当前位置:文档之家› 金属材料与热处理教案

金属材料与热处理教案

金属材料与热处理教案
金属材料与热处理教案

绪论

引入:

材料金属材料

机械行业本课程得重要性

主要内容:金属材料得基本知识(晶格结构及变性)

金属得性能(力学及工艺性能)

金属学基础知识(铁碳相图、组织)

热处理(退火、正火、淬火、回火)

学习方法:三个主线

重要概念

①掌握

基本理论

②成分

组织性能用途热处理

③理论联系实际

引入:内部结构决定金属性能

内部结构?

第一章:金属得结构与结晶

§1-1金属得晶体结构

★学习目得:了解金属得晶体结构

★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型.

★难点:金属得晶体缺陷及其对金属性能得影响.

一、晶体与非晶体

1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。)

规则几何形状

性能特点: 熔点一定

各向异性

2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。

二、金属晶格得类型

1、晶格与晶胞

晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格.

晶胞:构成晶格得最基本单元

2、晶面与晶向

晶面:点阵中得结点所构成得平面。

晶向:点阵中得结点所组成得直线

由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。)

晶胞晶面晶向

3、金属晶格得类型就是指金属中原子排列得规律。

7个晶系 14种类型

最常见:体心立方晶格、面心立方晶格、密排六方晶格

(1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。

属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个)

(2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。

属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等

所含原子数1/8×8+6×1/2=4(个)

(3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。

属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。

所含原子数 1/6×6×2+1/2×2+3=6(个)

三、单晶体与多晶体

金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

1、晶界:晶粒间交界得地方称为晶界。

2、单晶体:只由一个晶粒组成得晶体.(晶格排列方位完全一致.必须人工制作,如单晶硅。)

3、多晶体:整个物体就是由许多杂乱无章得排列着得小晶体组成得。(普通金属材料都就是多晶体)

四、晶体得缺陷

1、晶体缺陷:晶体中出现得各种不规则得原子堆积现象。

1)点缺陷

空位、间隙原子与置代原子

晶体中得空位、间隙原子、杂质原子都就是点缺陷。

影响:使材料强度硬度电阻增加

2)线缺陷

位错可认为就是晶格中一部分晶体相对于另一部分晶体得位错

局部滑移而造成。滑移部分与未滑移部分得交界线即为位错线.影响:使金属材料得塑性变形更加容易

3)面缺陷

晶界与亚晶界

影响:使金属变形阻力增大,晶界越多,金属材料力学性能越好

§1—2纯金属得结晶

学习目得:★掌握金属结晶得概念,纯金属冷却曲线、及过冷度。

★掌握纯金属得结晶过程.

★熟悉掌握晶粒大小对金属力学性能得影响及常用细化晶粒得方法.

★同素异构转变得概论,掌握铁得同素异构转变式.

教学重点与难点:

★细化晶粒得方法及晶粒大小对力学性能得影响就是教学得难点。

★纯金属冷却曲线及过冷度就是教学重点。

教学过程

复习旧课:

1、晶体结构得概念。

2、常见得三种金属晶格类型。

3、晶体得缺陷。

导入新课:

金属由原子不规则排列得液体转变为原子规则排列得固体得过程称为结晶。

一、纯金属得结晶过程

1、纯金属得冷却曲线及过冷度。

1)金属得结晶必须在低于其理论结晶温度(熔点To)下才能进行。2)理论结晶温度与实际结晶温度之差称这“过冷度”(△T=To-T1)。

3)金属结晶时过冷度得大小与冷却速度有关。

(冷却速度越快,金属得实际结晶温度越低,过冷度也就越大。)2、纯金属得结晶过程

在一定过冷度得条件下,金属液通过晶核形成、晶核长大形成枝晶来完成其结晶过程。如课本图示。

晶核产生(形核)

长大

二、晶粒大小对金属材料得影响

(一般室温下,细晶粒金属具有较高得强度与韧性。)

1、金属晶粒大小取决于结晶时得形核率、长大速度。细化晶粒,则要形核率越高、长大速度越慢。

2、常用得细化晶粒得方法:

增加过冷度

变质处理

振动处理.

三、同素异构转变

1、金属在固态下,随温度得改变有一种晶格转变为另一晶格得现象称为同素异构转变.

2、具有同素异构转变得金属有:铁、钴、钛、锡、锰等。同一金属得同素异构晶体按其稳定存在得温度,由低温到高温依次用希腊字母α,β,γ,δ等表示。

3、纯铁得同素异构转变:

1538 ℃1394℃912℃

δ—Fe →γ—Fe→α– Fe

体心面心体心

4、金属得同素异构转变,也称为“重结晶”。

其与液态金属结晶有许多相似处:有一定转变温度,有过冷现象; 有潜热放出与吸收; 也由形核、核长大来完成。不同处:∵属固态相变,∴转变需较大得过冷度;新晶核优先在原晶界处形核;转变中有体积得变化,会产生较大内应力。

【小结】

【作业】P114、5、6

第二章金属材料得性能

学习目得:

★理解金属材料性能(工艺性能、使用性能)得概念、分类.

★掌握强度得概念及其种类、应力得概念及符号。

★掌握拉伸试验得测定方法;力——伸长曲线得几个阶段;屈服点得概念。

教学重点与难点

1、理解力——伸长曲线就是教学重点;

2、强度、塑性就是教学难点.

§2-1 金属材料得损坏与塑性变形

弯曲

零件常见损坏形式断裂

(不利)磨损

有利面:(塑性变形):成型强化(改善组织性能)

一、与变形相关得几个概念

1、载荷(金属材料所受外力)

载荷可分为:静载荷、冲击载荷、交变载荷。

2、内力

材料受外力时,为使其不变形,材料内部产生一种与外力相抗得力。

3、应力得概念。

横截面上得内力

二、金属得变形

外力作用下:弹性变形弹-塑性变形断裂

塑性变形得影响因素:1、晶粒位相得影响

2、晶界得作用

3、晶粒大小得影响

三、金属材料得冷塑性变形与加工硬化

加工硬化:有利面:强化金属

不利面:再加工(切屑,进一步加工)困难

§2—2金属得力学性能

学习目得:★了解疲劳强度得概念。

★掌握布氏硬度、洛氏硬度、维氏硬度得概念、硬度测试及表示得方法。

★掌握冲击韧性得测定方法。

教学重点与难点

★布氏硬度、洛氏硬度、维氏硬度得概念、硬度测试及表示得方法。教学过程:

力学性能得概念:

力学性能就是指金属在外力作用下所表现出来得性能.力学性能包括:强度、硬度、塑性、硬度、冲击韧性.

?一、强度:

①概念:金属在静载荷作用下,抵抗塑性变形或断裂得能力称为强度。强度得大小用应力来表示。

?②根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、抗剪强度与抗扭强度等。

一般情况下多以抗拉强度作为判别金属强度高低得指标。

1、拉伸试样:拉伸试样得形状一般有圆形与矩形。

Do:直径Lo:标距长度长试样:Lo=10do

?短试样:Lo=5do

力-伸长曲线:如下图,以低碳钢为例

纵坐标表示力F,单位N;横坐标表示伸长量△L,单位为mm。

?(1)oe:弹性变形阶段:

?试样变形完全就是弹性得,这种随载荷得存在而产生,随载荷得去除而消失得变形称为弹性变形。Fe为试样能恢复到原始形状与尺寸得最大拉伸力.

?(2)es:屈服阶段:

?不能随载荷得去除而消失得变形称为。在载荷不增加或略有减小得情况下,试样还继续伸长得现象叫做屈服。屈服后,材料开始出现明显得塑性变形.Fs称为屈服载荷

(3)sb:强化阶段:

随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。Fb:试样拉伸得最大载荷。

(4)bz:缩颈阶段(局部塑性变形阶段)

?当载荷达到最大值Fb后,试样得直径发生局部收缩,称为“缩颈”.

工程上使用得金属材料,多数没有明显得屈服现象,有些脆性材料,不但没有屈服现象,而且也不产生“缩颈"。如铸铁等。

3、强度指标:

(1)屈服点:

在拉伸试验过程中,载荷不增加(保持恒定),试样仍能继续伸长时得应力称为屈服点。

用符号Fel表示,计算公式:Fel=Fs/So对于无明显屈服现象得金属材料可用规定残余伸长应力表示,

?计算公式:σ0、2=F0、2/So

屈服点σs与规定残余伸长应力σ0、2都就是衡量金属材料塑性变形抗力得指标。

?材料得屈服点或规定残余伸长应力就是机械零件设计得主要依据,也就是评定金属材料性能得重要指标。

(2)、抗拉强度:бb材料在断前所能承受得最大应力、

бb= Fb/ So

注:零件在工作中所受得应力,不允许超过бb,否则会断裂、

∴它也就是零件设计\选材得重要依据、

?二、塑性:

?断裂前金属材料产生永久变形得能力称为塑性。塑性由拉伸试验测得得。常用伸长率与断面收率表示。

?1、伸长率:

?试样拉断后,标距得伸长与原始标距得百分比称为伸长率。用δ表示:

?计算公式:A=(l1-l0)/l0 ×100%

?2、断面收缩率:

试样拉断后,缩颈处横截面积得缩减量与原始横截面积得百分比称为断面收缩率。用ψ表示

?Z=(SO-S1)/SO ×100%

?金属材料得伸长率(δ)与断面收缩率(ψ)数值越大,表示材料得塑性越好。

?例、有一直径dO=10mm,lo=100mm得低碳钢试样,拉伸验时测得FS=21KN,Fb=29KN,d1=5、65mm,l1=138mm,求:Rel、Rm、A、Z。

解:(1)计算SO,S1

?S0=πd02/4=3、14×102/4=78、5mm2

?S1?=πd12/4=3、14×5、652/4=25mm2

(2)计算σs、σb

Fel=FS/SO=21×103/78、5=267、5Mpa

Fm=Fb/SO=29×103/78、5=369、4Mpa

(3)计算A、Z

A=(l1-l0)/l0×100%=(138-100)/100×100%=38% Z=(S0-S1)/S0×100%=(78、5—25)/78、5×100%=68%小结:抗拉强度就是零件设计\选材得重要依据、

A、Z得值越大,表示材料得塑性就越好。

作业:P32 3、4、5

复习:强度、塑性得概念及测定得方法。

新课:

三、硬度

●材料抵抗局部变形特别就是塑性变形压痕或划痕得能力称为硬度。(就是衡量材料软硬程度得指标)

●根据硬度得试验方法可以把硬度分为:布氏硬度试验方法、洛氏硬度试验方法、维氏硬度试验方法.

1、布氏硬度

(1)布氏硬度得测试原理:用一定直径得球体(钢球或硬质合金),以规定得试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压痕直径来计算硬度。

?用HBS(HBW)表示,S表示钢球、W表示硬质合金球

当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高.

(2)布氏硬度得表示方法:符号HBS之前得数字为硬度值符号后面

按以下顺序用数字表示条件:1)球体直径;2)试验力;3)试验力保持得时间(10~15不标注)。

应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高得材料。缺点:耗时,测高硬度材料有限,压痕大,不宜成品及薄件

布氏硬度试验原理图洛氏硬度试验原理图

练习、170HBS10/100/30 530HBW5/750 (1)表示用直径10mm得钢球,在9807N得试验力作用下,保持30S 时测得得布氏硬度值为170.

(2)表示用直径5mm得硬质合金球,在7355N得试验力作用下,保持10~5s时测得得布氏硬度值为530。

2、洛氏硬度

(1)测试原理:

采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即除主试验力,以测量得压痕深度来计算洛氏硬度值。

表示符号:HR

(2)标尺及其适用范围:

?每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用得洛氏硬度标尺就是A、B、C三种,其中C标尺应用最为广泛。

见表:P21 2—2

不同标尺得洛氏硬度值不能直接进行比较,可换算.

表示方法:符号HR前面得数字表示硬度值,HR后面得字母表示不同洛氏硬度得标尺。

(3)优缺点:

?优点:①操作简单迅速,能直接从刻度盘上读出硬度值;②压痕小,可测成品及较薄工件;③测硬度范围大。

?缺点:数值波动大

3、维氏硬度。

?(1)原理:

?与布氏硬度试验相同。测量压痕对角线长度,从表中查出。

表示:与布氏硬度相同.

?如:640HV30

?表示用294、2N试验力,保持10S~15S测定得维氏硬度值为640.

(2)可测较薄得材料,也可测量表面渗碳、渗透层得硬度,可测定很软到很硬得各种金属材料得硬度、准确。

二、冲击韧性

金属材料抵抗冲击载荷作用而不破坏得能力称为冲击韧性。

1、常用一次摆锤冲击弯曲,试验来测定金属材料得冲击韧性。(1)冲击试验就是利用能量守恒原理:试样被冲断过程中吸收得能量等于摆锤冲击试样前后得冲击势能差.

(2)试样被冲断时所吸收得能量既就是摆锤冲击试样所作得功,称为冲击吸收功。符号用AK 表示。

AK=GH1-GH2=G(H1—H2)

(3)冲击吸收功(AK)除以试样缺口处得截面积(S0),即可得到材料得冲击韧度,用符号aK表示。aK= AK /S0;单位J / Cm2

(4)冲击韧度:就是冲击试样缺口处单位横截面积上得冲击吸收功。?aK 值越大,表示材料得冲击韧性越好.

(5)实践中,绝大多数受冲击载荷得工件就是在小能量多次冲击作用下而破坏得。(多次冲击损伤得积累→裂纹产生、扩展而引至得结果)注:金材受大能量得冲击载荷作用时,其冲击抗力主取决于ak大小.而小能量多次得冲击载荷作用,其冲击抗力主取决于材料得强度与塑性.

三、疲劳强度

?1、疲劳概念:

在交变应力作用下,零件所承受得应力低于材料得屈服点,但经过较长时间得工作后产生裂纹或突然发生完全断裂得现象称为金属得疲劳。

?2、疲劳破坏得特征

①、疲劳断裂时无明显得宏观朔性变形,断裂前没有预兆,而就

是突然破坏;

②、引起疲劳断裂得应力很低,常常低于材料得屈服点;

③、疲劳破坏得宏观断口由两部分组成.

小结:硬度得试验原理及表示方法。

作业:P32 6、7、8

第三章铁碳合金?§3-1 合金及其组织

教学目得:

1、掌握合金得概念及无相得概念

2、掌握合金得组织概念、性能特点.

3、掌握固溶解,金属化合物质、混合物

教学重点与难点:

掌握合金得概念就是教学重点。

掌握三种合金组织得名称及性能就是教学难点。

教学过程:

新课

1、合金得概念:

?合金就是一种金属元素与其它金属元素可非金属元素通过熔炼或其她方法结合而成得具有金属特性得物质。

例如:普通黄铜就是由铜锌两种金属元素组成得合金,碳素钢就是由铁与碳组成得合金。

2、组元或元得概念:

?组成合金得最基本得独立物质称为组元或元。硬铝就是由铝、铜、

镁或铝、铜、锰组成得三元合金。(∵合金中元数目得多少,合金可分为:二元、三元、多元合金。)

3、相得概念

在合金中成分、结构及性能相同得得组成部分称为相。

?注:合金得性能一般都就是由组成合金得各相性能、数量、各相组合情况所决定.

4、组织:所谓合金得组织,就是指合金中不同相之间相互组合配置得状态.

∵合金中各组元之间结合方式不同,∴合金组织可分为:

一、固溶体

?固溶体就是一种组元得在子深入另一组元得晶格中所形成得均匀固相。

溶入得元素称为溶质,而基体元素称为溶剂.固溶体仍然保持溶剂得晶格类型。

1、分类:∵溶质原子在溶剂晶格中分布情况不同,

∴可分为:

1)、间隙固溶体?溶质原子分布于溶剂晶格间隙之中而形成得固溶体称为间隙固溶体。

2)、置换固溶体?溶质原子置换了溶剂晶格结点上某些原子而形成得固容体称为置换固溶体。

2、性能影响:

材料塑性变形抗力↑→强、硬度↑得现象称“固溶强化"(强化

金材得重要途径)。

?二、金属化合物

?合金组元间发生相互作用而形成一种具有金属特性得物质称为金属化合物。

其性能物特点就是熔点高,硬度高,脆性大。金属化合物能提高合金得硬度与耐磨性,但塑性与韧性会降低。

三、混合物:

两种或两种以上得相按一定质量分数组成得机械混合物质.

——-———各相仍保持自己原来得晶格;其性能取决于各相得性能、形态、数量、大小.

小结:

?本次课讲解了工业上强化金属材料得重要手段分别有—-—

1 形变强化;

2 细化晶粒; 3固溶强化;4弥散强化

§3-2 铁碳合金相图

教学目得:

1、掌握铁碳合金相图,简化图各区域组织符号及名称。

2、掌握铁碳合金相图重要点线得含义,特别就是共晶点,共析点及转变式.

3、熟悉掌握铁碳合金得分类.

教学重点与难点:

1、教学重点与难点就是简化相图各区域得组织符号及转变。

教学过程:

复习:

铁碳合金得五种基本组织:铁素体(F、α– Fe)、奥素体(A、γ—Fe)、渗碳体(Fe3C)、珠光体(P)、莱氏体(Ld)

导入新课:

?铁碳合金就是现代工业中应用最广泛得金属材料。不同成分得铁碳合金,在不同温度条件下,具有不同得组织与性能;因此其

应用与工艺处理应有不同得选择。为了解铁碳合金成分、组织

与性能之间得关系,必须认识铁碳合金相图。

一、铁碳合金相图得组成。

1、铁碳合金相图就是表示在缓慢冷却(或缓慢加热)条件下,不同成分得铁碳合金得状态或组织随温度变化得图形。

2、Fe——Fe3C相图中点、线得含义。

(1)点得含义:

A点:纯铁得熔点,15380C

D点:渗碳体得熔点,12270C

?C点:共晶点,11480CLC (A+Fe3Ci)

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

金属材料与热处理含答案

金属材料与热处理含答 案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气 态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。

1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的() A.屈服点 B.抗拉强度 C.弹性极限 D.以上答案都对 7.做疲劳试验时,试样承受的载荷为()。

(完整版)金属材料与热处理题库及答案

金属材料与热处理(第五版)练习题及答案第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。( √) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 9、钢水浇铸前加入钛、硼、铝等会增加金属结晶核,从而可细化晶粒。( ×) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √)

13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √) 14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √)

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

金属材料与热处理(含答案)

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的()

《金属材料与热处理》课程教学大纲

《金属材料与热处理》课程教学大纲 一、课程性质、目的和任务 属材料与热处理是一门技术基础课。其要紧内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 二、教学差不多要求 本课程的任务是使学生掌握金属材料与热处理的差不多知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列差不多要求: (1)了解金属学的差不多知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 三、教学内容及要求 绪论 教学要求: 1、明确学习本课程的目的。 2、了解本课程的差不多内容。 教学内容: 1、学习金属材料与热处理的目的 2、金属材料与热处理的差不多内容 3、金属材料与热处理的进展史

4、金属材料在工农业生产中的应用 教学建议: 1、结合实际生产授课,以激发学生学习本课程的兴趣。 2、展望金属材料与热处理的进展前景。 第一章金属的性能 教学要求: 1、掌握金属的力学性能,包括强度、塑性、硬度、冲击韧性、疲劳等概念及各力学性能的衡量指标。 2、了解金属的工艺性能。 教学内容: §1—1 金属的力学性能 一、强度 二、塑性 三、硬度 四、冲击韧性 五、疲劳强度 §1-2金属的工艺性能 一、铸造性能 二、锻造性能 三、焊接性能 四、切削加工性能

第二章金属的结构与结晶 教学要求: 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 教学内容: §2-1 金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 §2—2纯金属的结晶 一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的阻碍 *四、金属晶体结构的缺陷 §2—3 金属的同素异构转变 教学建议: 1、晶体结构较抽象,可使用模型配合讲课。 2、讲透同素异构转变与结晶过程之间的异同点。 *第三章金属的塑性变形与再结晶 教学要求: 1、了解金属塑性变形的差不多原理。

(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案 第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。(×) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √) 13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √)

14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √) 31、晶体有规则的几何图形。( √) 32、非晶体没有规则的几何图形。( √)

金属热处理基础知识大全

金属热处理基础知识大全 金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。 渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%) 莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。

《金属材料与热处理》课程标准

《金属材料与热处理》课程标准 一、课程性质、定位与设计思路 (一)课程性质 本课程是机械制造及自动化专业高职学生的一门必修专业基础课,讲授金属材料与热处理相关理论知识的专业课。主要内容包括:金属材料的分类,金属材料的结构,金属材料的性能测试,铁碳合金组织,金属材料的常规热处理,金属材料的表面热处理,金属材料的工程选用等。使学生初步认识材料的性能、了解晶体结构、掌握铁碳合金相图、掌握常用材料的牌号及其用途,并能够合理选择热处理方法。 (二)课程定位 通过本课程的学习,学生具有处理简单的金属材料与热处理力学性能测试和硬度性能测试的能力,具有分析金属的晶体结构、二元合金相图和铁碳合金相图的基本能力,具有初步的钢热处理知识,并应用钢热处理知识完成钢的热处理能力,具有鉴别金属材料与的能力,具有选择热处理方式的能力,具有选择机械工程常用材料的能力。同时通过对典型机械材料的分析,培养学生分析问题、解决问题的能力。 (三)课程设计思路

本课程是根据高职教育机械设计及制造专业人才培养目标,通过素质教育、金属材料与热处理知识提升、技能操作以及策略的制定与应用,充分体现素质、知识、能力“三位一体”的要求。本课程应用项目任务驱动和项目问题引入来激发学生的学习动机和兴趣,遵循以“校企合作,工学结合”的教学理念设计课程。 1.主要结构 课程教学内容根据高职学生对金属材料理论知识和应用能力的要求,精简学科理论知识,突出理论与实际的“前因后果”关系,按照“感性认识→理性认识→综合利用”对教学内容进行序化,使学生由浅入深,从具备金属材料的基本概念和初步鉴别能力,到掌握金属材料的本质和具备显微鉴别能力,再到具备金属材料及热处理的工程应用能力。 2.课程设计理念 (1)贴近生产岗位。本标准以企业需求为基本依据,加强实践性教学,以满足企业岗位对高技能人才的需求作为课程教学的出发点,使本书内容与相关岗位对从业人员的要求 相衔接。 (2)借鉴国内外先进职业教育教学模式,突出项目教学。 (3)工学结合。培养理论联系实际,学以致用,在“做中学”的优良学风。突出实践,立足于实际运用。 (4)充分应用多媒体教学的优势,很多的知识以图、表、视频、动画等方式进行展现。 (5)实施项目教学,项目制作课题的考评标准具体明确,直观实用,可操作性强。 (6)突出高职教育特点,重视实践教学环节,培养学生的创新能力和实践能力。 (四)本课程对应的职业岗位标准 本课程的学习内容,与机械加工类的职业岗位的要求是相符的,如:中高级

金属材料与热处理课程标准

《金属材料与热处理》课程教学标准 课程名称:金属材料与热处理 适用专业: 1.前言 1.1课程性质 《金属材料与热处理》课程是数控专业必修的技术基础课。该课程理论性较强,新概念较多,同时又与生产实际有着密切联系。该课程主要讲授金属材料典型组织、结构的基本概念,金属材料的成分、组织结构变化对性能的影响,热处理的基本类型及简单热处理工艺的制定,合金钢种类、牌号、热处理特点及应用,为学生从事机械设计、制造及相关的工作打下基础。 1.2设计思路 以“项目为主线,任务为主题”,采用“项目导向、任务驱动”相结合的教学模式,实现教、学、做、练一体化。为加强学生创造思维和工程技术素质的培养,根据学生个性特点与发展的需要,本门课程建议采用讲课、自学、习题课、辅导课、报告会等多种形式组织教学。本门课程可灵活采用全班学习、分组学习等学习形式,也可以组建课外兴趣小组进行知识拓展学习。 教师要认真研究学生特点,针对学生实际情况,结合教学内容,多种教学方法手段综合运用。在教学方法上,将项目任务引入课程,将理论讲授包含在项目训练中,使学生在实践中掌握理论、学习知识,将生产中的新工艺、新方法、新技术引入课堂。采用项目式、启发式、互动式、案例式等教学方法,提高学生的学习兴趣。在教学手段上,充分利用现代多媒体电子教学,视频教学、实物教学、现场教学、网络教学等将现代科学技术充分应用于教学改革之中。 2.课程目标 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: ●了解金属学的基本知识 ●掌握常用金属材料的牌号、性能及用途

金属材料与热处理第六版习题册答案

金属材料与热处理习题册答案 绪论 一、填空题 1、成分、组织、热处理、性能之间。 2、石器时代、青铜器时代、铁器时代、钢铁时代、 人工合成材料时代。3、成分、热处理、性能、性能。 二、选择题: 1、A 2、B 3、C 三、简答题 1、掌握金属材料与热处理的相关知识对机械加工有什么现实意义? 答:机械工人所使用的工具、刀夹、量具以及加工的零件大都是金属材料,所以了解金属材料与热处理后相关知识,对我们工作中正确合理地使用这些工具,根据材料特点正确合理地选择和刃磨刀具几何参数;选择适当的切削用量;正确选择改善零件工艺必能的方法都具有非常的现实意义。 2、如何学好《金属材料与热热处理》这门课程? 答:在学习过程中,只要认真掌握重要的概念和基本理论,按照材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途这一内在关系进行学习和记忆;注意理论联系实际,认真完成作业和实验等教学环节,是完全可以学好这门课程的。 第一章金属的结构和结晶 1-1金属的晶体结构 一、填空题 1、非晶体晶体晶体 2、体心立方面心立方密排立方体心立方面心立方密排立方 3、晶体缺陷点缺陷面缺陷 二、判断题 1、√ 2、√ 3、× 4、√ 三、选择题 1、A 2、C 3、C 四、名词解释 1、晶格与晶胞:P5 答:将原子简化为一个质点,再用假想的线将它们连接起来,这样就形成了一个能反映原子排列规律的空间格架,称为晶格;晶胞是能够完整地反映晶体晶格特征的最小几何单元。 3、单晶体与多晶体 答:只由一个晶粒组成称为单晶格,多晶格是由很多大小,外形和晶格排列方向均不相同的小晶格组成的。 五、简答题书P6 □ 1-2纯金属的结晶 一、填空题

《金属材料与热处理》教学方法例谈

《金属材料与热处理》教学方法例谈 作者:施玉娴 来源:《职业·中旬》2010年第12期 《金属材料与热处理》是一门与生产实践联系比较密切的专业基础课程,大部分学生对该课程不太感兴趣。那么,如何激发他们的学习热情,培养学习兴趣,为今后的专业理论与实践技能的学习打好基础呢?德国著名教育学家第斯多惠说:“我们认为教学的艺术不在于传授的本领,而在于激动、唤醒、鼓舞。”笔者结合多年的教学实践,认为以下三种教学方法效果较好。 一、设计好入门课,吸引学生 在上《金属材料与热处理》的第一节课时,笔者带了一透明塑料整理箱的“杂物”,放在讲台,学生就会产生疑问了……上课后,笔者就让学生各抒己见,说说这个宝箱的“用途”。 首先,笔者从整理箱中取出“杂物”(发夹、手表链、铝合金、不锈钢球、轴承滚珠、自行车链条、水果刀、挖耳勺、钥匙、铁锁、铜锁等),按学号顺序请学生说出这些物品的名称。这样,每一个同学都有了发言的机会。作为老师,要对他们的回答及时加以表扬、鼓励,让他们对新的老师、新的学校产生好感,从而对所学的新知识有一个良好的开端。 然后,将“杂物”分组。每组派一名同学在黑板上写出物品名称,其余的学生思考这些物品的共同点。这时,学生因急于知道结果而凝神思虑,注意力高度集中,明显提高了学生接受新知识的能力。笔者在这时恰到好处地给出金属材料的定义,并要求每人用一张白纸写出更多的金属材料的应用,看谁写得多,选出前五名。通过举例,让学生明白了金属材料的定义,更让他们发现金属材料在他们的日常生活中无处不在,从而使他们认识到这门课程的重要性和实用性。 最后,根据学生的表现给同学以奖励,将箱中一些小挂件、小装饰品赠送给学生。鼓励学生注意收集一些金属材料制品,留待以后上课讲解它们的特性、用途等。结合教材让学生讨论几个相关问题,并在轻松愉快的环境下布置文字作业以及实践性作业。 二、多种方法并用,讲解难点 以“金属和合金的晶体结构及其结晶过程;铁碳合金相图的建立、识读和运用”这部分内容为例。对这部分知识的教学,可以先用多媒体教学课件播放有关晶体和非晶体的课件;用挂图展示体心立方晶格、面心立方晶格和密排六方晶格的结构特征;教师在黑板上画出三种晶格的结构示意,然后现场用牙签、橡皮泥、塑料小球等一些手工材料动手做成模型。这样能让学生较为形象地掌握金属的晶体结构是由原子有规则的排列所形成的。原子排列的具体方式不同,便组成了几种不同类型的晶格,有助于学生加深对纯铁组织中不同类型z晶格对碳元素的溶解

金属材料与热处理教案

金属材料与热处理教案 第一教案 A:课题:绪论 B:课型:新课 C:教学目的与要求 1、了解学习本课程的目的 2、了解本课程的基本内容及其发展史 3、了解金属材料在各行业中的应用 D:教学重点与难点 无 E:教学过程 绪论 一、学习本课程的目的 本课程是研究金属材料的成份、组织、热处理与金属材料的性能间的关系和变化规律的学科。 二、本课程的基本内容 1、主要内容: 包括金属的性能、金属学基础知识、钢的热处理和金属材料等。 2、金属的性能主要介绍: (1)金属的力学性能和工艺性能; (2)金属学基础知识讲述金属的晶体结构、结晶及金属的塑性变形,铁碳合金的组织及铁碳合金相图; (3)钢的热处理讲述热处理的原理和工艺; (4)金属材料讲述碳素钢、合金钢、铸铁、有色金属及硬质合金等金属材料的牌号、成分、组织、热处理、性能及用途。 3、学习本课程的方法 理论联系实际、注意观察现实生活中所接触到的金属材料。三、金属材料与热处理的发展史

金属材料的使用在我国具有悠久的历史。 四、金属材料在工业农业上的应用。 F:小结 G:布臵作业:预习第一章序论及第一章第一小节 第二教案 A:课题:金属的性能 B:课型:新课 C:教学目的与要求 1、掌握金属材料性能(工艺性能、使用性能)的概念、分类 2、掌握力学性能概念及其指标 3、掌握载荷的性质、名称、分类 4、掌握强度的概念及其种类、应力的概念及符号 D、教学重点与难点: 1、金属材料的性能是教学重点 2、金属材料的强度概念及种类是教学难点 E、教学过程: 第一章金属的性能 概论: 1、金属材料的性能包括:使用性能和工艺性能。 2、使用性能:是指金属材料在使用条件下所表现出来的性能,包括①物理 性能(如密度、熔点、导热性、导电性、热膨胀性、磁性等)。②化学性能(如抗腐蚀性、抗氧化性等)。③力学性能(如强度、塑性、硬度、冲击韧性及疲劳强度等)。④工艺性能。 第一节金属的力学性能 一、力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。 力学性能包括:强度、硬度、塑性、硬度、冲击韧性。 二、载荷的概念及分类:

《金属材料与热处理》课程标准

《金属材料与热处理》课程标准 (一)课程的性质 本课程是中职教学课程中一门与生产实践联系比较密切的课程,是机械专业学生学习各专业工艺学与生产实习课的基础。通过这门课程的学习不仅可以帮助学生掌握常用钢材料的成分、组织、性能及热处理工艺间的相互关系,同时可以培养学生正确选择和合理使用材料、制定和掌握热处理工艺规范等多方面的能力。(小四号楷体,下同) (二)课程教学目标和基本要求 知识目标: (1)具有本专业必需的文化基础知识、工程技术必需的基础理论知识; (2)掌握使用计算机从事本专业工作的知识; (3)具有从事本专业所必备的英语知识; (4)掌握金属材料的冷热加工、材料分析和检测以及金属材料普通热处理、表面处理等生产工艺的基本知识; (5)掌握热处理设备的使用与保养的专门知识。 能力目标: (1)具备较强的自学能力; (2)具备使用计算机从事本专业工作的能力; (3)具备对金属材料进行合理冷热加工、正确选择、合理使用金属材料以及质量控制与实验分析的初步能力,具有熟练进行相关零件的热处理 及表面处理操作的能力; (4)具备使用和保养热处理设备的能力; (5)初步具备热处理、表面处理类产品生产管理、质量管理、市场营销的能力。 综合素质: (1)思想道德素质:具有正确的人生观、价值观和良好的职业操守; (2)文化素质:文化基础知识扎实,具有良好的文化素养和人文素质; (3)身心素质:具有健康的体魄和心理状态; (4)业务素质:具有本专业基础理论和应用实践的能力,具有继续学习和再提高的能力,具有开拓意识和创新精神。 (三)课程的重点和难点 本课程的讲授为一个学期,分为《金属的性能》、《金属学的基础知识》、《钢的热处理》和《常用金属材料》四部分。本课程重点是金属学的基础知识;掌握好这部分的基础知识可以起到承前启后、画龙点睛的作用;难点是铁碳合金相图的识读与应用。

金属材料及热处理知识(整理版)

硬度 金属抵抗更硬物体压入表面的能力,称为硬度。硬度是反映金属材料局部塑性变形的抵抗能力。根据试验方法和测量围的不同,硬度可分为布氏、洛氏、维氏等几种。 1、布氏硬度(HB)布氏硬度是用淬火硬化后的钢球(直径有:2.5、5、10毫米三种)作为压印器,以一定的压力P压入被测金属材料表面,这时在被测金属材料表面留下压坑。 根据压坑面积的大小,可用下式计算出布氏硬度值,用符号HB表示为 HB=P/F(公斤/毫米2) 式中P——钢球所加的负荷(公斤); F——压坑面积(毫米2)。 布氏硬度是用单位压坑面积所受负荷的大小来表示的。一般硬度值都不需要经过计算,在生产中用放大镜测出压坑直径,再根据压印器钢球直径D和压力负荷P直接查表,便可得出HB的值。布氏硬度在标注时不写单位,如HB=212。 测量不同金属材料时所用的压印器和负荷等标准,也可以查表。用布氏硬度法测得的硬度值准确,因为压坑大,不会由于表面不平或组织不均匀而引起误差。但压坑太大有损表面,所以布氏硬度一般不宜作成品检验,只适合测量硬度不高的原材料,如毛坯、铸件、锻件、有色金属及合金等。 2、洛氏硬度(HR)洛氏硬度法是用金刚石做的呈120°的圆锥体,或直径为1.58毫米的淬火钢球,作为压印器,在一定的负荷下压入金属表面,根据压坑的深浅来测量金属材料的硬度,(根据压坑深度)可把硬度数值从表盘上直接读出来。 根据测量硬度围不同,洛氏硬度可分为HRA、HRB、HRC三种。它们的适用围与压印器、负荷的选定可根据下表查出, 洛氏硬度的选用标准 洛氏硬度没有单位,测量方法简单,压坑小,不影响零件表面质量,测量硬度围广,但不如布氏硬度精确度高。HRA适宜测量高硬度材料;HRB适宜测量有色金属及硬度低的材料;HRC适宜测量淬火、回火后的金属材料。 3、维氏硬度(HV)维氏硬度试验的原理与布氏硬度法相似,只不过它的压印器是136°的四棱锥金刚石,以一定的负荷压入平整的试样表面,然后测出四棱锥压坑的对角线长度d,算出压坑面积F,用单位面积所受负荷的大小来表示维氏硬度值,即 HV= P/F(公斤/厘米2) 维氏硬度测量精确、硬度测量围大,尤其能很好地测量薄试样的硬度。维氏硬度所加载荷较小时,又称为显微硬度(用HM表示),可测量试样表面各种组成相的硬度。 各种硬度值相互对照。它们是通过不同硬度测量法,测同一硬度金属材料时得到的不同硬度指标值。如HB=351,相当于HRC=38,HV=361。硬度是检验毛坯、成品等性能的重要指标。一般刃具的硬度要求HRC=60~63,结构零件的硬度要求HRC=25~40,弹簧或弹性零件的硬度要求HRC=40~48,切削加工零件的硬度要求HRC=20~36。 钢的硬度与其含碳量有关,随着钢中的含碳量的不断增加,硬度也不断增高。

金属材料与热处理 考试复习笔记

热处理复习重点 第一章金属材料基础知识 1. 材料力学性能 (1)材料在外力作用下抵抗变形和破坏的能力称为强度。强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。 (2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。 (3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。 (4)硬度(材料表面局部区域抵抗更硬物体压入的能力) a. 布氏硬度(测较低硬度材料) 用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。HBS(钢球,<450)、HBW(硬质合金球,>650)。 b. 洛氏硬度(测较高硬度材料) 利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。HRA(金刚石圆锥,20~80)、HRB (1.588mm钢球,20~100)、HRC(金刚石圆锥,20~70) c. 维氏硬度(适用范围较广) 维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。 (5)冲击韧性 材料抵抗冲击载荷作用而不被破坏的能力。通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。 (6)疲劳强度 材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。 2. 铁碳相图

第二章钢的热处理原理 1. 钢的临界温度 A c1——加热时珠光体向奥氏体转变的开始温度 A c3——加热时先共析铁素体全部溶入奥氏体的终了温度 A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度 A r1——冷却时奥氏体向珠光体转变的开始温度 A r3——冷却时奥氏体开始析出先共析铁素体的温度 A rcm——冷却时奥氏体开始析出二次渗碳体的温度 2. 钢在加热时的转变 (1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。 (2)铁素体向奥氏体的转变的速度远比渗碳体溶解速度快的多。所以转变过程中珠光体中总是铁素体首先消失,铁素体全部转化为奥氏体时,可以认为奥氏体长大完成。 (3)影响奥氏体形成速度的因素:加热温度、加热速度、化学成分、原始组织。 (4)加热速度越快,奥氏体形成的开始温度和终了温度越高,而孕育期和转变时间越短,奥氏体形成速度越快。 (5)钢中含碳量越高,奥氏体形成速度越快;碳化物形成元素减小碳在奥氏体中的扩散速度,故减慢奥氏体的形成速度;费碳化物形成元素增大碳在奥氏体中的扩散速度,因而加快了奥氏体中的形成速度。 (6)当钢的化学成分相同时,原始组织越细,相界面面积越大,形核率越高,奥氏体形成速度越快。 (7)奥氏体的晶粒度可以用起始晶粒度、实际晶粒度和本质晶粒度等描述。 (8)起始晶粒度是指把钢加热到临界温度以上,奥氏体转变刚刚完成,其晶粒边界刚刚接触时的奥氏体晶粒大小;实际晶粒度是指钢在某一具体的热处理或热加工条件下实际获得的奥氏体晶粒大小;本质晶粒度表示在规定的加热条件下奥氏体晶粒长大的倾向。1~4级为本质粗晶粒度,5~8级为本质细晶粒度。 (9)影响奥氏体晶粒长大的因素:加热温度和保温时间、加热速度、钢的化学成分、原始组织。 (10)实际生产中采取快速加热和短时保温的方法获得细小晶粒。 (11)当成分一定时,原始组织越细,碳化物弥散度越大,则奥氏体晶粒越细。与粗珠光体相比,细珠光体总是易于获得细小而均匀的奥氏体晶粒。片状珠光体比球状珠光体在加热时奥氏体晶粒易于粗化。 (12)时效强化:合金元素经固溶处理后,获得过饱和固溶体。在随后的室温放置或低温加热保温时,第二相从过饱和固溶体中析出,引起强度,硬度以及物理和化学性能的显著变化。 3. 钢在冷却时的转变 (1)常用的冷却方式有两种: 等温冷却——将奥氏体状态的钢迅速由高温冷却到临界点以下某一温度等温停留一段时间,使奥氏体在该温度下发生组织转变,然后再冷到室温。过冷奥氏体等温转变曲线(TTT曲线或C曲线) 连续冷却——将奥氏体状态的钢以一定的速度连续从高温冷到室温,使奥氏体在一个温度范围内发生连续转变。过冷奥氏体连续转变曲线(CCT曲线) (2)TTT曲线反映转变开始和转变终了时间,转变产物的类型以及转变量与时间、温度之间的关系。 (3)在A1温度以下某一确定温度,过冷奥氏体转变开始线与纵坐标之间的水平距离为过冷

金属材料及热处理教学计划

金属热处理工培训计划 1.培训目标 1.1总体目标 培养中级技术工人所必须的一门技术基础课。其内容包括金属的机械性能、金属学的基础知识及金属材料等部分。并达到一定熟练程度。 1.2理论知识培训目标 (1)本课程的任务是使学生掌握金属材料和热处理的基础知 识,为学习各门专业工艺学课及今后从事生产技术工作打下必要的基础。 (2) 通过本课程的教学,应使学生达到下列基本要求: ①基本掌握常用金属材料的牌号,成分,性能及应用范围。 ②了解金属材料的内部结构,以及成分,组织和性能三者之间的一般关系。 ③懂得金属材料热处理的一般原理。 ④明确热处理的目的,了解热处理的方法及实际应用。 1.3操作技能培训目标 ①会评价工程材料力学性能指标。 ②运用Fe-Fe3C平衡相图解决工程问题; ③能为工程零件及结构正确选材; ④能为工件制定的热处理工艺参数。 2.教学要求 2.1理论知识要求

2.1.1职业道德 2.1.2会评价工程材料力学性能指标。 2.1.3运用Fe-Fe3C平衡相图解决工程问题; 2.1.4能为工程零件及结构正确选材; 2.1.5能为工件制定的热处理工艺参数。 2.1.6热处理工艺管理知识。 2.1.7热处理各种淬火介质的冷却性能知识。 2.1.8热处理辅助设备、控温仪表知识。 2.1.9.热处理质量检验及校正知识。 2.2操作技能要求工装制作基础知识 (1)识图及绘图。 (2)钳工操作一般知识。 电工知识 (1)通用设备常用电器的种类及用途。 (2)电气传动及控制原理基础知识。 (3)安全用电知识。 安全文明生产与环境保护知识 (1)现场文明生产要求。 (2)安全操作与劳动保护知识。 (3)环境保护知识。 质量管理知识

金属材料与热处理含答案

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。

11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。()

三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的() A.屈服点 B.抗拉强度 C.弹性极限 D.以上答案都对 7.做疲劳试验时,试样承受的载荷为()。 A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 8.洛氏硬度C标尺所用的压头是()。

相关主题
文本预览
相关文档 最新文档