πβ=柱面上螺旋线的导程应相同。 斜齿轮的螺旋角是重要的基本参数之一,由于斜齿轮的轮齿倾斜了角,使斜齿轮ββ传动时产生轴向力,越大,轴向力越大。 β(3)法面参数和端面参数 从斜齿轮的端面来看,斜齿轮形状与直齿轮相同,因此可按端面参数用直齿轮的计算公式进行斜齿轮基本尺寸的计算。而法面参数为标准值,故需建立法面参数与端面参数之间的关系。 1)模数 如图10-29(b )所示,、分别为斜齿轮法面和端面的齿距。它们之间的n p t p 关系为 cos n i p p β=由于,因此就求得 n n p m π=t t p m π= (10-22) cos n t m m β=

基于MATLAB的曲柄摇杆机构的机械优化设计

基于MATLAB的曲柄摇杆机构的机械优化设计 以曲柄摇杆机构为例,建立了运动分析数学模型。以曲柄摇杆机构对应位置实际输出值与期望函数值的平方偏差之和的最小值作为实际目标进行优化。应用MATLAB软件进行了优化设计和仿真分析,为机构优化设计提供了一种高效、直观的仿真手段,提高了对平面四连杆机构的分析设计能力。 标签:MATLAB;曲柄摇杆机构;优化设计 前言 平面四连杆机构虽然结构简单,但能有效地实现给定的运动规律或运动轨迹,很好地完成预定的动作,因而在工程实践中得到了广泛应用[1]。传统的设计方法主要是图解法或分析法,对连杆机构设计,无论设计精度还是设计效率都相对低下,不能满足现代机械高速高精度的要求。随着计算机技术的不断发展,为机构运用运动仿真实现优化设计提供了有效的手段。 MATLAB是一套功能强大的科学计算软件[2],被广泛应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。其具有强大的数值计算能力和高效的工具箱函数,高效求解复杂庞大的实际工程问题,并可以根据需要,实现计算结果的可视化效果。 首先构建四连杆机构的数学模型,再利用MATLAB 软件强大的数值计算能力和高效的工具箱函数,以某规定期望函数的平面四连杆机构(机构运动简图如图1 所示)为例进行优化设计并进行了仿真计算,实现了机构运动仿真的可视化。 1 曲柄摇杆机构的数学模型 1.1 设计变量 机构的基本变量为各杆杆长及曲柄转角,根据曲柄摇杆机构各杆长度间的关系,独立的杆长变量有三个,分别为L2,L3,L4取杆长L1=1。故曲柄摇杆机构的设计变量可以表示为: 1.2 目标函数 1.3 约束条件 该机构的约束条件有两个方面:一是最小传动角约束条件[3];二是保证四杆机构满足曲柄存在的条件。 (1)最小传动角约束

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

基于MATLAB的曲柄摇杆机构优化设计说明

课程作业 曲柄摇杆优化设计

姓名:XX 学号:XXXXX 班级:XXXXX XX大学机械与动力学院

目录 1摘要 2问题研究 2.1问题重述 2.2问题分析 3数学模型的建立 3.1设计变量的确定 3.2目标函数的建立 3.3约束条件的确定 3.4标准数学模型 4使用MATLAB编程求解 4.1调用功能函数 4.2首先编写目标函数M 文件 4.3编写非线性约束函数M 文件 4.4编写非线性约束函数M 文件confun.m 4.5运行结果 5结果分析 6结论推广 7过程反思 8个人小结 9参考文献

1 摘要: 为分析机构能够满足给定的运动规律和运动空间的要求,运用Matlab 2 2.1 0(32 π ψψ+ =式中0?和0ψ得小于45=≥][min γγ1可空间,可以适当预选机架杆的长度,现取l 4 =5。 2.2 问题分析 设计时,可在给定最大和最小传动角的前提下,当曲柄从0?转到090??+时,要求摇杆的输出角最优地实现一个给定的运动规律()f ?。这里假设要求: ()()2 0023E f φ?φ??π ==+ - (1)

图1 曲柄摇杆机构简图 对于这样的设计问题,可以取机构的期望输出角()E f φ?=和实际输出角 ()F φ?=的平方误差之和作为目标函数,使得它的值达到最小。 在图 1 所示的曲柄摇杆机构中,1l 、2l 、3l 、 4l 分别是曲柄AB 、连杆BC 、摇杆CD 和机架AD 的长度。这里规定0?为摇杆在右极限位置0φ时的曲柄起始位置角,它们由1l 、2l 、3l 和4l 确定。 3 数学模型的建立 3.1 设计变量的确定 决定机构尺寸的各杆长度1l 、2l 、3l 和4l ,以及当摇杆按已知运动规律开 始运行时,曲柄所处的位置角0?应列为设计变量,所有设计变量有: [][] 1 2 3 4 512 340T T x x x x x x l l l l ?== (2) 考虑到机构的杆长按比例变化时,不会改变其运动规律,通常设定曲柄长度1l =1.0,在这里可给定4l =5.0,其他杆长则按比例取为1l 的倍数。若取曲柄的初始位置角为极位角,则?及相应的摇杆l 位置角φ均为杆长的函数,其关系式为:

曲柄摇杆机构设计方法毕业设计论文

曲柄摇杆机构设计方法

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

曲柄连杆机构设计

课程设计说明书 题目:曲柄连杆机构设计 姓名: 班级: 学号: 指导老师: 完成时间: 目录 第1章绪论 (4) 1.1题目分析 (4)

1.2设计研究的主要内容 (4) 第2章连杆组的设计 (15) 2.1连杆的工作情况、设计要求和材料选用 (15) 2.2连杆长度的确定 (16) 2.3连杆小头的设计 (16) 2.4连杆杆身的设计 (17) 2.5连杆大头的设计 (17) 2.6连杆强度计算 (18) 2.7连杆螺栓设计 (25) 2.8本章小结 (27) 第3章活塞组的设计 (5) 3.1活塞的工作条件和设计要求 (5) 3.2活塞的材料 (6) 3.3活塞的主要尺寸 (7) 3.4活塞的头部设计 (9) 3.5活塞的销座设计 (9) 3.6活塞的裙部设计 (10) 3.7活塞强度计算 (11) 3.8活塞销的设计 (12) 3.9活塞环的设计 (13) 3.10本章小结 (15) 第4章曲轴组的设计 (27) 4.1曲轴的结构型式和材料的选择 (27) 4.2曲轴的主要尺寸确定 (28) 4.3曲轴油孔位置 (30) 4.4曲轴端部结构 (30) 4.5曲轴平衡块 (31) 4.6曲轴的轴向定位 (31)

4.7曲轴疲劳强度计算 (32) 4.8飞轮的设计 (41) 4.9本章小结 (42) 总结 (43) 参考文献 (44) 致谢 (45) 第1章绪论

1.1 题目分析 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本次设计柴油机型号为4105型柴油机,基本参数为: 2 z kgf/cm 70p rpn 1500n mm 120105====最高爆发压力转速行程缸径S mm D 1.2 设计研究的主要内容 对内燃机运行过程中曲柄连杆机构受力分析进行深入研究,其主要的研究内容有:

曲柄摇杆机构设计方法完整版

曲柄摇杆机构设计方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

曲柄摇杆机构设计方法作者姓名:XXXX 专业名称:机械工XXXX及自动化 指导教师:XXXX讲师

摘要 曲柄摇杆机构中构件的运动样式多样,可以实现给定运动规律或运动轨迹且承载能力高、耐磨顺,制造简单,已于获得较高的制造精度,因此曲柄摇杆机构在各种机械仪器中获得广泛的应用。 本文针对曲柄摇杆机构的行XXXX速度变化速度系数和给定点的轨迹设计曲柄摇杆机构,通过深入分析机构的行XXXX数度比k、摇杆摆动角ψ、最小传动角,极为夹角和摇杆摆动角等运动性能参数与结构尺寸间的关系。通过引入曲柄固定铰链点的位置角建立了曲柄摇杆和机架长度关于θ和?的显示函数关系,通过解析法、几何作图法、和实验法设计曲柄摇杆机构。在此基础上研究机构设计的可能附加要求极其相应的设计方法为曲柄摇杆设计提供各种可能选项并对曲柄摇杆的急回特性和死点情况进行说明。 关键词:曲柄摇杆机构行XXXX速度系数摇杆摆动设计方法

Abstract The diversity of movement component in the crank rocker mechanism can achieve given amotion or motion trajectory and have the high bearing capacity, wear-resisting, simple manufacture,and higher manufacturing accuracy. therefore ,the crank rocker mechanism is widely used in various mechanical instrument. In view of the crank rocker mechanism of velocity fluctuation velocity coefficient and the design of crank rocker mechanism by track point, Analysis the mechanism of the stroke number ratio K , the rocker swing angle minimum transmission angle, extremely angle and rocker swing angle motion parameter and t he relationship between structure size deeply. Introduced the crank fixed hinge point position angle of crank rocker and the frame length on and display function is built, by the analytic method, the geometric drawing method, the design of crank rocker mechanism and experimental method. On the basis of the research on the design method of mechanism design may have additional requirements and other extremely corresponding , various possible options and the crank rocker quick return characteristics and the dead are described for crank and rocker design. Key words: crank,rocker,travel speed,design 目录

相关主题
文本预览
相关文档 最新文档