当前位置:文档之家› 指数函数与对数函数的应用(人教版A必修一)

指数函数与对数函数的应用(人教版A必修一)

指数函数与对数函数的应用(人教版A必修一)
指数函数与对数函数的应用(人教版A必修一)

2.2指数函数与对数函数的应用

目标认知:学习目标:

能够熟练运用指数函数与对数函数的性质,解决指数函数与对数函数的综合问题.

学习重点:

运用函数有关理论,解决综合问题.

学习难点:

指数函数与对数函数综合应用.

典型例题:例1.设,函数在区间上的最大值与最小值之差为,则( )

A.B.2C.D.4

【解读】设,函数在区间上的最大值与最小值分别为

,,它们的差为,∴,,选D.例2.函数的反函数的定义域为( )

A.B.(1,9]C.(0,1)D.

【解读】函数的反函数的定义域为原函数的值域,原函数的值域为(1,9],

∴选B.

例3.若,则下列结论正确的是( )

A.B.C.

D.

【解读】D;由指数函数与对数函数的单调性知D正确.

例4.函数的值域为

A.B.C.D.

答案:A

例5.若函数是函数的反函数,且,则

( )

A.B.C.D.

答案:A

【解读】函数的反函数是,又,即

所以,a=2,故,选A.

例6.设,,,则

A.B.C.D.

答案:A

【解读】∵,∴

∴,∴.

例7.设则________

答案:.

【解读】本题考察了分段函数的表达式、指对数的运算.

例8.已知函数.若,a<b且,则的取值范围是

A.B.C.D.

答案:C

【解读1】因为,所以,所以a=b(舍去),或,所以

又0<a<b,所以0<a<1<b,令,

由“对勾”函数的性质知函数在上为减函数,

所以,即a+b的取值范围是.

【解读2】由0<a<b,且得:,利用线性规划得:,化为求的取值范围问题,

,过点(1,1)时z最小为2,

∴C 例9.若函数的零点与的零点之差的绝对值不超过0.25,则可以是

A.B.C.

D.

答案:A

【解读】的零点为,的零点为,

的零点为,的零点为.

现在我们来估算的零点,因为,,

所以的零点,

又函数的零点与的零点之差的绝对值不超过0.25,

只有的零点适合,故选A.

例10.函数的图像大致为().

【解读】函数有意义,需使,其定义域为,排除C,D,

又因为,所以当时,函数为减函数,故选A.

答案:A.

例11.设,则的定义域为( )

A.B.C.

D.

答案:B

【解读】的定义域是(-2,2),故应有且,

解得或,故选B.

例12.若函数(且)有两个零点,则实数a的取值范围是________.

答案:

【解读】设函数(且)和函数,

则函数(且)有两个零点,

就是函数(且)与函数有两个交点,

由图象可知,当时,两函数只有一个交点,不符合;

当时,因为函数()的图象过点(0,1),

而直线所过的点(0,a)在点(0,1)的上方,就一定有两个交点.

所以实数a的取值范围是.

【命题立意】本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象进行解答.

例13.设,,函数有最大值,则不等式

的解集为________.

【解读】设,,函数有最大值,∵

有最小值,

∴,则不等式的解为,解得

所以不等式的解集为(2,3).

例14.求函数的增区间和减区间.

【解读】令,∴,y对u而言是减函数.

∴当时,u对x为减函数,∴y对x为增函数.

当时,u对x为增函数,∴y对x为减函数.

∴的增区间为,减区间为.

例15.已知函数是奇函数,a是常数,求a的值.

【解读】∵是奇函数,∴

∴∴∴

例16.求,的值域.

【解读】设.∴,∴,,故转化为二次函数问题

∵的对称轴为,∴∴值域为

例17.已知函数(1)判断奇偶性,(2)求函数的

值域,(3)证明在区间上是增函数.

【解读】由

(1)为奇函数

(2)∵∴,

(3),

∵,,∴

又∵,,

即.

∴即∴在上为增函数.

高一指数函数与对数函数经典基础练习题,

指数函数与对数函数 一. 【复习目标】 1. 掌握指数函数与对数函数的函数性质及图象特征. 2. 加深对图象法,比较法等一些常规方法的理解. 3. 体会分类讨论,数形结合等数学思想. 二、【课前热身】 1.设5 .1348.029.0121,8,4-? ? ? ??===y y y ,则 ( ) A. 213y y y >> B 312y y y >> C 321y y y >> D 231y y y >> 2.函数)10(|log |)(≠>=a a x x f a 且的单调递增区间为 ( ) A (]a ,0 B ()+∞,0 C (]1,0 D [)+∞,1 3.若函数)(x f 的图象可由函数()1lg +=x y 的图象绕坐标原点O 逆时针旋转 2 π 得到,=)(x f ( ) A 110 --x B 110-x C x --101 D x 101- 4.若直线y=2a 与函数)且1,0(|1|≠>-=a a a y x 的图象有两个公共点,则a 的取值范围是 . 5..函数)3(log 32x x y -=的递增区间是 . 三. 【例题探究】 例1.设a>0,x x e a a e x f += )(是R 上的偶函数. (1) 求a 的值; (2) 证明:)(x f 在()+∞,0上是增函数 例2.已知()())2(log 2log )(,2 2 log )(222 >-+-=-+=p x p x x g x x x f (1) 求使)(),(x g x f 同时有意义的实数x 的取值范围 (2) 求)()()(x g x f x F +=的值域. 例3.已知函数)1(1 2 )(>+-+ =a x x a x f x (1) 证明:函数)(x f 在()+∞-,1上是增函数;

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

(完整版)高考指数函数和对数函数专题复习

指数函数与对数函数专项练习 例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x ) 的反函数f -1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0)0(f >=?=-?=, (2) =-?∈++=--)x (f )R x (2 4x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax )x (u 2-=, 对称轴a 21 x =. (1) 当1a >时, 1a 0)2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >, 2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一 直角坐标系中的图像可能是【答案】D

人教A版数学必修一高一数指数函数、对数函数

高一数指数函数、对数函数 一、选择题:(每小题6分, 共36分) 1.化简3458log 4log 5log 8log 9???的结果是( ) A .1 B . 3 2 C .2 D .3 2.函数1)2(log ++=x y a 的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1) 3.已知a <0,则a 2 ,a )2 1 ( ,a 2.0的大小关系是( ) A .a 2.0 1,实数x ,y 满足log a y+x =0,则y 关于x 的函数图象大致是( )

二、填空题:(每小题6分,共18分) 7.函数:26x x y --=单调增区间是__________________________ 8.四个数:23.0,3.0log 2,3.02,0)2 (π的由小到大的顺序为____________________ 9.计算: 3 75754 log 3 1log 9 log 2log ??=__________________________ 三.解答题: 10.(15)已知函数.)3 1 ()(x x f =当]1,1[-∈x 时,求3)(2)(2+-x f x f 的取值范围。 11.(15)求函数) (2 6ln x x y --=的单调区间。

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

指数函数与对数函数关系的典型例题

经典例题透析 类型一、求函数的反函数 例1.已知f(x)=225x - (0≤x ≤4), 求f(x)的反函数. 思路点拨:这里要先求f(x)的范围(值域). 解:∵0≤x ≤4,∴0≤x 2≤16, 9≤25-x 2≤25,∴ 3≤y ≤5, ∵ y=225x -, y 2=25-x 2,∴ x 2=25-y 2.∵ 0≤x ≤4,∴x=225y - (3≤y ≤5) 将x , y 互换,∴ f(x)的反函数f -1(x)=225x - (3≤x ≤5). 例2.已知f(x)=21(0)1(0) x x x x +≥??-0)的图象上,又在它的反函数图象上,求f(x)解析式. 思路点拨:由前面总结的性质我们知道,点(4,1)在反函数的图象上,则点(1,4)必在原函数的图象上.这样就有了两个用来确定a ,b 的点,也就有了两个求解a ,b 的方程. 解: ? ?+?=+?=)2......(14)1......(4122b a b a 解得.a=-51, b=521,∴ f(x)=-51x+521. 另:这个题告诉我们,函数的图象若与其反函数的图象相交,交点不一定都在直线y=x 上. 例5.已知f(x)= ax b x c ++的反函数为f -1(x)=253 x x +-,求a ,b ,c 的值. 思路点拨:注意二者互为反函数,也就是说已知函数f -1(x)=253 x x +-的反函数就是函数f(x). 解:求f -1(x)=253 x x +-的反函数,令f -1(x)=y 有yx-3y=2x+5. ∴(y-2)x=3y+5 ∴ x=352y y +-(y ≠2),f -1(x)的反函数为 y=352x x +-.即ax b x c ++=352x x +-,∴ a=3, b=5, c=-2.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

高一数学(必修1)专题复习三 指数函数和对数函数

高一数学(必修1)专题复习三 指数函数和对数函数 一.基础知识复习 (一)指数的运算: 1.实数指数幂的定义: (1)正整数指数幂: a n n a a a a 个???=(R a ∈)(2)零指数幂:10=a (0≠a ) (3)负整数指数幂:n n a a 1 = -(0≠a ) (4)正分数指数幂:n m n m a a =(1,,,0≠∈≠+n N n m a ) (5)负分数指数幂:n m n m a a 1 = -((1,,,0≠∈≠+n N n m a . 2.指数的运算性质: ① y x y x a a a +=? ② y x y x a a a -= ③ xy y x a a =)( ④ x x x b a ab =)( 1b 就叫做以a 为底N 的对数,记作b a log =.即:b N N a a b =?=log . (10 (2)当(3)1的对数是零,01log =a (4)底数的对数等于1,1log =a 2.对数恒等式:(1 (2)b a b a =log (3)m n a a n m log log = 3.对数的运算法则: ① ()N M MN a a a log log log += ② N M N M a a a log log log -= ③ () N n N a n a log log = ④ N n N a n a log 1log = 4.对数换底公式:b N N a b log log log =.由换底公式推出一些常用的结论: (1 (2)c c b a b a log log log =?

(3 (4 (5 (一)指数函数的图象和性质 1.x y a =(0a >且1a ≠)的定义域为R ,值域为()0,+∞. 2.x y a =(0a >且1a ≠) 的单调性: 当1>a 时,x y a =在R 上为增函数; 当01a <<时,x y a =在R 上是减函数. 3.x y a =(0a >且1a ≠)的图像特征: 当1>a 时,图象像一撇,过点()0,1, 且在y 轴左侧a 越大,图象越靠近y 轴; 当01a <<时,图象像一捺,过点()0,1,且在y 轴左侧a 越小,图象越靠近y 轴. 4.x y a =与x a y -=的图象关于y 轴对称. (二)对数函数的图象和性质 1.)10(log ≠>=a a x y a 且 的定义域为+ R ,值域为R . 2.)10(log ≠>=a a x y a 且的单调性: 当1>a 时,在()+∞,0单增, 当01a <<时,在()+∞,0单减. 3.)10(log ≠>=a a x y a 且的图象特征: 当1>a 时,图象像一撇,过()1,0点,在x 轴上方a 越大越靠近x 轴; 当01a <<时,图象像一捺,过()1,0点,在x 轴上方a 越小越靠近x 轴. 4.b a log 的符号规律(同正异负法则): 给定两个区间()0,1和()1,+∞,若a 与b 的范围处于同一个区间,则对数值大于零;否则若a 与b 的范围分处两个区间,则对数值小于零. 5.log a y x =与x y a 1log =的图像关于x 轴对称. 6.指数函数x y a =与对数函数log a y x =互为反函数. (1)互为反函数的图像关于直线x y =对称 (2)互为反函数的定义域和值域相反 (3)一般地,函数)(x f y =的反函数用)(1 x f y -=表示,若点),(b a 在) (x f y =的图像上,则点),(a b 在)(1x f y -=的图像上,即若b a f =)(,则a b f =-)(1 . (4)求反函数的步骤:①反解,用y 表示x ; ②求原函数的值域; ③x 与y 互换, 并标明定义域. 二.训练题目 (一)选择题 1.设0a >( )

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

指数函数 和 对数函数公式 (全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数y a y x x a ==,l o g 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01 且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0 ,y x =0,当x ≤0,函数值不存在。 a =1 时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的 a a >≠01且。 1、对三个指数函数y y y x x x ==?? ???=212 10,, 的图象的认识。 图象特征与函数性质: 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐标都大于1,在第二象限内的纵坐标都小于1,y x =?? ? ? ?12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101, 则, 则 (4)y y x x ==210,的图象自左到右逐渐(4)当a >1时,y a x =是增函数,

人教版必修一指数函数说课稿第一课时

§2.1.2指数函数及其性质 第一课时(说课) 各位评委、老师,大家好! 今天我说课的课题是:人教A版普通高中课程标准实验教科书《数学》, 必修一第二章第二节“指数函数及其性质”的第一课时——指数函数的定义、 图象及性质.下面我将从教材分析,教法学法分析、教学过程分析、板书设 计、教学反思几个方面加以说明. 一、教材分析 1、教材的地位和作用 (1)函数是高中数学学习的重点和难点,函数思想贯穿于整个高中数学之中; (2)学生已掌握函数的一般性质和简单的指数运算; (3)研究指数函数,可以进一步深化学生对函数概念的理解与认识; (4)为研究对数函数打下基础. 2、教学目标 (新课标指出教学目标应包括知识与技能、过程与方法和情感态度与价值观这三个方面,而这三维目标又应是紧密联系的一个有机整体, 学生学会知识与技能的过程也同时成为学生学会学习,形成正确的价值观的过程.以此为指导我制定了以下的教学目标) 1)知识与技能: 了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数的图象、性质及其简单应用; 2)过程与方法: 借助计算器或计算机画出具体指数函数的图象,根据图象归纳出指数函数的性质,体会数形结合和分类讨论思想,体验从特殊到一般的学习方法; 3)、情感、态度与价值观: (通过本节课的学习使学生在数学活动中感受数学思想方法之美,体会数学思想方法之重要,并培养学生主动学习的意识). 3、教学的重点和难点 教学重点: 指数函数的定义、性质及简单的应用.

教学难点: 指数函数图象和性质,以及指数函数图象与底数的关系. 二、教法学法分析 1、学情分析 1)知识层面:学生在初中已经掌握了用描点法描绘函数图象的方法,通过第一章集合与函数概念的学习后初步具备了数形结合的思想. 2)能力层面:学生已经初步掌握了函数的基本性质和简单的指数运算技能. 3)情感层面:学生对数学新内容的学习有一定的兴趣和积极性. 4)不足之处:学生的分析能力和概括能力不是很强. 2、教法分析: 1)教学方法:探究式的教学(本节课我采用“探究式”的教学方法,通过教师在教学过程中的点拨,引导学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和同化,培养学生的观察、分析、归纳等思维能力) 2)教学工具:利用多媒体辅助教学(并充分利用多媒体辅助教学) (从指数函数的研究过程中得到相应结论固然重要,但是更重要的是应该使学生了解系统研究一类函数的方法,使得他们以后可以迁移到其他函数的研究中去.) 3、学法分析 1)观察、思考问题 2)描点画图 3)观察图像、合作交流总结出指数函数的性质 (先让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关.再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,最后观察图像、合作交流总结出指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力.) 三、教学过程分析 总体设计:引入—讲授新课—课堂练习—课时小结—课后作业—教学反思 具体安排: (一)引入(5分钟)

指数函数和对数函数的重点知识

指数函数和对数函数的重点知识 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为 1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ?? ?=21210 ,,的图象的认识。 图象特征 函数性质 (1)图象都位于x 轴上方; (1)x 取任何实数值时,都有a x >0; (2)图象都经过点(0,1); (2)无论a 取任何正数,x =0时,y =1; (3)y y x x ==210,在第一象限内的纵坐 标都大于1,在第二象限内的纵坐标都小于1,y x =?? ???12的图象正好相反; (3)当a >1时,x a x a x x >><<<>?????0101 ,则,则 (4)y y x x ==210,的图象自左到右逐渐上升,y x =?? ? ? ?12的图象逐渐下降。 (4)当a >1时,y a x =是增函数, 当01<

指数函数和对数函数综合题目与标准答案

指数函数、幂函数、对数函数增长的比较, 指数函数和对数函数综合 指数函数、幂函数、对数函数增长的比较 【要点链接】 1.指数函数、幂函数、对数函数增长的比较: 对数函数增长比较缓慢,指数函数增长的速度最快. 2.要能熟练掌握指数函数、幂函数、对数函数的图像,并能利用它们的图像的增减情况解决 一些问题. 【随堂练习】 一、选择题 1.下列函数中随x 的增大而增大速度最快的是( ) A .1100 x y e = B .100ln y x = C .100y x = D .1002x y =? 2.若112 2 a a -<,则a 的取值范围是( ) A .1a ≥ B .0a > C .01a << D .01a ≤≤ 3.x x f 2)(=,x x g 3)(=,x x h )2 1()(=,当x ∈(-)0,∞时,它们的函数值的大小关系 是( ) A .)()()(x f x g x h << B .)()()(x h x f x g << C .)()()(x f x h x g << D .)()()(x h x g x f << 4.若b x <<1,2 )(log x a b =,x c a log =,则a 、b 、c 的关系是( ) A .c b a << B .b c a << C .a b c << D .b a c << 二、填空题 5.函数x e y x x y x y x y ====,ln ,,3 2 在区间(1,)+∞增长较快的一个是__________. 6.若a >0,b >0,ab >1,a 2 1log =ln2,则log a b 与a 2 1log 的关系是_________________. 7.函数2 x y =与x y 2=的图象的交点的个数为____________. 三、解答题 8.比较下列各数的大小: 5 2)2(-、21 )23(-、3)3 1(-、54 )32(-. 9.设方程2 22x x =-在(0,1)内的实数根为m ,求证当x m >时,2 22x x >-. 答案 1.A 指数增长最快. 2.C 在同一坐标系内画出幂函数2 1 x y =及2 1- =x y 的图象,注意定义域,可知10<

新课标人教版高中数学必修一 2.1基本初等函数--指数函数 教学设计

2.1 指数函数 [教学目标] 1.通过具体实例了解指数函数模型的实际背景. 2.理解有理指数幂的含义,理解扩张指数范围的必要性. 3.通过具体实例了解实数指数幂的意义,掌握幂的运算. 4.理解指数函数的概念和意义. 5.能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点. 6.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型. [教学要求] 指数函数是本章的重点内容之一,也是高中新引进的第一个基本初等函数.学习指数函数时,建议首先通过实际问题引入分数指数幂,为此先将平方根与立方根的概念扩充到n 次方根,将二次根式的概念扩充到一般根式的概念,然后进一步介绍分数指数幂及其运算性质,最后结合具体实例,通过有理数幂的方法介绍了无理指数幂的意义,从而将指数的取值范围扩充到了实数.在实数指数幂的基础上,学习指数函数及其图象和性质. 教学中应通过具体的实例从正整数指数幂开始到现实中出现的分数指数幂,引出指数的取值范围需要进行必要的扩充. 根式是教学的一个难点,教材第一部分安排根式这部分内容,为讲分数指数幂做准备,所以只需要讲根式的概念、方根的性质.为了分散难点,在教学中可以适当放慢进度,多举几个具体的例子,之后再给出n 次方根的一般定义.为突破方根的性质的难点,要抓住立方根与平方根的性质,通过探究得到当n 分奇偶数时方根的性质. 分数指数幂是教学上的又一个难点,也是指数概念的又一次推广.教学时应注意循序渐进.教学中要让学生反复理解分数指数幂的意义,明确它是根式的一种新的写法. 教科书通过比较本节开始时的问题引入指数函数,教学中要让学生体会指数函数的概念来自实践,并体会其中蕴含的函数关系,可引导学生在探究中获得函数的共同特征,这样就可以很自然地给指数函数下定义了. 教学中注意对底数规定的合理性解释:0>a 且1≠a . 在理解指数函数定义的基础上,建议通过列表描点绘图或者利用信息技术绘图,教学中

指数函数和对数函数公式(全)

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a x ,y log a x 在 a 1及 0 a 1两种不同情况。 1、指数函数: y x 且a 叫指数函数。 定义:函数 aa 0 1 定义域为 R ,底数是常数,指数是自变量。 为什么要求函数 y a x 中的 a 必须 a 0且a 1 。 因为若 a 0时, y 4 x ,当 x 1 时,函数值不存在。 4 a 0 , y 0x ,当 x 0 ,函数值不存在。 a 时, y 1 x x 虽有意义,函数值恒为 1,但 1 对一切 y 1x 的反函数不存在, 因 为 要 求 函 数 y a x 中 的 a 0且 a 1 。 x 1、对三个指数函数 y 2 x , y 1 ,y 10x 的图象的 2 认识。 图象特征与函数性质: 图象特征 函数性质 ( 1)图象都位于 x 轴上方; ( 1) x 取任何实数值时,都有 a x 0 ; 2 0 1 ); ( 2)无论 a 取任何正数, x 0 时, y 1 ; ( )图象都经过点( , ( 3) y 2x , y 10 x 在第一象限内的纵坐 ( 3)当 a x 0,则 a x 1 1 时, 0,则 a x 1 标都大于 1,在第二象限内的纵坐标都小于 1, x 1 y 2 x x 0,则 a x 1 当 0 的图象正好相反; a 1时, 0,则 a x 1 x ( 4) y 2x , y 10 x 的图象自左到右逐渐 ( 4)当 a 1 时, y a x 是增函数,

指数函数与对数函数专题(含详细解析)

第 讲 指数函数与对数函数 时间: 年 月 日 刘老师 学生签名: 一、 兴趣导入 二、 学前测试 log 1. log . 2. (1).; (); (). (2).log log log ; log log ;(0,0). 3. ; log ; a b a x y x y x y xy x x x a a a n a a N x a a N b N a a a a a ab a b MN M N M n M M N a N a x +=?=?===?=+=>>==指数式、对数式:指数、对数的运算性质: 常用关系式: log log ;log log ; log log . log 4. ; 5. 6. ,(, 111. 2a aM m N n b a a a b M N N n N M M M m y x R x x αααα== ==∈指数函数的定义、图象、性质对数函数的定义、图象、性质,指、对函数间的关系。幂函数 定义:是常数)叫幂函数。定义域是使的意义的的值的集合,与的取值有关。性质:()图象都过点(,)(0.+00 3 7. 8.ααα><)在(∞)上,当时,是增函数,时,是减函数。 ()若为有理数,且定义域关于原点对称,则是奇或偶函数。指数方程、对数方程: 均属超越方程,解法是化成同底数幂(同底的对数),从而幂指数(真数)相等。或用换元法、或两边取对数。 指数不等式、对数不等式:解法与指数方程、对数方程类似。 三、方法培养

☆专题1:指数运算与对数运算 [例1] 已知,27log 12a =试用a 表示.16log 6 变式练习:1已知,ln .log log 3,12x x x x a +==/求证:.) 2(2log 3 e e e = 2若a >1,b >1且lg(a +b )=lg a +lg b ,则lg(a -1)+lg(b -1)的值 (A) 等于lg2 (B)等于1 (C)等于0 (D)不是与a ,b 无关的常数 ☆专题2:指数函数与对数函数 [例2] 求下列函数的定义域:

高一指数函数对数函数测试题及答案

指数函数和对数函数测试题 一、选择题。 1、已知集合A={y|x y 2log =,x >1},B={y|y=( 21)x ,x >1},则A ∩B=() A.{y|0<y <21}B.{y|0<y <1}C.{y|2 1<y <1}D.φ 2、已知集合M={x|x <3}N={x|1log 2>x }则M ∩N 为() φ.{x|0<x <3}C.{x|1<x <3}D.{x|2<x <3} 3、若函数f(x)=a (x-2)+3(a >0且a ≠1),则f(x)一定过点() A.无法确定 B.(0,3) C.(1,3) D.(2,4) 4、若a=π2log ,b=67log ,c=8.02log ,则() >b >>a >>a >>c >a 5、若函数)(log b x a y +=(a >0且a ≠1)的图象过(-1,0)和(0,1)两点,则a ,b 分别为() =2,b==2,b==2,b==2,b=2 6、函数y=f(x)的图象是函数f(x)=e x +2的图象关于原点对称,则f(x)的表达式为() (x)=(x)=-e x +(x)=(x)=-e -x +2 7、设函数f(x)=x a log (a >0且a ≠1)且f(9)=2,则f -1(2 9log )等于() 2422229log 、若函数f(x)=a 2log log 32++x x b (a ,b ∈R ),f(2009 1)=4,则f(2009)=() 、下列函数中,在其定义域内既是奇函数,又是增函数的是() =-x 2log (x >0)=x 2+x(x ∈R)=3x (x ∈R)=x 3(x ∈R) 10、若f(x)=(2a-1)x 是增函数,则a 的取值范围为() <21B.2 1<a <>≥1 11、若f(x)=|x|(x ∈R),则下列函数说法正确的是() (x)为奇函数(x)奇偶性无法确定 (x)为非奇非偶(x)是偶函数 12、f(x)定义域D={x ∈z|0≤x ≤3},且f(x)=-2x 2+6x 的值域为()A.[0,29]B.[29,+∞]C.[-∞,+2 9]D.[0,4]

相关主题
文本预览
相关文档 最新文档