当前位置:文档之家› 指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结
指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题

一.指数函数

(一)指数及指数幂的运算

n m n

m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)(

(二)指数函数及其性质

1.指数函数的概念:一般地,形如x

a y =(0>a 且1≠a )叫做指数函数。

2.指数函数的图象和性质

10<

1>a

6

54321

-1

-4-2

2460

1

6

5

4

3

2

1

-1

-4-2

246

1

定义域 R 定义域 R 值域y >0 值域y >0

在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1)

二.对数函数

(一)对数

1.对数的概念:一般地,如果N a x

=(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化

幂值 真数

x N N a a x =?=log

底数

指数 对数

3.两个重要对数

(1)常用对数:以10为底的对数N lg

(2)自然对数:以无理数 71828.2=e 为底的对数N ln

(二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N

M N M a a a log log log =- ③M n M a n

a log log = ④换底公式:a

b

b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m

n

b a n

a m log log = ②1log log =?a

b b a

(三)对数函数

1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质

0

a>1

32.5

2

1.51

0.5-0.5

-1-1.5-2-2.5

-1

1

23456780

1

1

32.5

2

1.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-1

1

2345678

1

1

定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

基本初等函数练习题

1.已知集合M }1,1{-=,N },422

1

|

{1Z x x x ∈<<=+,则M ∩N =( ) A.{-1,1} B.{0} C.{-1} D.{-1,0} 2.设

1)3

1()31(31<<

b ,则( ) A.a

b

a

b a a << B.b

a

a

a b a << C.a

a

b

b a a << D.a

a

b

a b a << 3.设9

.014

=y ,48

.028

=y ,5.13)2

1

(-=y ,则( )

A.213y y y >>

B.312y y y >>

C.231y y y >>

D.213y y y >> 4.若a a 231

2)2

1

()

2

1(-+<,则实数a 的取值范围是( ) A.(1,+∞) B.(12,+∞) C.(-∞,1) D.(-∞,1

2)

5.方程3x -

1=19

的解为( )

A.x =2

B.x =-2

C.x =1

D.x =-1

6.已知实数a ,b 满足等式(12)a =(1

3)b ,则下列五个关系式:①0

④b

可能成立的有( ) A.1个 B.2个 C.3个 D.4个 7.函数x

y -=1)

2

1

(的单调增区间为( )

A.(-∞,+∞)

B.(0,+∞)

C.(1,+∞)

D.(0,1) 8.函数1-=

x a y 的定义域是]0,(-∞,则实数a 的取值范围为( )

A.a >0

B.a <1

C.0

D.a ≠1 9.函数x

y π=的值域是( )

A.(0,+∞)

B.[0,+∞)

C.R

D.(-∞,0)

10.当x >0时,指数函数f (x )=(a -1)x <1恒成立,则实数a 的取值范围是( ) A.a >2 B.11 D.a ∈R 11.不论a 取何正实数,函数f (x )=a x +

1-2恒过点( )

A.(-1,-1)

B.(-1,0)

C.(0,-1)

D.(-1,-3)

12.函数y =a x (a >0且a ≠1)在[0,1]上的最大值与最小值的和为3,则a 的值为( )

A.12

B.2

C.4

D.14

13.方程4x +

1-4=0的解是x =________.

14.当x ∈[-1,1]时,f (x )=3x -2的值域为________. 15.方程4x +2x -2=0的解是________.

16.满足f (x 1)·f (x 2)=f (x 1+x 2)的一个函数f (x )=______ . 17.求适合a 2x +

7

2(a >0,且a ≠1)的实数x 的取值范围.

18.已知2x ≤(14)x -3,求函数y =(1

2)x 的值域.

19.log 63+log 62等于( )

A.6

B.5

C.1

D.log 65 20.若102x =25,则x 等于( ) A.51lg

B.5lg

C.5lg 2

D.5

1lg 2 21.log 22的值为( )

A.2-

B. 2

C.-12

D.1

2

22.化简1

2

log 612-2log 62的结果为( )

A.6 2

B.12 2

C.log 6 3

D.1

2

23.已知lg2=a ,lg3=b ,则log 36=( )

A.a +b a

B.a +b b

C.a a +b

D.b a +b

24.1log =b a 成立的条件是( )

A.a =b

B.a =b 且b >0

C.a >0且a ≠1

D.a >0,a =b ≠1 25.若b N a

=log (a >0且a ≠1),则下列等式中正确的是( )

A.N =a 2b

B.N =2a b

C.N =b 2a

D.N 2=a b 26.若c b a =7log ,则a 、b 、c 之间满足( )

A.b 7=a c

B.b =a 7c

C.b =7a c

D.b =c 7a

27.已知2log =x a ,1log =x b ,4log =x c (a ,b ,c ,x >0且≠1),则=)(l og abc x ( ) A.47 B.27 C.72 D.74

28.如果f (e x )=x ,则f (e)=( )

A.1

B.e

e C.e 2 D.0 29.在b =log (a -2)(5-a )中,实数a 的取值范围是( )

A.a >5或a <2

B.2

C.2

D.3

A.0

B.0

C.a >b >1

D.b >a >1 31.若log a 2<1,则实数a 的取值范围是( )

A.(1,2)

B.(0,1)∪(2,+∞)

C.(0,1)∪(1,2)

D.(0,12)

32.下列不等式成立的是( ) A.log 32

D.log 23

33.已知log 12b

2

c ,则( )

A.2b >2a >2c

B.2a >2b >2c

C.2c >2b >2a

D.2c >2a >2b 34.在b =log (a -2)3中,实数a 的取值范围是( )

A.a <2

B.a >2

C.23

D.a >3

35.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=x lg ,则x =10;④若x e ln =,

则2

e x =..其中正确的是( )

A.①③

B.②④

C.①②

D.③④ 36.函数x y a log =的图象如图所示,则实数a 的可能取值是( ) A.10 B.e C.1

2 D.2

37.函数2log 2-=

x y 的定义域是( )

A.(3,+∞)

B.[3,+∞)

C.(4,+∞)

D.[4,+∞) 38.函数x x x f -+-=4)1lg()(的定义域为( ) A.(1,4] B.(1,4) C.[1,4] D.[1,4) 39.函数f (x )=log 2(x +x 2+1)(x ∈R )为( )

A.奇函数

B.偶函数

C.非奇非偶函数

D.既是奇函数又是偶函数 40.已知2x =5y =10,则1x +1

y =________.

41.计算:2log 510+log 50.25=________.

42.已知log a 2=m ,log a 3=n (a >0且a ≠1),则a 2m +

n =________.

43.方程1)12(log 3=-x 的解为x =________.

44.已知???>≤=0

,ln 0,)(x x x e x g x ,则g (g (1

3

))=________.

45.函数)1(log 2

1-=

x y 的定义域是________.

46.已知集合A }2log |{2≤=x x ,B =(-∞,a ),若A ?B ,则实数a 的取值范围是(c ,+∞),其中c =________.

47.函数3)2(log ++=x y a (0>a 且1≠a )的图象过定点________. 48.函数)124(log 23

1++-=x x y 的值域是________.

49.已知集合A ={x |2≤x ≤π},定义在集合A 上的函数x y a log =(0>a 且1≠a )的最大值比最小值大1,求a 的值.

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数指数函数公式全集

C 咨询电话:4006-211-001 WWW r haOfangfa COm 1 指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 a . 1及O ::: a ::: 1两种不同情况。 1、指数函数: 定义:函数y =a x a . 0且a --1叫指数函数。 定义域为R 底数是常数,指数是自变量。 认识。 图象特征 函数性质 (1)图象都位于X 轴上方; (1)X 取任何实数值时,都有 a X A0 ; (2)图象都经过点(0, 1); (2)无论a 取任何正数,X = 0时,y = 1 ; (3) y — 2 , y — 10在第一象限内的纵坐 \ > 0 ,贝U a X A 1 (3)当 a > 1 时,{ →, X 标都大于1,在第二象限内的纵坐标都小于 1, < < 0 ,贝U a <1 X A 0 ,贝U a x V 1 y = — [的图象正好相反; 当 0 ca c1 时,< X £ 0 ,贝U a x A 1 k (4) y =2X , y=10X 的图象自左到右逐渐 (4)当a >1时,y =a x 是增函数, 当0cac1时,y=a x 是减函数。 为什么要求函数 y = a 中的a 必须a . 0且a = 1。 X 因为若a ::;0 时, X 1、对三个指数函数 a = 0 , y = 0 a =1 时,y = 1 =1x 的反函数不存在, y =a x ,y =Iog a X 在

上升,y = f l]的图象逐渐下降。 k2 J ①所有指数函数的图象交叉相交于点(0,1),如y=2x和y=10x相交于(0,1), 的图象在y =2x的图象的上方,当X :::0 ,刚好相反,故有1 0 2. 22及10 ^ ::: 2 ^。 步认识无限个函数的图象。 2、对数: 定义:如果a tl = N(a . 0且a ■■ 1),那么数b就叫做以a为底的对数,记作b = Iog a N (a是底数,N是 真数,log a N是对数式。) 由于N ^a b . 0故log a N中N必须大于0。 当N为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成 比较好办。 解:设Iog 0.32 X ■? 0 时,y = 10 % ②y =2x与y X 的图象关于y轴对称。 ③通过y = 2 X X 三个函数图象,可以画出任意一个函数y = a 示意图,如y =3x的图象,一定位于y =2x和y =IO x两个图象的中间,且过点(0, 1),从而y = X 也由关于y轴的对称性,可得的示意图,即通过有限个函数的图象进 再改写为指数式就

指数函数与对数函数高考题

第二章 函数 三 指数函数与对数函数 【考点阐述】指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数. 【考试要求】(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 【考题分类】 (一)选择题(共15题) 1.(安徽卷文7)设 232555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2()5x y =在0x >时是减函数,所以c b >。 【方法总结】根据幂函数与指数函数的单调性直接可以判断出来. 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系 中的图像可能是 【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-11矛盾,选D 。 3.(辽宁卷文10)设525b m ==,且112a b +=,则m = (A (B )10 (C )20 (D )100 【答案】 D

解析:选A.211 log 2log 5log 102,10, m m m m a b +=+==∴= 又0,m m >∴= 4.(全国Ⅰ卷理8文10)设a= 3 log 2,b=In2,c=1 2 5 - ,则 A. a>,所以a=>,所以c,从而错选A,这也 是命题者的用苦良心之处. 【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 1b a = ,所以a+2b=2 a a + 又0f(1)=1+2 1=3,即a+2b 的取值范围是(3,+∞). 6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小 题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a + ≥,从而错选D,这也是命 题者的用苦良心之处.

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

幂函数、指数函数和对数函数_对数及其运算法则_教案

幂函数、指数函数和对数函数·对数及其运算法则·教案 如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作 logaN=b, 其中a叫做底数,N叫做真数,式子logaN叫做对数式. 练习1 把下列指数式写成对数形式: 练习2 把下列对数形式写成指数形式: 练习3 求下列各式的值: 因为22=4,所以以2为底4的对数等于2. 因为53=125,所以以5为底125的对数等于3. 师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么? 生:a>0且a≠1;b∈R;N∈R. 师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.) 生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数. 师:要特别强调的是:零和负数没有对数. 师:定义中为什么规定a>0,a≠1? 生:因为若a<0,则N取某些值时,b可能不存在,如b=log(-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N 不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1. 师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28……. 练习4 计算下列对数: lg10000,lg0.01,2log24,3log327,10lg105,5log51125. 师:请同学说出结果,并发现规律,大胆猜想. 生:2log24=4.这是因为log24=2,而22=4. 生:3log327=27.这是因为log327=3,而33=27. 生:10lg105=105. 生:我猜想alogaN=N,所以5log51125=1125. alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线) 证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N. 师:你是根据什么证明对数恒等式的? 生:根据对数定义. 师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知

指数函数和对数函数

指数函数和对数函数 知能目标 1. 理解分数指数幂的概念, 掌握有理指数幂的运算性质. 掌握指数函数的概念、图象和性质. 2. 理解对数的概念, 掌握对数的运算性质. 掌握对数函数的概念、图象和性质. 3. 能够运用指数函数和对数函数的性质解决某些简单的实际问题. 综合脉络 1. 以指数函数、对数函数为中心的综合网络 2. 指数式与对数式有如下关系(指数式化为对数式或对数式化为指数式的重要依据): 0a (N log b N a a b >=?=且)1a ≠ 指数函数与对数函数互为反函数, 它们的图象关于直线x y =对称, 指数函数与对数函数 的性质见下表: 3. 指数函数,对数函数是高考重点之一 指数函数,对数函数是两类重要的基本初等函数, 高考中既考查双基, 又考查对蕴含其中的函 数思想、等价转化、分类讨论等思想方法的理解与运用. 因此应做到能熟练掌握它们的图象与性 质并能进行一定的综合运用. (一) 典型例题讲解: 例1.设a >0, f (x)= x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性.

例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 例3. 已知x 满足≤+6x 2a a 4x 2x a a +++)1a ,0a ( ≠>, 函数y =)ax (log x a 1 log 2 a 12 a ? 的值域为]0 ,8 1[-, 求a 的值. (二) 专题测试与练习:

指数函数知识点总结

指数函数知识总结 (一)指数与指数幂的运算 1.根式的概念: 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ①负数没有偶次方根;②0的任何次方根都是0,记作00=n 。 ③当n 是奇数时,a a n n =, 当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0()1(*>∈>=n N n m a a a n m n m )1,,,0(1 1)2(*>∈>= = - n N n m a a a a n m n m n m (3)0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 题型一、计算 1.44 等于( ) A 、16a B 、8a C 、4a D 、2 a 2.⑴ 33 )2(-= ⑵ 44 )2(-= ⑶ 66)3(π-= ⑷ 2 22y xy x ++= 3.① 625625++- ② 335252-++ 4.计算(1 + 2048 21)(1 + 1024 21)…(1 + 421)(1 + 2 21)(1 + 21 ). 5. 计算(0.0081)4 1-- [3×(87)0]1-·[8125 .0-+(38 3)31-]21 -.

题型二、化简 1. 3 2 13 2b a b a ?- ÷3 2 11- --??? ? ? ?a b b a 2. 322a a a ?(a >0). 3.化简: 3 32 b a a b b a (a >0,b >0). 题型三、带附加条件的求值问题 1. 已知a 2 1+ a 2 1-= 3,求下列各式的值: ⑴ a + a 1 - ⑵ a 2+ a 2 - ⑶ 2 12 1232 3- - --a a a a 2. 已知2a x x =+-2(常数),求8x x -+8的值。 3. 已知x + y = 12, xy = 9,且x <y ,求 2 12 1 212 1y x y x +-的值。 4.已知a 、b 是方程x 2 - 6x + 4 = 0的两根,且a >b >0,求b a b a +-的值。

指数函数对数函数幂函数增长速度的比较教学设计

【教学设计中学数学】 区县雁塔区 学校西安市航天中学 姓名贾红云 联系方式 邮编710100 《指数函数、幂函数、对数函数增长的比较》教学设计 一、设计理念 《普通高中数学课程标准》明确指出:“学生的数学学习活动,不应该只限于接受、记忆、模仿和练习,高中数学课程还应该倡导自主探索、动手实践、合作交流、阅读自学等信息数学的方式;课程内容的呈现,应注意反映数学发展的规律以及学生的认知规律,体现从具体到抽象,特殊到一般的原则;教学应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉等”。本节课是北师大版高中数学必修Ⅰ第三章第6节内容,本节专门研究指数函数、幂函数、对数函数的增长的比较,目的是探讨不同类型的函数模型,在描述实际增长问题时的不同变化趋势,通过本节课的学习,可以引导学生积极地开展观察、思考和探究活动,利用几何画板这种信息技术工具,可以让学生从动态的角度直观观察指数函数、幂函数、对数函数增长情况的差异,使学生有机会接触一些过去难以接触到的数学知识和数学思想,并为学生提供了学数学、用数学的机会,体现了发展数学应用意识、提高实践能力的新课程理念。 二、教学目标 1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性; 2.能借助信息技术,利用函数图像和表格,对几种常见增长类型的函数增长的情况进行比较,体会它们增长的差异; 3.体验指数函数、幂函数、对数函数与现实世界的密切联系及其在刻画实际问题中的作用,体会数学的价值. 三、教学重难点

教学重点:认识指数函数、幂函数、对数函数增长的差异,体会直线上升、指数爆炸、对数增长的含 义。 教学难点:比较指数函数、幂函数、对数函数增长的差异 四、教学准备 ⒈提醒学生带计算器; ⒉制作教学用幻灯片; ⒊安装软件:几何画板 ,准备多媒体演示设备 五、教学过程 ㈠基本环节 ⒈创设情景,引起悬念 杰米和韦伯的故事 一个叫杰米的百万富翁,一天,碰上一件奇怪的事,一个叫韦伯的人对他说,我想和你定个合同,我将在整整一个月中每天给你 10万元,而你第一天只需给我一分钱,而后每一天给我的钱是前一天的两倍。杰米说:“真的?!你说话算数?” 合同开始生效了,杰米欣喜若狂。第一天杰米支出一分钱,收入10万元;第二天,杰米支出2分钱,收入10万元;第三天,杰米支出4分钱,收入10万元;第四天,杰米支出8分钱,收入10万元…..到了第二十天,杰米共得到200万元,而韦伯才得到1048575分,共10000元多点。杰米想:要是合同定两个月、三个月多好! 你愿意自己是杰米还是韦伯? 【设计意图】创设情景,构造问题悬念,激发兴趣,明确学习目标 ⒉复习旧知,提出问题 图1-1 图1-2 图1-3 ⑴ 如图1-1,当a 时,指数函数x y a =是单调 函数,并且对于0x >,当底数a 越大时,其 函数值的增长就越 ; ⑵ 如图1-2当a 时,对数函数log a y x =是单调 函数,并且对1x >时,当底数a 越 时 其函数值的增长就越快; ⑶ 如图1-3当0x >,0n >时,幂函数n y x =是增函数,并且对于1x >,当n 越 时,其函数值

指数函数及对数函数复习(有详细知识点及习题详细讲解)

指数函数与对数函数总结与练习 一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)() (),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则???<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

对数及对数函数知识点总结及题型分析

对数及对数函数 1、对数的基本概念 (1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对 数, 记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式 (2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln . (3)指数式与对数式的关系:log x a a N x N =?=(0>a ,且1≠a ,0N >) (4)对数恒等式: 2、对数的性质 (1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a 3、对数的运算性质 (1)如果a >0,a ≠1,M >0,N >0,那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③M n M a n a log log = (2)换底公式: 推论:① b N N b log 1log = ; ② ; ③ 1log log =?a b b a 4、对数函数的定义: 函数 叫做对数函数,其中x 是自变量 (1)研究对数函数的图象与性质: 由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。 (2)复习)10(≠>=a a a y x 且的图象和性质 ()010log >≠>=N a a N a N a ,且b N N a a b log log log = b m n b a n a m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x =x y a =y x =

指数、对数函数公式

指数函数和对数函数 重点、难点: 重点:指数函数和对数函数的概念、图象和性质。 难点:指数函数和对数函数的相互关系及性质的应用,以及逻辑划分思想讨论函数 y a y x x a ==,log 在a >1及01<≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x =1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1, 但y x =1的反函数不存在,因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图 象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,,当x >0 时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有10222>及 10222--<。

②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中 间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质: ①负数和零没有对数; ②1的对数是零; ③底数的对数等于1。 (4)对数的运算法则: ①()()log log log a a a MN M N M N R =+∈+ , ②()log log log a a a M N M N M N R =-∈+ , ③()()log log a n a N n N N R =∈+ ④()log log a n a N n N N R =∈+ 1

高考指数函数与对数函数专题复习

例1.设a >0, f (x)=x x e a a e -是R 上的奇函数. (1) 求a 的值; (2) 试判断f (x )的反函数f - 1 (x)的奇偶性与单调性. 解:(1) 因为)x (f 在R 上是奇函数, 所以)0a (1a 0a a 1 0) 0(f >=?=-? =, (2) =-?∈++=--)x (f )R x (2 4 x x ln )x (f 121 -=++-24x x ln 2=++2 4x x ln 2)x (f 1--, ∴)x (f 1-为奇函数. 用定义法可证)x (f 1 -为单调增函数. 例2. 是否存在实数a, 使函数f (x )=)x ax (log 2 a -在区间]4 ,2[上是增函数? 如果存在, 说明a 可以取哪些值; 如果不存在, 请说明理由. 解:设x ax ) x (u 2-=, 对称轴a 21x = . (1) 当1a >时, 1a 0 )2(u 2 a 21>??????>≤; (2) 当1a 0<<时, 81a 00)4(u 4 a 21 ≤≥. 综上所述: 1a > 1.(安徽卷文7)设 232 555 322555a b c ===(),(),() ,则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a 【答案】A 【解析】2 5 y x =在0x >时是增函数,所以a c >,2 ()5x y =在0x >时是减函数,所以c b >。 2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b a x (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可 能是【答案】D 【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1

指数函数知识点汇总

指数函数知识点汇总

————————————————————————————————作者:————————————————————————————————日期:

指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时, a a n n =,当n 是偶数时, ? ? ?<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m ) 1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数 )1,0(≠>=a a a y x 且叫做指数函数,其中x 是自 变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2、指数函数的图象和性质 a >1 0

高考学生指数与对数函数知识点小结及典型例题

高考指数函数和对数函数 一.基础知识 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方 根,其中n >1,且n ∈N * . 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,? ??<≥-==)0()0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1 *>∈>= = -n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 注意:利用函数的单调性,结合图象还可以看出: (1)在[a ,b]上,)1a 0a (a )x (f x ≠>=且值域是)] b (f ),a (f [

或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 对数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ;○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =;(2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对

文本预览
相关文档 最新文档