当前位置:文档之家› 圆柱绕流数值模拟

圆柱绕流数值模拟

圆柱绕流数值模拟
圆柱绕流数值模拟

圆柱绕流的数值模拟研究

摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。

关键词:网格划分;圆柱绕流;涡量;网格自适应

钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。

研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。

1数学模型与计算方法

1.1几何模型

结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。

图1计算区域

1.2网格划分及边界条件设置

为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。

对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

图2圆柱区域O型结构化网格图3整体网格划分情况

1.3计算方法

流动介质为空气,密度ρ=1.225kg/m3,动力粘度μ=1.79×10-5Pa?s,并保持为常数。计算雷诺数(Re<2000)均为小雷诺数。属层流范围,故采用Laminar模型。采用基于压力基的分离式求解器进行求解。计算中采用具有二阶隐式时间格式的非定常流动进行计算。压力项与速度项的耦合项计算采用SIMPLE算法实现,压力项离散采用具有二阶精度的格式离散.动量方程采用二阶迎风格式离散。计算中压力、密度、体积力和动量项的欠松弛因子分别为0.3、1、1和0.7。

2数值模拟

选用25℃的空气为流经计算区域的流体,从0.03m/s开始逐渐增加入口初速度来对不同速度下的圆柱绕流的流场进行模拟

2.1结果与分析

2.1.1涡量云图

0.03m/s速度下的涡量云图0.1m/s速度下的涡量云图

0.2m/s速度下的涡量云图0.3m/s速度下的涡量云图

0.5m/s速度下的涡量云图1m/s速度下的涡量云图

图40.03m/s~1m/s下的涡量图

由上图可知在速度为0.03m/s时,整个计算域的涡量云图呈对称分布,在圆柱的后侧没有明显的漩涡存在,空气流贴着圆柱流动,在贴近圆柱的上下侧涡量较其他区域大。速度

为0.1m/s时漩涡开始向圆柱的后侧推进,此时涡量较大的区域集中在圆柱的前半侧,在圆柱右侧的中后部区域涡量图出现明显的远离现象,贴近圆柱的地方涡量很低,而外扩展的话就又会变大,圆柱的后部区域出现比较明显的小漩涡。在入口速度达到0.2m/s时圆柱后侧的漩涡就比较的明显了,漩涡分布在圆柱的后侧离圆柱较近的区域,上下对称分布。

入口速度为0.3m/s时圆柱后侧的漩涡更加的明显,并且有细微的扩大趋势。当速度达到0.5m/s时圆柱后侧的漩涡范围明显的扩大,扩展到圆柱后侧很大区域,区域长度和圆柱直径相当,并且在圆柱后侧紧近圆柱的部分也出现较小的漩涡,但是漩涡的整体强度却没有明显的增大。从涡量云图上看在速度达到1m/s时漩涡的范围有所减少,但是强度确明显的得到了增强,在圆柱的后侧有两个非常明显的漩涡存在,漩涡的影响范围涉及到了紧近圆柱后侧的区域。再则是由于模拟区域的上下边界都定义为了壁面,从上面6幅涡量云图可以看见入口区域,贴近壁面的范围也出现了轻微的漩涡,并且在速度为0.5m/s时漩涡最明显。

2.1.2速度云图

0.03m/s初速下的速度云图0.1 m/s初速下的速度云图

0.2 m/s初速下的速度云图0.3 m/s初速下的速度云图

0.5 m/s初速下的速度云图 1 m/s初速下的速度云图

图50.03m/s~1m/s下的速度云图

从上图可以看到速度云图总体呈对称分布,在入口速度为0.03m/s时高速区域集中在圆柱的上下两侧,在圆柱的前后是速度的低速区,并且有两处速度很小的区域。当速度达到0.1m/s时圆柱后侧的低速区域得到扩大,低速区域的范围呈现箭头状,越往外速度的值越来越大。在入口速度为0.2m/s的条件下,可以从图上圆柱后也有明显的低速区域,但是速度明显大于0.1m/s时的速度。同时可以看到圆柱后侧有三个点状的低速区,围绕着一个速度较高的椭圆区域。

从0.3m/s的云图可以看到圆柱后方有三个明显的低速区,在这三个低速区中后面的面积较大,而前面的两个低速区较小,并且三个低速区域有连在一起的趋势。到了0.5m/s时我们可以清楚的看到圆柱后侧的低速区域连在了一起,整体呈现出狭长的v字形状,同时包裹着一个近椭圆的区域,在椭圆中速度从中间往外逐渐变小,可以看到有一块明显的黄色区

域。同时由于入口速度的提高圆柱两侧的高速区域较前面有了很大的扩展,两侧呈狭长的矩形分布,并且在贴近计算域边界的壁面处也出现了明显的条状的低速区。但是当速度达到1m/s 时圆柱上下两侧的高速区域宽度有所增加而长度却明显减少,同时圆柱后侧的低速区域也减少很多,三个低速区也明显的分离开来。

3网格自适应技术的应用

对初速度为0.5m/s 的情况应用FLUENT 的网格自适应技术对速度梯度大于1.0×10-6m/s 的地方进行了网格加密,网格前后效果对比如下图:

未加密的网格

自动加密后的网格

图6 网格效果对比图

上图仅仅截取了圆柱周围的部分网格图,对比两个网格可以清楚的看到在后图里在贴近圆柱的区域里网格明显的密于前图。同时在圆柱的后部区域也有三个条状的加密区域。

加密前的速度云图

加密后的速度云图

对比加密前后的速度云图,可以发现圆柱后部上侧区域的低速区域有点不同,同时后图的圆柱后的中轴线上的速度较前图有所降低,更能反映实际的情况。 4结论

使用FLUENT 软件对0.03m/s~1m/s 间的入口速度下的定常流动的圆柱绕流进行了数值模拟的对比研究。结果发现:

(1)在入口速度小于0.1m/s 时,圆柱后侧没有出现漩涡,在速度为0.1m/s 时圆柱后侧开始有不明显的漩涡出现。当速度大于0.1m/s 后就会出现明显的漩涡,同时在0.5m/s 的条件下漩涡的范围最大,在1m/s 时漩涡强度大于0.5m/s 的情况,但范围却小于前者。

(2)使用FLUENT 的网格自适应技术对入口速度为0.5m/s 的情况依据速度梯度大小对网格进行了加密,结果发现虽然可以对高梯度的区域进行网格加密,但是再次计算的结果却没有达到预想的效果,不过总的来讲网格自适应技术也加密了网格增进了模拟的精度。

(3)由于仅仅对速度小于1m/s 的情况进行了对比研究,对高速度高雷诺数的情况未有涉及,结果具有局限性。

参考文献:

[1]夏雪渝,等. 工程分离流动力学[M]. 北京: 北京航空航天大学出版社,1991.

[2]孟元元. 圆柱绕流的数值模拟研究[D].甘肃农业大学,2010.

[3]张立. 小雷诺数下圆柱绕流的数值模拟[J]. 力学季刊,2010,04:543-547.

[4]杨纪伟,付晓丽. 圆柱绕流研究进展[J]. 中国水运(下半月),2008,05:156-158.

[5]张立. 小雷诺数下圆柱绕流的涡态演化[J]. 机械科学与技术,2012,04:679-684.

[6]李国亚. 有限水深横流中近壁水平圆柱绕流的实验研究[D].武汉大学,2004.

[7]段志强. 低雷诺数下尾部隔板影响圆柱绕流的数值研究[D].重庆大学,2012.

[8]何鸿涛. 圆柱绕流及其控制的数值模拟研究[D].北京交通大学,2009.

[9]

圆柱绕流阻力实验_实验指导书

1 3.14圆柱绕流阻力实验(压强分布法) 一、实验目的 圆柱绕流实验是研究外流问题和形状阻力的典型实验。通过测量圆柱表面的压强分布,认识实际流体绕圆柱流动时表面压强分布规律,并与理想流体相比较,理解形状阻力产生的原因及测量、计算方法。 二、实验原理 理想流体均流对二维圆柱作无环量绕流时,圆柱表面任一点的速度分量为 V r = 0, V θ= 2V ∞sin θ (1) 式中V ∞为来流速度。圆柱表面任一点的压强p i 与来流压强p ∞的关系满足伯努利方程 p V 2 p V 2 i +θ=∞+∞ (2) ρg 2g ρg 2g 式中ρ为流体密度。以压强系数C P 表达流体压强的分布 C =p i -p ∞ =1-4sin 2θ (3) P 1ρ 2 2 V ∞ 由于压强分布沿圆柱面前后对称,压强合力为零,称为达朗贝尔佯缪。 实际流体绕圆柱流动时,由于粘性得影响压强分布前后不对称;特别是当流动达到一定雷诺数后,粘性边界层在圆柱后部发生分离,形成漩涡。从分离点开始圆柱体后部的压强大致接近分离点压强,不能恢复到前部的压强,破坏了前后压强分布的对称性,形成压差阻力 F D 。由于圆柱表面的摩擦阻力相对于压差阻力小得多,可忽略不计,阻力系数可表为 C D =1 2π C P cos θd θ (4) 2 ρV ∞A 式中A 为圆柱的迎风特征面积,压强系数C P 由(3)式确定。实验中由多管压力计分别测 量p -p 和 ρV 2 i ∞ 2 ∞ p i -p ∞=ρm g (h i -h ∞) (5) 1 ρV 2 =k ρg (h -h ) (6) 2 ∞ m 0 ∞ 式中h i 为测点的静压水头高,h 0 来流的总压水头高,h ∞为来流的静压水头高,ρm 测压计 ? F D =

圆柱绕流数值模拟

圆柱绕流的数值模拟研究 摘要:选取直径为D=10mm的圆柱及6D×3D的计算区域,利用GAMBIT进行模型的创建模型,对计算区域采用分块网格划分与结构化网格划分相结合的技术进行网格划分。对0.03m/s~1.0m/s的低流速情况下的圆柱绕流进行模拟研究,结果发现在速度达到0.1m/s前圆柱后侧没有出现明显的漩涡,在速度大于0.1m/s后漩涡开始出现,当速度达到0.5m/s时漩涡的范围最大。最后利用FLUENT的网格自适应技术对入口速度为0.5m/s的情况进行了网格加密,发现网格自动加密可以改进网格分布情况,但对计算结果的影响程度有限。 关键词:网格划分;圆柱绕流;涡量;网格自适应 钝体绕流中尤其以圆柱体的绕流问题最为经典和引起人们的注意。圆柱绕流属于非定常分离流动问题,在工业工程中的应用非常广泛。圆柱绕流同时也是一个经典的流体力学问题,流体绕圆柱体流动时,过流断面收缩,流速沿程增加,压强沿程减小,由于黏性力的存在,就会在柱体周围形成附面层的分离,形成圆柱绕流。而由于圆柱的存在,会在圆柱迎水面产生壅水现象,同时也增加了圆柱的受力,使得圆柱绕流问题变得十分复杂。 研究圆柱绕流问题在工程实际中也具有很重要的意义。如在水流对桥梁、海洋钻井平台支柱、海底输运管线、桩基码头等的作用中,风对塔建筑、化工塔设备、高空电缆等的作用中,都有重要的工程应用背景。因此,对圆柱绕流进行深入研究,了解其流动机理和水动力学规律,不仅具有理论意义,还具有明显的社会经济效益。 1数学模型与计算方法 1.1几何模型 结合本文研究目标,取圆柱直径D=10mm,计算区域为6D×3D的矩形区域,如图1所示。上游尺寸1.5D,下游尺寸4.5D。使用GAMBIT建模软件按照图1所示的计算域建立了二维的计算模型。 图1计算区域 1.2网格划分及边界条件设置 为提高模拟精度,计算区域采用分块网格划分与结构化网格划分相结合的技术。计算区域共分两块,尺寸见图1所示。在圆柱区域采用O型结构化网格(图2),尾流区域采用四边形结构化网格分别划分(图3),使用GAMBIT对两块计算区域进行了网格划分,划分的结果是网格总数为42946个。 对计算区域进行边界条件定义,考虑到流入介质的为空气,同时流速较低,就把介质假定为不可压缩的流体。进而把左侧的入口定义为速度入口即:Velocity-inlet,右侧的出口假定为充分发展的出流,即定义为:Outflow。其余的边界保持默认的壁面边界条件,同时定义为绝热条件,即热流密度为0。

基于谱单元方法的单圆柱绕流特性分析

基于谱单元方法的单圆柱绕流特性分析 基于谱单元方法的单圆柱绕流特性分析 提要: 谱单元方法是一种高效的高精度计算流体动力学数值计算方法,目前被广泛运用于空气动力学的大规模模拟中。本文详细介绍了该数值计算方法好核心思想和编程思路,并实现了其程序开发。最后以单圆柱绕流问题为例验证了其准确性和高效性。模拟结果表明谱单元方法是在科学研究和工程计算中极具发展和应用前景的数值计算工具。 关键词:谱单元、有限元、计算流体动力学、圆柱绕流 中图分类号: O313 文献标识码: A 文章编号: 自从1977年Gottlieb和Orszag[1]系统地从数学方面对谱方法进行了理论的阐述,它与有限差分法及有限元法一起构成了求解偏微分方程的三大方法,被广泛地应用于更多的领域。随着谱方法在各领域的应用和发展,谱方法在理论研究上日趋完善,它开辟了谱方法应用函数分析技术处理复杂问题的道路。1984年,Gottlieb和Hussaini 开始将谱方法向计算流体动力学方面推广[2,3]。到了80年代初期,Patera才结合谱方法的精度和有限元的思想提出所谓的谱单元方法[4],谱单元方法具有谱方法的高精度和收敛特性,并且还可以像有限元法一样具有很好的几何区域的适应性[5]。 本文研究了谱单元方法插值函数的选取和谱单元的离散过程,给出了离散方程的一般形式,并采用时间分裂格式的谱单元法求解Navier-Stokes方程,以不同雷诺数下单圆柱绕流的数值模拟作为基本算例,验证了谱单元法的高精度和计算效率,计算表明结果令人满意。 一、谱单元离散格式 二、单圆柱绕流计算分析

在研究圆柱流场时常用的几个无量纲化系数:CD(阻力系数),CL (升力系数)和 St(斯托罗哈数)定义如下: (12) 其中,FD为阻力,与来流方向一致,主要由流体绕圆柱柱表面摩擦阻力以及圆柱前后压力差造成;FL为升力,与来流方向垂直,主要由涡交替从圆柱上下表面脱落产生上下表面压力脉动造成;St 为涡脱落频率,D为圆柱直径。 2.1 计算域和网格划分 考虑直径为D的圆柱受到未经扰动的均匀来流作用,基于圆柱直径和来流流速的雷诺数取Re=200。所选计算域50D×40D,圆柱位于坐标系原点(0,0)。入口边界和出口边界分别位于圆柱中心上游20D 和下游30D处,流域顶部和底部离圆柱中心20D。相应的边界条件如下:进口处自由来流速度为绕流问题特征速度,即ux=U∞,uy=0.0;上下边界条件与进口边界条件相同;出口边界处纵向和横向速度梯度均为0.0,即∂ux/∂x=0.0,∂uy/∂x=0.0;圆柱表面处为不可滑移边界条件,即ux=0.0,uy=0.0。计算域和边界条件如图1所示。 图1 计算域和边界条件示意图 Fig 1 Schematic diagram of the computational domain and boundary conditions 计算域网格划分采用了四边形非结构化谱单元网格,总共划分了354个单元,如图2(a)所示。在靠近圆柱壁面的地方进行了几层非常细的网格加密,离圆柱壁面最近的一层网格厚度为0.1D,如图2(b)所示。同时,在圆柱尾流区域也进行了加密处理。 图2 (a)谱单元网格划分示意图 (b)圆柱附近网格加密示意图 Fig 2 (a) spectral element mesh, 354 elements (b) zoomed-in view of the mesh around the cylinder

小雷诺数下圆柱绕流数值模拟

第2期(总第213期) 2019年4月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.2 Ap r.文章编号:1672-6413(2019)02-0087-0 2小雷诺数下圆柱绕流数值模拟 凌 杰,王 毅 (陆军军事交通学院镇江校区,江苏 镇江 212003 )摘要:应用计算流体力学软件Fluent对小雷诺数(20≤Re≤300)下的圆柱绕流进行仿真计算,采用有限体积法、层流模型求解不可压缩的N-S方程,计算了二维圆柱绕流的水动力学特性。分析尾涡的形态随着雷诺数不断增加的变化情况,并研究升阻力因素、St数及壁面分离角等参数随雷诺数的变化。关键词:圆柱绕流;小雷诺数;层流模型;Fluent 中图分类号:TP391.7 文献标识码:A 收稿日期:2018-10-08;修订日期:2019-01-3 0作者简介:凌杰(1990-) ,男,江苏镇江人,助教,硕士,研究方向:船舶流体力学性能。0 引言 流体流过钝头体时其绕流及尾流的相互干扰有着广泛的工程应用背景,在日常生活中可以见到的此类例子有烟囱、天线、桥墩、蜂鸣电话的电话线和汽车无线电车载天线在气流中的振动等。近一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟的对象,但迄今对该流动现象物理本质的理解仍是不完整 的[1- 2]。本文应用计算流体力学软件Fluent对小雷诺数(20≤R e≤300)下二维圆柱绕流进行数值模拟,采用有限体积法、分区结构化网格以及层流(L aminar)模型求解N-S方程,模拟不同雷诺数下涡的产生、发展、脱落过程,并探究升阻力等参数的变化情况。1 计算模型1.1 模型及网格划分 在本文的研究目标中,设定圆柱的直径D=0.02m,流体域的计算区域设定为40D×20D的矩形区域。为了消除边界对流场的影响,流体进口距圆柱中心取10 D,流体出口距圆柱中心取30D,上、下壁距圆柱中心均为10D。 为了提高计算精度,保证收敛速度,对圆柱周围进行局部 加密,该区域大小为10D×10D[3] 。计算模型及网格划分 结果如图1所示。 图1 计算模型及网格划分结果 1. 2 数值模拟方法圆柱周围的流场利用Fluent求得, 采用有限体积法和SMPLEC算法求解非定常流动, 时间离散采用二阶隐式格式,空间离散采用二阶迎风格式。进口边界条件为速度入口,入口速度设置见表1;出口边界条件为自由出口;上、下壁以及圆柱面为固壁边界,即无滑 移、无穿透[4] 。2 计算结果分析2.1 不同雷诺数下的涡量图和流线图谱 分别在Re=20、Re=60、Re=200三种具有代表性雷诺数下,通过涡量图和流线图来比较它们的流动特性,如图2~图4所示。 表1 入口速度设置 区域 层流区 层流向湍流转变150≤Re≤300 雷诺数20  40 60 80 100 150 200 240 280 300来流速度(m/s )0.001  0.002  0.003  0.004  0.005  0.007 5  0.01  0.012  0.014  0.015 由图2~图4可知: Re=20时,尾流中有一对稳定的反对称涡,称为弗普尔旋涡,且该尾涡尺寸L与圆 柱体直径D之比约为1∶1;当雷诺数增加到60时, 反向对称漩涡影响区域达到最大,该对漩涡不再保持对 称,一侧漩涡的影响区域超过另一侧,且漩涡中心也同 时远离圆柱;随着雷诺数的继续增加,出现典型的涡的生成、发展、脱落过程,逐渐发展成两排周期性摆动和交错的漩涡。

流体力学Fluent报告——圆柱绕流之欧阳家百创编

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 欧阳家百(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕

流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr 数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

流体力学Fluent报告——圆柱绕流

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C 与 Strouhal 数 d 随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在 Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量

圆柱绕流的数值模拟

圆柱绕流的数值模拟 张玉静 20070360204 过控(2)班化工与能源学院 摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为5,20,40,100时的绕流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。当Re=5时,流动不发生分离,其后未形成旋涡,当Re=20,40,100时,流体发生分离,其后形成旋涡,且旋涡随着Re的增大而增大。利用计算流体力学软件FLUENT可以成功地模拟圆柱绕流问题,反映出流动特性。 关键词:圆柱绕流;FLUENT;雷诺数 Abstract:Uniform flow around a mounting cylinder is simulated with the application of FLUENT software while Reynolds number is 5,20,40,100. Stream function and velocity vector distributions are indicated. The results show that a series of construction appears as Reynolds number increases. When Re is 5, Flow separation does not occur, and it does not form vortex . When Re is 20,40,100, Flow separation occurs, and it forms vortex. V ortex increases with the increase of Re. Using computational fluid dynamics software FLUENT can successfully simulate flow around cylindrical, reflect the flow characteristic. Key words:Flow around a circular cylinder;FLUENT;Reynolds number 1 圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落,泻入尾流形成Karman涡街,随着雷诺数的增加,流动变得越来越复杂,最后发展为湍流。White认为圆柱涡流具有经典性的重要意义。 一般认为圆柱绕流有2种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的

流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与方柱绕 流的数值模拟 令狐采学 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了

亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

利用FLUENT 软件模拟圆柱绕流

利用FLUENT软件模拟圆柱绕流 摘要:使用计算流体力学软件FLUENT,模拟均匀来流绕固定圆柱的流动,模拟雷诺数为20 ,40 ,100 时的绕流流动,得到流场的流函数等值线图和速度矢量图。计算结果表明:当雷诺数增加时,流动表现出一系列不同的构造。在雷诺数约为40 前后流场有明显变化。小于这个数时,存在一对位置固定的旋涡。大于40 时,流场开始变得不稳定,旋涡扩大、脱落、又生成,逐渐发展成两排周期性摆动和交错的旋涡。并与实验及数值模拟结果比较,确认FLUENT能够很好地预测流动结构。 关键词: 圆柱绕流 FLUENT软件雷诺数 1圆柱绕流理论分析研究的状况 一个世纪以来,圆柱绕流一直是众多理论分析、实验研究及数值模拟对象。但迄今对该流动现象物理本质的理解仍是不完整的。圆柱绕流中,起决定作用的是雷诺数,但还受到许多因素,如阻塞比,来流湍流度,下游边界条件等的影响。 随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在小雷诺数时,流动是定常的,随着雷诺数的增加,圆柱后会出现一对尾涡。当雷诺数较大时,尾流首先失稳,出现周期性的振荡。而后附着涡交替脱落, 泻入尾流形成Karman 涡街,随着雷诺数的增加,流动变得越来越复杂,最后发展为湍流。White[1]认为“圆柱涡流具有经典性的重要意义”。 一般认为圆柱绕流有2 种定常的流动图案:雷诺数为较小时,圆柱后无尾涡;当雷诺数为较大时,圆柱后有一对对称的尾涡。关于定常流失稳以及出现湍流的临界雷诺数主要是通过应用流场显示技术观察流动形态得到的,所以不是准确值。对于分界点雷诺数就有不同的见解,Kovasznay 、Roshko 等认为定常流动失稳的临界雷诺数大约为40。而从周期性尾流到湍流的详细的转变过程的实验研究似乎还是空白。 对均匀来流绕固定圆柱的二维平面流动,国内外许多学者进行过大量的研究。决 定圆柱绕流流态的是雷诺数(Re)的值, Re5 <时,流动不发生分离,5Re40 <<,在圆柱体后面出现一对位置固定的旋涡; 40Re150 << ,旋涡扩大,然后有一个旋涡开始脱落,接着另一个也脱落,在圆柱体后面又生成新的旋涡,这样逐渐发展成两排周期性摆动和交错的旋涡,即Karman 涡街。Re150 <,涡街是层流,150Re300 <<,旋涡由层流向湍流转变。 5 300Re310 <

基于FLUENT的并列双圆柱绕流二维数值模拟分析

-46-科学技术创新2019.02 基于FLUENT的并列双圆柱绕流二维数值模拟分析 胡锦鹏罗森 (重庆科技学院建筑工程学院,重庆401331) 摘要:为研究双圆柱在不同距径比(L/D)工况下的绕流,运用FIUENT软件模拟低雷诺数下的双圆柱绕流中表面压力系数的分布和升力系数、阻力系数的变化规律。通过数值模拟分析表明:双圆柱表面随着L/D的增大两圆柱柱后涡街将由耦合涡街逐步转化为单圆柱绕流时的卡门涡街,两柱对绕流的影响减弱;随着UD的增加,两柱之间的相互作用减小,升力系数和阻力系数都逐渐降低。通过对不同I7D工况下的对比分析,为圆墩抑制双圆柱绕流的设计提供一定意义的参考。 关键词:fluent;双圆柱;绕流;数值模拟 中图分类号:035文献标识码:A文章编号:2096-4390(2019)02-0046-02 多柱绕流问题在海洋工程、跨江跨河桥墩、以及涉水建筑物基础等领域有广泛的应用。水流经过多圆柱会产生旋涡,旋涡的脱落使各个圆柱之间有相互干扰作用,其流场特征与圆柱的受力与单圆柱绕流有明显不同叫因此研究多圆柱绕流的流场特征分析与圆柱受力状态研究对于涉水工程应用具有重要的意义。 多柱与之单柱绕流相比,多柱绕流受墩柱数量、排列方式、柱间距离、流体速度等因素影响,其流场特性、涡街形态更加复杂,加之在波、浪、流等耦合作用下极易发生相互干扰造成桩柱严重损伤及破坏。基于此,采用FLUENT有限元软件,建立双圆柱绕流模型研究其在不同距径比(两圆柱中心距与圆柱直径之比)下分析圆柱绕流的阻力系数、升力系数、分离点位置及流场变化规律,为后续涉水基础中的双圆柱绕流问题的研究提供理论依据。 1绕流相关参数 绕流的相关参数主要有雷洛数Re、斯托罗哈数St、升力系数G和阻力系数C“下面给出各个参数的计算公式和物理意义。 1.1雷洛数Re 圆柱绕流的状态和雷诺数有很大关系,雷诺数代表惯性力和粘性力之比:Re=四=巴 “u(1)式中:P为流体的密度;U为自由来流的平均速度;L为结构的特征尺寸(圆柱取直径D)屮为流体粘性系数;”=上为流体的运动学粘性系数。121P 1.2斯托罗哈数St Strouhal指出圆柱绕流后在圆柱后面可以出现交替脱落的旋涡,旋涡脱落频率、流速、圆柱直径之间存在一个关系: st=— U(2)式中:St为斯托罗哈数,取决于结构的形状断面;f,为旋涡脱落频率;D为结构的特征尺寸(圆柱取直径D);U为来(转下页) 能够使小鼠的血脂下降,从而起到防止AS的作用。同时发现枸杞色素可以使低密度脂蛋白胆固醇(LDL-C)、血清甘油三酯(TG)及总胆固醇(TC)的含量减少,因此枸杞中色素能够拮抗高血脂症患者的血脂上升和脂质的不易还原。 同时枸杞色素具有血管内皮细胞的保护作用,研究发现,受损伤的细胞的G0/G1比率和凋亡率可以通过枸杞中的花色昔来下降,升高其G2/M的比率和S期的细胞比率,发现被过度氧化且低密度的脂蛋白所损伤的人体静脉的内皮细胞可以被存在于枸杞中的花色苛所保护和修复叫 枸杞色素不但能明显地增强机体的特异性免疫的作用,并且能够提高非特异性免疫的作用。经实践证实枸杞色素能够明显地提高T、B淋巴细胞的数量、红细胞的免疫黏附作用及其雏鸡血清的HI抗体能力,说明了枸杞色素对于雏鸡的特异性免疫及体液免疫的疗效有明显的加强能力冋。枸杞色素还具有抗疲劳、抗肿瘤、提高视力及生殖能力等作用。 2.3多酚类。多酚类是植物中一组含有多个酚羟基团的化学元素的总称。多酚类物质可以起到很好的还原作用。富含酚羟基的物质在世界上也被称为“第七种营养物质”。此中主要活性物质为多酚类物质,多酚类物质为植物成分的分子的结构式中含有多个酚轻基团统称,主要是单宁类、黄酮类、花色昔类以及酚酸类等成分,均是可以保证健康的一类化合物。枸杞叶子中主要黄酮类物质是芦丁,同样芦丁含量最丰富的部位也是枸杞叶子。尽管芦丁存在于野生或者栽培的枸杞果实中的含量少之又少,然而黄酮类化合物的总含量相比于野生枸杞叶,栽培的枸杞叶子总含量高出很多。 2.4其他化合物。枸杞中主要的含氮物质是氨基酸和蛋白质,此外还含有多种氨基酸、Mg、Mn、Se、Zn多种金属离子、粗脂肪、脂肪酸等,同时还含有多种小分子物质,例如P-香豆酸、各种维生素和脑昔等。其他成分包括菜油;胆苗烷醇;天门冬素、當醇、胆當-7-烯醇;2,4-乙基胆苗-5烯-3(3醇等。 参考文献 [1]张仲景(汉).金匮要略方论[M].北京:人民卫生出版社,1972:21-22. [2]王玲,张才军,李维波,等.枸杞多糖对2型糖尿病患者T淋巴细胞亚群和细胞因子的调节作用[J].河北中医,2013,23(12):888-890. [3]李宁宁.类胡萝卜素的研究进展[J].中国现代实用医学杂志, 2014,3⑵:51-53. [4]袁宝财,达海莉,李晓瑞.宁夏枸杞的生物学特性及开发利用前景[J].河北林果研究,2014,12(4):52-53. [5]朱采平.枸杞多糖的结构分析及生物活性评价[D].武汉:华中农业大学,2009,6(3):46-47. [6]林丽,李进,呂海英,等.黑果枸杞花色昔对小鼠动脉粥样硬化的影响[J].中国中药杂志,2012,37(10):1460-1466.

2021年流体力学Fluent报告——圆柱绕流

亚临界雷诺数下串列双圆柱与 方柱绕流的数值模拟 欧阳光明(2021.03.07) 摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。 关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数 在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。 沈立龙等[1]基于RNG k?ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流

阻力系数Cd与Strouhal 数随雷诺数的变化规律。姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re 数的变化趋势。费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。计算均在Re = 200 的非定常条件下进行。计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。 圆柱绕流的一个重要特征是流动形态取决于雷诺数。Lienhard[4]总结了大量的实验研究结果并给出了圆柱体尾流形态随雷诺数变化的规律。当Re<5时,圆柱上下游的流线呈对称分布,流体并不脱离圆柱体,没有旋涡产生。此时与理想流体相似,若改变流向,上下游流形仍相同。当5

气动噪声模型使用指南

ANSYS Fluent气动噪声模型使用指南 ANSYS Fluent气动噪声模型使用指南 (1) 1 ANSYS Fluent的气动噪声模型特点介绍 (1) 1.1C A A(直接模拟模型) (1) 1.2A c o u s t i c A n a l o g y M o d e l i n g(声比拟模型) (2) 1.3B r o a d b a n d(宽频噪声模型) (2) 2 ANSYS Fluent的气动噪声模型设置 (4) 2.1B r o a d b a n d(宽频噪声模型) (4) 2.2F-W-H(声比拟模型) (7) 2.3C A A(直接模拟模型) (16) 3 ANSYS Fluent气动噪声测试案例 (22) 3.1圆柱绕流 (22) 3.2跨音速空腔流动 (26) 3.3跨音速翼型绕流 (31) 1 ANSYS Fluent的气动噪声模型特点介绍 1.1C A A(直接模拟模型) ANSYS Fluent中的CAA方法可以通过求解流体动力学方程直接得到声波的产生和繁殖现象。声波的预测需要控制方程时间精度的解,而且,CAA方法需要ANSYS Fluent通过求解非稳态N-S方程(如DNS)、非稳态雷诺平均RANS方程以及在分离涡DES和大涡LES 模拟中用到的滤波方程,精确模拟粘性效应和湍流效应。 CAA方法需要高精度的数值求解方法、非常精细的网格以及声波非反射边界条件,因此计算代价较高。如果要计算远场噪声(比如几百倍的机翼弦长远处的噪声传播),CAA方法则需要超大规模并行计算支持;但是如果计算近场噪声(比如,机身表面的APU、空穴、微小部件扰动噪声),CAA方法是容易可行的。在大多包含近场噪声的计算中,由于局部压力波动导致的噪声是可以通过ANSYS Fluent准确模拟的。既然CAA方法直接求解声波传播,那么需要求解可压缩的控制方程(如雷诺平均方程、可压缩的LES大涡模拟的滤波方程)。当流动速度较低或亚音速流动时,而且近场中的噪声源主要由局部压力波动构成,则可以使用不可压缩流动。然而,不可压缩流动处理不能模拟回声和声波反射现象。

圆柱绕流圆球扰流阻力系数

圆柱绕流与卡门涡街 分析钝体绕流阻力的典型例子是圆柱绕流 1圆柱表面压强系数分布 无粘性流体绕流圆柱时的流线图如图中虚线所示。 A 、B 点为前后驻点,C D 点为最小压强 点。AC 段为顺压梯度区,CB 段为逆压梯度区。压强系数分布如下图对称的 a 线所示。实际流体 绕流圆柱时,由于有后部发生流动分离,圆柱后表面上的压强分布与无粘性流动有很大差别。后 部压强不能恢复到与前部相同的水平,大多保持负值(表压)。 (圆柱后部流场显示) 实验测得的圆柱表面压强系数如图中 b 、c 线所示,两条线分别代表不同 Re 数时的数值。b 为边界层保持层流时发生分离的情况,分离点约在 =80。左右;c 为边界层转捩为湍流后发生 分离的情况,分离点约在 =120°左右。(高尔夫球尾部分离)从图中可看到后部的压强均不 能恢复到前部的水平。沿圆柱面积分的压强合力,即压差阻力,以 b 线最大,以c 线最小。从图 用量纲分析法分析二维圆柱体绕流阻力 F D 与相关物理量p 、V 、 上式表明圆柱绕流阻力系数由流动 Re 数(p Vd/卩)唯一确定。 C D -Re 关系曲线。根据阻力与速度的关系及阻力系数变化特点,可将曲线分为 6个区域,并画出 与5个典型Re 数对应的圆柱尾流结构图案(图。 图阻力系数随Fe 数的变化 d 、卩的关系,可得 图为二维光滑圆柱体绕流的 中还可发现,在尾流分离区内,压强大致是均匀分布,因此沿圆柱表面的压强分布应如图所示

too 4 frSiq- 2 4 24 图(1)Re vv 1,称为低雷诺数流动或蠕动流。几乎无流动分离,流动图案上下游对称(a)0阻 力以摩擦阻力为主,且与速度一次方成比例。 (2)K Re< 500,有流动分离。当Re=10,圆柱后部有一对驻涡(b)。当Re〉100时从圆柱后部交替释放出旋涡,组成卡门涡街(c )。阻力由摩擦阻力和压差阻力两部分组成,且大致 与速度的次方成比例。 (3)500< Re〈2X 105,流动分离严重,大约从Re=104起,边界层甚至从圆柱的前部就开始分离(d),涡街破裂成为湍流,形成很宽的分离区。阻力以压差阻力为主,且与速度的二次方成比例,即G 几乎不随Re数变化。 (4)2X 105< Re<5X 105,层流边界层变为湍流边界层,分离点向后推移,阻力减小,G下跌,至Re= 5 X 105时,C D=达最小值,此时的分离区最小(e)o (5)5X 105< Re<3X106,分离点又向前移,C D回升。 (6)Re >3X 106, G与Re无关,称为自模区。 3?卡门涡街 在圆柱绕流实验中发现,大约在Re = 40起,圆柱后部的一对旋涡开始出现不稳定地摆动,如图所示,大约到Re=70起,旋涡交替地从圆柱上脱落,两边的旋涡旋转方向相反,随流而下,在圆柱后面形成有一定规则的、交叉排列的涡列,称为卡门涡街(图)。(圆柱后部卡门涡街演示)

垂直振动圆柱绕流 开题报告

毕业设计(论文)开题报告 题目Fluent软件在垂直振动圆柱绕流中的应用专业名称飞行器设计与工程 班级学号11062208 学生姓名魏孔泯 指导教师何国毅 填表日期2015 年 4 月 3 日

一、选题的依据及意义: 钝体绕流是流体力学的经典研究课题之一。所谓钝体是指这样一些物体,他们的绕流会在大部分物面发生分离。钝物体绕流问题大量出现在实际问题中,如风工程中风对各种建筑物的绕流、海岸工程中的河水流过桥墩、海洋石油工程中的开采平台、钻杆、水下输油管道、化学工程、地面交通、航空航天等广泛领域中。在工业设备中绕流现象更是经常发生,如各类管壳式换热器。而且绕流也涉及流动分离、漩涡的生成和脱落,可以诱发作用在物体上纵向和横向的非定常载荷,激起结构的振动响应,即涡致振动。有时涡致振动甚至会造成结构损毁的严重后果。因此掌握钝体绕流的特性对工程实际和工业设备的设计非常重要。长期以来一直是学者们的研究热点,其中尤其一圆柱绕流最为常见和重要,这不仅是因为它在工程技术中应用最广,而且研究他也是了解其他各种柱状钝体绕流的基础。 一般认为雷诺数是圆柱绕流中其决定作用的的因素,随着雷诺数的增加,粘性不可压缩流体绕圆柱的流动会呈现各种不同的流动状态,在雷诺数小时,是定常流动,当雷诺数继续增加时,圆柱后会产生一对位置固定、对称的尾涡。当雷诺数较大时,尾流首先出现失稳并周期性振荡。之后附着涡交替脱落,泻入尾流形成卡门涡街,随着雷诺数的增加,流动会越来越复杂,最后发展为湍流。 一般研究圆柱绕流有试验方法和数值模拟两种方法。其中试验方法是在水洞中进行实验并获得数据。用双色注射染料显示尾迹结构,使用激光多普勒测速仪获得速度数据。但这种方法的使用条件比较高,所需费用也比较高。相对而言数值模拟方法使用条件和操作过程相对简单,研究过程所发费用也相对较少,因此数值模拟方法应用比较广泛。 本文研究采用Fluent软件,分别用多种流动模型在不同的雷诺数下对圆柱绕流进行数值模拟,计算得到升阻力系数、分离点位置等结果,并对实验结果进行比较。 二、国内外研究概况及发展趋势(含文献综述): 1、钝体绕流的研究 钝体绕流的研究已经有相当长的历史。早在1879年,Strouhal研究弦线在空气中振动发声时,发现其频率只与弦线的直径和速度有关,为一常数,称之为斯特劳哈尔数(St数),也可用折合频率k表示。一年后,Rayleigh在观察风吹琴弦振动时,注意到弦的振动不是沿着风向,而主要发生在与风垂直的方向。1908年,Benard观察并研究了圆柱体尾迹中的周期性和旋涡脱落现象。1912年冯·卡门系统研究了涡街的形成和稳定性问题并确定了涡系动量与尾流阻力之间的关系,成为钝体绕流研究的一个重要里程碑。近年来,由于海洋工程、航空工程和工业空气动力学的实际需要,钝体绕流再次引起了人们极大的兴趣。但是,由钝体尾迹是随着旋涡脱落的复杂分离运动,对于我们来说,许多流动现象和其根本的物理机制仍未得到透彻的认识。 众所周知,圆柱绕流是一种复杂的流动现象,它基本上是由三种现象组成的,边界层流动、分离的自由剪切层流动和尾迹流动。在多年来的研究过程中,国内外的研究取得了进展,主要可以用三个标志性研究成果来代表: (1)1912年,冯·卡门第一个系统研究了圆柱尾流涡街的形成和稳定性问题,并确定了涡系动量与尾流阻力之间的关系,成为钝体绕流研究的一个重要里程碑; (2)1954年,Roshko运用实验方法,第一个发现了圆柱绕流存在转捩区,确定其尾流在低雷诺数和中等雷诺数之间存在三个不同的发展阶段:线性流动阶段,转捩阶段和不规则的湍动阶段。 (3)1992年,Williamson通过实验首先精确确定圆柱绕流三维转捩的雷诺数发生范围180.260。并在圆柱近壁区发现流向涡存在两种模式,它们都与三维转捩有关。

圆柱绕流阻力实验(压强分布法)

3.14 圆柱绕流阻力实验(压强分布法) 一、实验目的 圆柱绕流实验是研究外流问题和形状阻力的典型实验。通过测量圆柱表面的压强分布,认识实际流体绕圆柱流动时表面压强分布规律,并与理想流体相比较,理解形状阻力产生的原因及测量、计算方法。 二、实验原理 理想流体均流对二维圆柱作无环量绕流时,圆柱表面任一点的速度分量为 0,2sin r V V V θθ∞== (1) 式中∞V 为来流速度。圆柱表面任一点的压强i p 与来流压强p ∞的关系满足伯努利方程 22 22i p V p V g g g g θρρ∞∞+=+ (2) 式中ρ为流体密度。以压强系数P C 表达流体压强的分布 2214sin 1 2 i P p p C V θρ∞ ∞?= =? (3) 由于压强分布沿圆柱面前后对称,压强合力为零,称为达朗贝尔佯缪。 实际流体绕圆柱流动时,由于粘性得影响压强分布前后不对称;特别是当流动达到一定雷诺数后,粘性边界层在圆柱后部发生分离,形成漩涡。从分离点开始圆柱体后部的压强大致接近分离点压强,不能恢复到前部的压强,破坏了前后压强分布的对称性,形成压差阻力 D F 。由于圆柱表面的摩擦阻力相对于压差阻力小得多,可忽略不计,阻力系数可表为 20cos 1 2 D D P F C C d V A π θθρ∞= =∫ (4) 式中A 为圆柱的迎风特征面积,压强系数P C 由(3)式确定。实验中由多管压力计分别测量i p p ∞?和 21 2 V ρ∞ ()i m i p p g h h ρ∞∞?=? (5) 201 ()2 m V k g h h ρρ∞∞=? (6) 式中i h 为测点的静压水头高,0h 来流的总压水头高,∞h 为来流的静压水头高,m ρ测压计

相关主题
文本预览
相关文档 最新文档