当前位置:文档之家› 第九章 砂岩型铀矿床

第九章 砂岩型铀矿床

第九章   砂岩型铀矿床
第九章   砂岩型铀矿床

第九章砂岩型铀矿床

概念:砂岩型铀矿床是指工业铀矿化主要产于砂岩(包括含砾砂岩、粉砂岩、泥岩)中的铀矿床。

二、成矿地质条件

1、大地构造背景条件

■所有砂岩铀矿的产出都与沉积盆地有关。

■铀矿化多产于邻近基底的中、新生代盆地之中。

■盆地形成的大地构造背景多数以稳定克拉通盆地和介于相对活动褶皱造山带之间的克拉通边缘活动带。

砂岩型铀矿床的有利地质环境包含两方面的涵义即:

■主岩沉积时的相对稳定和成矿时的活化。

2、产铀盆地条件

卷状亚型砂岩铀矿成矿必须具备两个阶段:

早期赋矿砂体的形成→晚期活化构造产生→层间氧化带形成。

盆地动力学条件往往有个转化过程,常表现为:

早期弱伸展(主岩沉积时期)→晚期转为弱挤压(成矿时期),从而形成盆地双层结构

3、岩相古地理条件

砂岩型铀矿化的岩相古地理主要是河流相,滨湖三角洲相和滨海三角洲相,重要矿化多数产于河流相中

矿化多分布于辫状河所形成的岩层中。

以河流作用为主的三角洲对铀成矿较为有利。

4、赋矿砂岩的沉积相和沉积体系条件

■砂体的规模;

■砂体的渗透性;

■砂体间的连通性;

■砂体的成层性

从铀的成矿条件分析,有利于后生砂岩型铀矿化形成的砂体类型必须是渗透性好的层状砂体、或席状砂体、或似层状砂体、或带状砂体。

5、古气候条件

■炎热干旱、半干旱的交替气候有利于后生铀矿床的形成。

■蒸发作用使水中铀含量不断提高,这样高铀含量的水溶液,进入上述潮湿气候条件下形成的或其他富含还原剂和吸附剂的岩层,经过较长时间的持续作用,就能形成一定规模的后生铀矿床。

6、水文地质条件

■地浸砂岩铀矿只存在于渗入方式的成矿类型中。

2)渗入水的成矿其地质条件必须具备:

(1)透水岩层或构造破碎带处于开启状态

(2)成矿盆地处于相对缓慢上升过程。

(3)存在蓄水构造和滞水构造。

7、层间氧化与潜水氧化作用条件

层间氧化属成岩后的氧化,对于地浸砂岩型铀矿床具有特别重要的意义。

潜水氧化一般发生在成岩期或紧随其后,但在盖层沉积覆盖之前。目前很多底河道型砂岩铀矿

层间氧化带通常可分为以下几个部分

1-强氧化砂岩;

2-弱氧化砂岩;

3-氧化带尖灭端,铀矿体;

4-原生未蚀变砂岩;

5-不透水泥质岩;

6-含氧含铀水流动方向

2)潜水氧化的形成及其分带含氧含铀的地表水或地下水在沿透水性较好的浅色砂岩渗透运移时,将透水层中的还原组分如黄铁矿、有机质等氧化。同时水中的铀在氧化还原界面附近沉淀富集成矿。

氧化作用发育的深度随潜水位的高低而变化,铀的矿化与古潜水面的变化相一致,其发育深度较小

潜水氧化可以呈现垂向分带性,其分带现象一般不明显。

8、断裂构造条件

断裂构造控制着有利的沉积相带,控制着后期流体的改造(还原或氧化)和铀的成矿,在构造切穿有利层位的部位往往有矿化富集现象

■不整合面也往往赋存矿化,矿化位于不整合面之上不远的距离内。

9、铀源条件

①来自周围富铀隆起侵蚀区(潜水氧化型砂岩铀矿);

②来自盆地与基底间的古风化壳或基底中有利岩体和地层;

③来自盆地本身富铀沉积夹层或中酸性火山岩、凝灰岩等夹层。

铀源区岩石的特点是:铀含量高、活性铀多、分布面广、地壳运动持续缓慢的隆起、风化时间长、有足够的铀被淋出。

三、矿化特征

1、矿体的形态、规模和产状

形态比较复杂,概括起来可分为三种:

①体与围岩之间大致整合,

②卷状矿体,矿体垂直或大角度斜交岩层面或其他沉积构造,呈“卷状”产出,称“矿

卷”。

③复杂不规则状,包括堆状、管状等其他形态的矿体。

2、矿石物质成分

矿石矿物主要是沥青铀矿、铀石,个别地方还产有人形石(四价铀的磷酸盐)。

3、矿化时代、层位

矿化分布受地层层位控制。从世界范围来说,主要产在中、新生代地层中,矿化明显晚于成岩

四、砂岩型铀矿类型

其下又分出:

卷状、板状、底河道和前寒武纪砂岩等4个亚型。

第九章 砂岩型铀矿床

第九章砂岩型铀矿床 概念:砂岩型铀矿床是指工业铀矿化主要产于砂岩(包括含砾砂岩、粉砂岩、泥岩)中的铀矿床。 二、成矿地质条件 1、大地构造背景条件 ■所有砂岩铀矿的产出都与沉积盆地有关。 ■铀矿化多产于邻近基底的中、新生代盆地之中。 ■盆地形成的大地构造背景多数以稳定克拉通盆地和介于相对活动褶皱造山带之间的克拉通边缘活动带。 砂岩型铀矿床的有利地质环境包含两方面的涵义即: ■主岩沉积时的相对稳定和成矿时的活化。 2、产铀盆地条件 卷状亚型砂岩铀矿成矿必须具备两个阶段: 早期赋矿砂体的形成→晚期活化构造产生→层间氧化带形成。 盆地动力学条件往往有个转化过程,常表现为: 早期弱伸展(主岩沉积时期)→晚期转为弱挤压(成矿时期),从而形成盆地双层结构 3、岩相古地理条件 砂岩型铀矿化的岩相古地理主要是河流相,滨湖三角洲相和滨海三角洲相,重要矿化多数产于河流相中 矿化多分布于辫状河所形成的岩层中。 以河流作用为主的三角洲对铀成矿较为有利。 4、赋矿砂岩的沉积相和沉积体系条件 ■砂体的规模; ■砂体的渗透性; ■砂体间的连通性; ■砂体的成层性 从铀的成矿条件分析,有利于后生砂岩型铀矿化形成的砂体类型必须是渗透性好的层状砂体、或席状砂体、或似层状砂体、或带状砂体。 5、古气候条件 ■炎热干旱、半干旱的交替气候有利于后生铀矿床的形成。 ■蒸发作用使水中铀含量不断提高,这样高铀含量的水溶液,进入上述潮湿气候条件下形成的或其他富含还原剂和吸附剂的岩层,经过较长时间的持续作用,就能形成一定规模的后生铀矿床。 6、水文地质条件 ■地浸砂岩铀矿只存在于渗入方式的成矿类型中。 2)渗入水的成矿其地质条件必须具备: (1)透水岩层或构造破碎带处于开启状态 (2)成矿盆地处于相对缓慢上升过程。 (3)存在蓄水构造和滞水构造。 7、层间氧化与潜水氧化作用条件 层间氧化属成岩后的氧化,对于地浸砂岩型铀矿床具有特别重要的意义。 潜水氧化一般发生在成岩期或紧随其后,但在盖层沉积覆盖之前。目前很多底河道型砂岩铀矿

国内北方砂岩型铀矿成矿模式

国内北方砂岩型铀矿成矿模式 国内砂岩型铀矿的成矿模式通常认定为山盆构造基础上的后生水氧化理论。在我国北方中新生代盆地将砂岩型铀矿看成是“造山一造盆”作用后的结果[[26],其中铀的成矿演化与成矿作用经常受到造盆过程的控制。同时,造盆过程也会控制着铀、煤、盐、油、气共存的成矿系统。陈戴生[[27」认为铀矿成矿可分为后生改造型和沉积 成岩型2种类型。其中后生改造型还可再次划分成潜水氧化带型与层间氧化带型。 在鄂尔多斯盆地中成矿大致可分为潜水氧化板状矿体形成阶段、层间氧化作用卷状矿体形成阶段、油气还原保矿阶段、晚期铀矿体改造叠加阶段4个阶段。对于东胜砂岩型铀矿的形成模式国内又有了新的解释。李子颖等[[28」认为东胜铀矿经过了构造“动一静”祸合、油气与热流体改造、潜水氧化与层间演化作用的叠加等过程,这一系列的成矿模式可称为“叠合成矿模式”。铀是通过络合物形式搬运。含铀体的物化条件会随着有机质的还原作用、酸化作用和吸附作用而改变。这些变化导致络合物不稳定最终形成卸载沉淀成矿。于文斌[[29」将松辽盆地钱家店铀矿成矿阶段分为富铀基底建造形成阶段、还原流体烃源岩系发育阶段、含矿主岩形成及铀预富集阶段、 层间渗入氧化主成矿阶段、铀叠加成矿阶段和油气扩散还原保护阶段6种阶段。对于我国北方砂岩型铀矿的时期界限推断,含矿的砂体沉积要比铀矿成矿年龄大很多。 夏毓亮等[[30」认为这些铀矿都是后生的,成矿时代大部分集中在上

世纪以后的古近纪和新近纪。这一结论与当时干旱地质环境背景相一致。 国内砂岩型铀矿模式试举如下两例(图4.2,图4.3。图4.2表示传统层间氧化 带砂岩型铀矿成矿观点模型图。图4.3表示砂岩型铀矿氧化还原分带模型图。通过两张图的比较可以发现,图4.2并没有详细的表明宏观分带,只显示出层间氧化带的理论分带。通过图4.3可知铀矿与盆地环境是呈关联的。图4.3不仅表示有成矿物的储藏、运输及源头,同时,也表示有萃矿层和储矿层。除此之外,图4.3显示了沉积环 境的颜色呈水平分带特征。图4.3中也显示了铀源不仅来自山区深部也有来自于山区剥蚀,相对于盆地短轴61的挤压方向63为长轴的延伸方向。

国外地浸砂岩型铀矿地质发展现状

第18卷 第1期铀 矿 地 质Vol.18 No.1 2002年 1月 Uranium Geology Jan. 2002 [收稿日期]2001-10-12 [作者简介]王正邦(1936-),男,高级工程师(研究员级),博士生导师,1961年毕业于前苏联列宁格勒大学,1981)1983年在美国地质调查局进修。 国外地浸砂岩型铀矿地质发展现状与展望 王正邦 (核工业北京地质研究院 北京 100029) [摘要]本文首先以地浸砂岩型铀矿为重点,分4个阶段概要回顾了世界铀矿勘查和科研工作发展 的历史,总结了基本的历史经验。其次,全面阐述了当前国外地浸砂岩型铀矿地质发展的现状,对砂岩型铀矿在世界铀资源中的重要战略地位、矿床分类、时空展布特点和规律及地浸砂岩型铀矿的成矿理论和找矿技术方法的发展现状进行全面剖析,重点从构造条件、古气候条件、水文地质条件、岩相古地理和岩性条件及铀源条件等5个方面对地浸砂岩型铀矿的成矿条件进行了深入分析,对3类表生后生渗入型砂岩型铀矿的评价准则进行了概括性总结。以美国和中亚两个砂岩型铀矿主产区为代表,概述了国外地浸砂岩型铀矿勘查技术方法的发展现状。最后,在展望世界铀资源供需发展趋势的前提下,明确指出我国铀矿地质战线所面临的严峻挑战,有针对性地论述了我们应采取4个方面的战略对策。 [关键词] 国外地浸砂岩型铀矿;历史回顾;发展现状;展望和对策 [文章编号] 1000-0658(2002)01-0009-13 [中图分类号] P598 [文献标识码]C 为满足我国的经济发展和国防现代化对铀资源的需求,加速铀矿找矿勘查和科技工作,寻找新的铀资源基地,是我国铀矿地质战线面临的十分紧迫的战略任务。由于地浸砂岩型铀矿具有开采成本低、矿量大和有利于环保等优势,目前已成为世界铀矿找矿领域的主攻类型之一。鉴于我国特定的地质背景条件,该类型已成为我国铀矿勘查工作的主攻方向,也是我国铀矿地质科技工作的重点。因此,以地浸砂岩型铀矿为重点,简要回顾铀矿找矿和铀矿地质科技发展的历程,总结历史经验;全面分析其发展现状和市场需求;展望其发展的趋势,对把握时代的脉搏,明确我们的任务和奋斗目标,抓住 关键性科技前沿问题,正确制定对策,具有十分重要的意义。中国是世界的一部分,研究中国问题,将其置于世界的大背景中,才能取得全面认识,有利于借鉴国外经验,正确进行决策。本文的目的就是重点对国外地浸砂岩型铀矿地质发展历史和现状进行概要分析,对其发展趋势和前景进行展望,并针对我们面临的挑战,提出应采取的对策。 1 历史回顾 自1850年捷克首先把铀矿石作为主要产品开采以来,铀矿勘查和铀矿地质科技发展已经历了一个半世纪的漫长历程 [1] 。这一历史

铀矿床分类初步探讨

第37卷第1期地质调查与研究 Vol.37No.12014年3月 GEOLOGICAL SURVEY AND RESEARCH Mar.2014 收稿日期:2014-01-05 基金项目:中国地质调查项目:华北地区铀矿勘查与选区(1212011220494) 作者简介:金若时(1958-),男,硕士,教授级高级工程师,长期从事矿产地质调查工作,Email:Ruosj2003@https://www.doczj.com/doc/0c3647432.html,。 ① М.Ф.马克西莫娃,E.M.什玛廖维奇普.层间渗入成矿作用.夏同庆,潘乃礼译.核工业西北地质局203研究所,1993. 铀矿床分类初步探讨 金若时1,苗培森1,司马献章1,冯晓曦1,2,汤超1,朱强1,李光耀1 (1.中国地质调查局天津地质调查中心,天津300170;2.中国地质大学(武汉)资源学院,武汉,430017)摘 要:为了研究铀矿床分类对铀矿勘查的基础指导作用,笔者简要回顾了铀矿床分类历史,研究了前人对铀矿床 分类的系列方案,结合目前世界铀矿床研究进展,尝试以铀成矿地质作用为格架,以赋矿岩石为基础对世界典型铀矿床进行了分类,并将矿床采选方式纳入分类指标,建立了铀矿床种、类、型、式的分类序次,提出了将铀矿床划分为3种7类26型6式的分类方案。 关键词:铀矿分类;成矿作用;赋矿岩石;采选方式中图分类号:P619.14 文献标识码:A 文章编号:1672-4135(2013)04-0001-05 矿床分类是人们认识和阐明自然界种类繁多、形态各异、规模悬殊的各种矿床间的内在联系、共同规律与相互差异性的简单而又实用的方法。不同时期的矿床分类,在一定程度上反映了矿床的研究程度和勘查成果。正确合理的分类有利于促进科学研究并指导生产实践,因此,一直受到地学工作者的广泛重视。 铀元素的化学性质活泼致使其在地壳中存在形式多样,形成了纷繁复杂的矿床类型,其矿床分类一直是地学工作者的一项重要的研究课题。自上世纪中叶,国内外众多学者出于各自需要对铀矿床进行了工业分类、勘探分类[1]、成因分类[2]、构造分类[3]、超大型铀矿分类[4]等等,甚至对其中的某些方案进行了细分[5-8]。在铀矿床成因分类中,不同的学者建立分类所依据的主要标准或建立分类的基础不同,有的按成矿作用和成矿温度划分,以地质-构造环境为第一分类标准[5-6];有的则以含矿主岩为分类基础[7-8];有的对某一单矿种进行了分类,如将花岗岩型铀矿[9]、砂岩型铀矿[10]进行了细致的划分。近四十年来出现了几十种铀矿床的分类方案。 笔者近期的工作已证实中国北方中新生代的砂岩型铀矿主要产于灰色还原环境岩层中[11]。同样加拿大阿萨巴斯卡盆地和奥蒂斯盆地铀矿勘查发现铀矿体不仅产于元古代不整合面构造带中,而且围岩辉长岩中也有广泛分布(据郑大瑜面告),丰富了对 不整合面铀矿的认识。 随着铀矿床勘查和研究的不断深入,笔者等认为有必要对铀矿床进行综合分类,以期更全面反映矿床类别,发挥矿床分类对铀矿研究、勘查工作的基础性指导作用。 1铀矿床分类的简要历史回顾 早在16世纪中叶,G.Agrecola (1556)根据矿床的形态及位置就提出了第一个矿床分类方案[12]。而铀矿床的最早分类由1946年前苏联学者谢尔宾纳和 谢尔巴科夫提出[13] 。 K.D.Cornelius (1977)将铀矿床划分为古元古代石英-卵石-黄铁矿砾岩型、后生砂岩矿床、热液变质矿床、蒸发岩矿床、矽卡岩矿床、页岩、磷块岩、地沥青及褐煤中的矿床、碳酸盐岩矿床、原生热液矿床、砂积矿床9大类[14]。R.H.Mc Millan (1980)曾综合了贝克、西贝尔得、德里、特伦布莱、克里斯托弗、卡尔宁斯等人的观点,将铀矿床分为岩浆型、变质型、碎屑型、水成型4大类12小类[15]。P.C.Goodell (1990)研究认为破火山口及与其有关的岩石是赋存这类铀矿床的有利环境,许多已知的火山环境中铀矿床的分类依据是它们在破火山口中的位置[5]。М.Ф.马克西莫娃等(1993)提出了砂岩型铀矿分为层间渗透型、裂隙渗透型和潜水渗透型①。国际经合组织核能机构(OECD/NEA )和国际原子能机构(IAEA )联合出版

砂岩型铀矿编录细则

砂岩型铀矿编录细则(仅供参考) 编录必备:地质锤、编录刀、放大镜、钢卷尺、直尺、量角器、10%HCL溶液、编录夹、钻孔原始地质编录表、2H铅笔、彩色铅笔、γ+β编录仪、数码照相机 编录前:检查钻机小班记录表,简易水文记录表,岩心箱编号,回次牌,岩心摆放顺序,大于10cm的岩心编号,拍岩心照片。 地质、水文编录: 1.泥:微细粒土状<0.004mm,手触有粘性、粘手;且无砂粒感。 2.粉砂:细砂粒状<0.06~>0.004mm,手摸有砂感;无明显砂粒,多发育有细砂纹、波纹及水平砂纹层。 3.细砂:细砂粒状<0.25~>0.06mm,手摸为砂粒状;粒度均匀、无较粗砂粒感。见水平及小型交错层理。 4.中砂:为砂粒状<0.5~>0.25mm,手摸为砂粒状;但粒度略粗、无较粗砂粒感。多见有交错层理等。 5.粗砂:为粗粒状<2.0~>0.5mm,手摸为粗粒状;但粒度较粗。多见有多种大、中型交错层理等。 6.砾:细砾<8~>2.0mm,中砾<32~>8mm,粗砾<128~>32mm,巨砾~>128mm 编录格式: 颜色+定名,层理,结构,构造,主要岩石矿物成分,胶结类型,磨圆度,分选性,渗透性,特殊夹层,岩心块度,其他(黄铁矿、结核、煤屑、沥青、碳屑、植物化石)。 1、胶结类型:泥质胶结,钙质胶结,硅质胶结,铁质胶结; 2、胶结程度:按疏松程度进行描述,如疏松,较疏松,致密; 3、胶结物含量:按泥质或钙质的百分比含量进行描述; 4、磨圆度:按岩石的形状描述,如圆状,次圆状,次棱角状,棱角状; 5、分选性:采用三级描述,如分选性差(某一粒级含量<50%),分选性中等(某一粒 级含量50~75%),分选性好(某一粒级含量>75%); 7、特殊夹层;铝土层,石膏薄层,煤线; 6、岩石块度与RQD值:长柱状(岩心块段>20cm),短柱状10~20cm,块状5~10cm, 碎块状2~5cm,碎屑状<2cm;

变质岩性铀矿床

变质岩性铀矿床 概念:变质铀矿床系指成因上与变质作用有关的铀矿床。 1、受变质铀矿床: 矿床中铀的富集主要是在变质作用之前形成的,其中大多数是在沉积或成岩阶段形成的。但在变质作用过程中,岩石发生了重结晶作用,铀发生了局部的再分配,并形成某些新的铀矿物和其他共生或伴生矿物。 特点是,在变质作用过程中,基本上没有铀的带出或带入。属于这一类型的铀矿床有沉积变质型的石英卵石砾岩型铀矿床。 2、变成铀矿床: 主要是指在区域变质(包括超变质)作用过程中,特别是在变质作用晚期的变质热液作用下所形成的铀矿床。 属于这一类型的铀矿床有混合岩化钠交代型铀矿床。 二、变质作用中的铀地球化学 1、区域变质作用中的铀地球化学 1)不同变质相带的铀含量变化 浅变质带中铀含量较高,并随着变质程度加深,铀含量逐渐降低。 2、影响铀在区域变质作用中活化转移的地球化学因素 随着铀在区域变质作用的加强,铀大量从岩石向外带出。 ■铀的带出是随着变质过程中脱水作用,脱气(CO2)作用而进行的。 ■变质作用中矿物的重结晶作用也是促使铀带出的重要因素之一,矿物的自净清除了吸咐在矿物表面和矿物颗粒间隙之间的铀,使铀活化转移。 3、超变质作用中的铀地球化学 ■成矿元素在超变质作用中的活动性普遍增强。 ■超变质岩石按其形成方式可分为原地型混合花岗岩(包括混合岩)和异地型深熔(或再生)花岗岩。 ■原地型混合花岗岩的铀含量较低,接近或低于残留的片麻岩(基体)的铀含量; ■异地型再生花岗岩的铀含量比相应的片麻岩-混合岩的铀含量高1-2倍。 ■在混合岩化阶段,由于大部分活动铀已在原岩浅变质过程中带出,岩石中铀含量没有显著变化。混合岩中,副矿物是铀的主要载体。 ■在深熔(再生)花岗岩浆产生阶段,铀的地球化学特征与岩浆作用中的相似,即铀在晚期酸性分异产物-浅色花岗岩和伟晶岩中趋向富集。 结论:区域变质作用引起铀的活化转移。它是使铀在地壳上部初步富集的重要作用,为以后形成铀矿床准备了丰富的铀源。 区域变质作用引起的铀活化转移可看作是铀成矿作用的序幕。 石英卵石砾岩型铀矿床——典型的代表矿床为南非维特瓦特斯兰德金-铀矿床和加拿大埃利奥特湖铀矿床。 三、石英卵石砾岩型铀矿床的主要特点 1)区域构造位置:分布于太古代克拉通盆地内或克拉通边缘坳陷区,基底强烈褶皱变质,矿化层位为轻微变质的底砾岩层。 2)含矿层的地质时代早:为古元古代(22-27亿年),矿化赋存于元古界构造层的底部。 3)含矿层位的岩相古地理属陆相河流相 4)矿化岩性为陆源碎屑构成。含矿岩系厚度巨大,变质程度不一。岩性主要有砂岩(部分为石英岩)夹部分页岩,含矿砾岩常常产于不整合面或沉积间断面上。

松软砂岩型铀矿床的地浸开采技术

中国矿业第21卷 收稿日期:2012-7-11 作者简介: 武伟(1967—),男,河南许昌人,硕士研究生,高级工程师,长期从事地浸采铀工作,E-mail :zl-2000n@https://www.doczj.com/doc/0c3647432.html, 。 1松软砂岩型铀矿床1.1 铀的富集与沉淀 砂岩型铀矿床指产于砂岩、砂砾岩等碎屑岩中的外生后成铀矿床。松软砂岩型铀矿床特指岩矿胶结疏松,颗粒之间存在孔隙,便于孔隙水流动的矿床。外生松软砂岩型铀矿床是在地球表面天然因素影响下,所形成的地球化学作用产物,是地浸方法开采的重点。 砂岩型铀矿床成因上主要有两类,即层间氧化带型和潜水氧化带型。这两类矿床中的铀,来自矿床以外的岩石和矿床以及自含矿层本身及其上覆的富铀层。沉积成矿时,地层中的U 4+在富含游离氧 的地表水或地下水的长期作用下氧化成U 6+,逐渐被淋滤出来,在天然流场的作用下沿可渗滤的地层迁移。由于地层中黄铁矿、有机质等还原性物质的不断作用,地下水中的游离氧逐渐消耗,在合适的地球化学环境下,溶解的U 6+被还原成U 4+而沉淀,产生铀的富集,形成矿石。层间氧化带铀矿床铀的富集与成矿作用的必要条件,是在含水层的岩石中存在铁的硫化物和碳酸盐[1-3]。 1.2地下水特征 矿层赋存在地下水水位以下是地浸开采的前 提,松软砂岩型铀矿床正是具备了这一必要的条件,才成为地浸采铀研究的重点。 地浸采铀发生在承压含水层或潜水中,承压含水层是处于地下水面以下,储存于任意两个弱透水层之间的具有承压性质的饱和水。典型的承压含水 摘要: 讨论了松软砂岩型铀矿床的地浸特点,及在浸出剂的作用下金属溶解到溶液中的过程。国外地浸采铀技术的应用侧重在钻孔施工和成井工艺、中子测井、浸出液处理、地下水污染治理及抽注状态动态模拟等方面;而新技术的开发则以埋藏深、地下水高矿化度的地浸开采为主。而国内地浸采铀技术的应用侧重在浸出过程溶液流动检测、碱法工艺、现场试验技术等方面;新技术的开发则以钻孔施工与成井工艺、翼部矿体和多层矿体开采为主。 关键词: 松软砂岩型;铀矿;地浸中图分类号:TL212.12文献标识码:A 文章编号:1004-4051(2012)zk-0324-04 The technology of in-situ leaching uranium mining in soft sandstone-type deposit WU Wei ,JIANG Xiao-hui (Tianshan Uranium Co .,Ltd .,China National Nuclear Corporation ,Yining 835000,China ) Abstract:In this paper ,it is discussed on in-situ leaching characteristics in the soft sandstone-type uranium deposit and the process of metal dissolved into solution under chemical action of leaching agent .The uranium mining technology emphasizes on well -drilling ,well completion technique ,neutron logging ,leaching solution handling ,the harness and preventing of groundwater pollution ,the dynamic simulation on pumping and injection state ,and so on overseas .The development of new technology mainly emphasizes on in-situ leaching mining in deep-buried-depth and high-salinity groundwater deposit .While uranium mining technology focus on in flow detection of leaching process solution ,alkaline method ,field test technology etc .The development of new technology mainly emphasizes on well -drilling ,well completion technology ,and the mining in wing-orebody deposit and multilayer deposit . Key words:sandstone-type ;uranium deposit ;leaching 松软砂岩型铀矿床的地浸开采技术 武伟,蒋小辉 (新疆中核天山铀业有限公司,新疆伊宁835000) 第21卷增刊2012年8月 中国矿业CHINA MINING MAGAZINE Vol.21,zk August 2012

浅论铀矿床成矿特点及时空分布特征

浅论铀矿床成矿特点及时空分布特征 成矿过程是指成矿物质迁移、聚集、沉淀的作用过程。矿床的形成是通过各种地质作用过程来实现的,它可涵盖不同时空尺度的构造岩浆作用演化、成矿地质体的形成、矿体的形成,以及矿床形成后的保存与破坏等不同阶段的各类复杂地质过程。矿床形成过程中,有的由一个期次形成,有的经历多次不同的地质作用,多期成矿,即成矿物质由迁移到沉淀的多次过程。 标签:成矿;矿床;铀矿床类型;特点 在成矿过程中形成了复杂纷繁的各种地质现象,通过对这些地质现象的探究可以破解成矿过程之谜。 1铀矿床介绍 1.1铀矿床含义: 在某些地质过程中,地壳中特定地质环境中形成的铀矿物,或铀含量聚集体能够满足目前铀工业的要求,并且在目前的经济和技术条件下可以经济开发利用。 铀矿床的概念是动态的,随着社会生产力和科学技术的发展以及矿物原料需求的变化,铀矿床的范围也在变化。以前没有使用的一些“岩石”或低等级矿化岩可能是经济可回收的铀矿床,这是原位可浸出的砂岩型铀矿床的一个例子。 1.2铀矿床研究概况: 铀资源是重要的战略资源和能源矿产资源,也是中国核工业发展的基本原料。中国的铀资源比较丰富,矿物种类越来越多,分布在23个省,市,自治区。中国铀矿床种类多样,主要为砂岩型,花岗岩型,火山岩型和碳硅酸盐型,成矿地质条件复杂。在中国北方,新疆伊犁,吐鲁番哈密盆地内陆砂岩型铀矿开发迅速,内蒙古鄂尔多斯盆地,二连盆地砂岩型铀矿勘查也取得重大突破,鄂尔多斯最典型的成果之一盆地东北部发现大型砂岩型铀矿床。自从2006年以来,我国南部重点铀成矿带和矿场勘查工作已经恢复,部分重点领域取得初步成效,取得了显着成效。这表明铀矿勘查潜力巨大。 2铀矿床成矿特点 2.1矿床类型: 中国的铀矿床多样化,早在20世纪60年代就开始研究铀矿床的类型。许多国内学者从不同角度,分类的基础或标准不同,总结主要是:按分类分类;根据含矿岩石的分类;根据铀的分类;按工业生产特点分为主要矿石结构和矿体分类;

层间氧化带砂岩型铀矿床形成机理_以伊犁盆地南缘为例

收稿日期:2003-06-12;修订日期:2004-02-16 第一作者简介:刘陶勇(1973-),男,广西博白人,地质工程师,1997年毕业于华东地质学院地球科学系,从事铀矿地质勘查工作 X 马克西莫娃 M φ,夏同庆译.层间渗入成矿作用.核工业203研究所科技情报室,1996 Y 别列里曼.夏同庆译.水成铀矿床.核工业203研究所科技情报室,1996 层间氧化带砂岩型铀矿床形成机理 ——以伊犁盆地南缘为例 刘陶勇 (核工业216大队,新疆 乌鲁木齐 830011) 摘 要:通过分析铀迁移、沉淀、富集的成矿特点,结合伊犁盆地南缘铀矿床中铀矿石成分研究,分析了砂岩型铀矿成矿机理.指出在层间氧化带砂岩型铀矿床中,铀主要以碳酸铀酰络合物形式迁移,在富含有机质、硫化物、硫化氢等有效还原剂的条件下,形成强烈的地化反差还原地球化学障环境,铀还原沉淀,最后富集成矿.为指导普查找矿、开展铀矿床矿石成分研究提供参考依据. 关键词:铀迁移;铀沉淀富集;铀成矿机理 近年来,我国在层间氧化带砂岩型铀矿找矿方面,已成功地在伊犁盆地南缘、吐哈盆地等发现了层间氧化带砂岩型铀矿床.该类型矿床埋藏浅,采用地浸开采工艺,开采成本仅有传统方法的40%左右,而且环境污染小,具有很好的经济和社会效益. 1 铀的活化迁移 自然界中,层间氧化带发育最好的地区是具有干旱、半干旱气候条件的沙漠、半沙漠、干旱草地等自然地貌景观地区.此种条件下,土壤及潜水中有机质含量极低,腐植层很薄或缺乏,保证了大气中氧气与露头区富含U 的岩石、成岩期形成的富U 地层中的固态U 发生作用.该环境下形成的水溶液具正的氧化还原电位值,U 强烈不饱和,U 元素不断地从固态转变成易于迁移的离子态U,形成U 的络合物,反应方程式为: 2UO 2(固)+O 2+4CO 2+2H 2O →2UO 2(CO 3)22-+2H 2O 液 据统计,在层间氧化带发育的前部,水溶液中U 含量变化很大,从0.7×10-6~3.90×10-4 g/L,在干旱地区含氧地下水中,U 含量多为n ×10-5 g/L,比潮湿地区高1~2个数量级X .层间氧化作用的发育是由于含水层中氧化剂对地层逐渐氧化的结果,氧化作用使固态U 转变成易于迁移的6价U,形成U 的络合物;在地下水中U 可以形成6价离子(U 6+)、铀酰离子(UO 22+),或形成稳定的络合物形式,如UO 2(CO 3)22-和UO 2(CO 3)34-等. 通过对伊犁盆地南缘库捷尔太矿床、扎吉斯坦矿床、乌库尔其矿床地下水样分析,结果表明(表1): 伊犁盆地南缘铀矿床层间水pH 值为6.45~8.23,水质 类型为HCO 3 SO 4、SO 4 HCO 3时,6价U 以UO 2(CO 3)2 2-络合物为主的形式随层间水迁移,其次为UO 2(CO 3)34-形式.而水中U 含量变化较大,相差2个数量级,与层间水氧化作用的强弱有关. 2 层间含水层中铀的还原沉积 根据对不同成分水的计算结果,确定了U 氧化物还原时,当pH 为 6.5~8.5时,从层间中沉积的界限:Eh max =(0.40~0.059)pH 和Eh min =(0.045~0.03)pH.要使U 6+在一定地质环境中沉淀富集,须有充足的还原剂,在地下水中形成强烈的地化反差条件,形成相反的Eh 值,使U 产生沉淀再富集Y .即U 从层间水中沉淀的充要条件是层间水的氧化-还原电位降低到同UO 2-UO 2.25系列氧化物平衡的Eh 值.并且发现U 的络合离子越牢固、层间水中U 含量越低,U 从溶液中沉淀所需的Eh 值越低. 但是,含U 层间水同围岩互相作用并不都能导致 表1 水质类型与铀存在形式关系 Tabel 1 Relationship between water type and mode of uranium 项目 库捷尔太矿床 扎基斯坦矿床 乌库尔其矿床 pH 值 7.31~8.23 7.10~7.50 6.45~7.83 矿化度(g/L) 0.21~0.63 0.56~0.98 0.47~1.02 水质类型 HCO 3、SO 4 HCO 3 SO 4 HCO 3 HCO 3 SO 4、 SO 4 HCO 3 水铀含量 9.0~390.0 0.70~100.0 1.42~29.40 水中U 存在形式以UO 2(CO 3)22-为主,次为UO 2(CO 3)34-

加拿大McArthurRiver铀矿床成矿特点及在我国寻找相同类型铀矿床的几点认

第23卷2007年 第3期5月 铀 矿 地 质U ranium Geolog y V o l 23M ay No 32007 加拿大McArthur River 铀矿床成矿特点及 在我国寻找相同类型铀矿床的几点认识 舒孝敬 (核工业230研究所,湖南长沙 410011) [摘要]加拿大萨斯喀彻温省西北部阿萨巴斯卡盆地M cAr thur River 铀矿床是世界上最大、最富的不整合面型铀矿床。笔者通过对该矿床的剖析,从宏观上对这类铀矿床的一些形成规律进行了初步探讨,并对在我国寻找不整合面型或相似类型的铀矿床提出了一些认识。 [关键词]不整合面型铀矿床;汇水区;渗滤窗;磁性矿物[文章编号]1000 0658(2007)03 0150 06 [中图分类号]P 612 [文献标识码]A [收稿日期]2006 02 23 [作者简介]舒孝敬(1953),男,高级工程师(研究员级),1977年毕业于中南矿冶学院地质系。 McArthur River 铀矿床位于阿萨巴斯卡盆地的东南部,是目前世界上最大、品位最高的铀矿床。该矿床于1988年8月被发现,共查明4个矿体,2000年底探明铀矿储量16 8 104t (U 3O 8),边界品位为0 5%,平均品位25%,为世界铀矿床平均品位的100多倍。矿床规模巨大,根据目前探明的储量,其铀的可利用能量超过加拿大目前已探明的煤炭和石油资源的总能量之和,相当于加拿大安大略省39年的用电量。 McArthur River 为什么能形成如此巨大的高品位铀矿床?笔者试图通过本文给出一些答案。 1 铀成矿区为长期稳定的汇水区 McArthur River 铀矿床产于沃拉斯顿褶皱带的上覆盖层,阿萨巴斯卡群(地台型红色砂岩层)底部,铀矿化趋附于中元古代砂 岩盖层与早元古代结晶基底的不整合面附近。 阿萨巴斯卡盆地铀矿床形成的一个明显特征是铀成矿区都位于汇水区。图1是完全被钻孔控制的2号铀矿体地质断面图,由该图可以看到,铀成矿区内的不整合面都是向矿体赋存区倾斜的,尤其是矿体顶部的不整合面倾斜更为明显,使成矿区成为区内流体的主要汇集区。实际上,阿萨巴斯卡盆地东南部的一些大型富铀矿床(如McArthur River,Key Lake,Sue 等)都形成在不整合面谷地、矿床附近不整合面起伏大的地区以及在不整合面有很高石英山脊(200~300m )的地区,说明铀成矿地区为汇水区或对成矿流体形成阻挡滞留的地区。从整个加拿大地盾来看,其明显的特征就是地层结构十分平整,这种平整的地层结构只要某一局部地区存在相对的凹陷区,就会使大范围内的流体汇集。因此,长期稳定的加拿大地盾和相对平缓的地层结构及不整合面能使盆地中大范围内的地

我国各种矿床主要工业类型

钼矿床主要工业类型 一、斑岩型钼矿 1、成矿地质特征:产于花岗岩及花岗斑岩体内部及其周围岩石中,矿化与硅化、钾化关系密切 2、常见金属矿物:以黄铁矿、辉钼矿、黄铜矿为主 3、矿体形状:层状、似层状、筒状、巨大透镜状 4、规模及品位(质量分数):中、大型至巨大型,品位偏低 5、伴生组分:铜、钨、银、铼、铅、锌、钴、硫 6、矿床实例:陕西金堆成,吉林大黑山,山西繁峙后峪 二、矽卡岩型钼矿 1、成矿地质特征:产于花岗岩类岩体与碳酸盐围岩接触带,以及外接触带沿层发育 2、常见金属矿物:以黄铁矿、辉钼矿为主,次为黄铜矿、磁黄铁矿、黑钨矿、白钨矿、方铅矿、闪锌矿 3、矿体形状:透镜状、扁豆状、似层状、囊状、筒状、脉状等 4、规模及品位(质量分数):大、中、小型均有,品位较富 5、伴生组分:铜、钨、铅、锌、金、铼、硫 6、矿床实例:辽宁杨家杖子,黑龙江五道岭,江苏句容铜山,湖南柿竹园 三、脉型钼矿 1、成矿地质特征:产于各种岩石(侵入岩、喷出岩、变质岩、沉积岩)的断裂带中,倾斜常陡 2、常见金属矿物:以黄铁矿、辉钼矿为主,次为黄铜矿、磁黄铁矿、黑钨矿、斑铜矿、方铅矿、闪锌矿 3、矿体形状:脉状、复脉状、扁豆状 4、规模及品位(质量分数):中、小型常见,品位中等 5、伴生组分:铜、钨、铅、铼、硫、金、银 6、矿床实例:浙江青田石坪川,安徽太平萌坑、铜牛井,广东五华白石嶂,陕西大石沟 四、沉积型钼矿床 1、成矿地质特征:砂岩型分为两种:①钼铜矿床;②钼铀矿床,黑色页岩型,类似沉积岩型镍矿 2、常见金属矿物:辉铜矿、黄铁矿、辉铜矿及含铀钼矿物、镍的硫化物 3、矿体形状:层状、似层状、透镜状、扁豆状 4、规模及品位(质量分数):中、小型,品位偏低 5、伴生组分:铜、铀、镍、钒、铅、锌、钴、锗、硒 6、矿床实例:云南广通麂子湾,贵州兴义大际山 镍矿床主要工业类型 一、超基性岩铜镍矿 1、成矿地质特征:产于超基性岩(纯橄榄岩、辉橄岩、橄辉岩等)岩体的中、下部或分布在脉状岩体中 2、常见金属矿物:镍黄铁矿、紫硫镍铁矿、黄铜矿、方黄铜矿、磁黄铁矿等 3、矿体形状:似层状、不连续大透镜状、大脉状

铀矿床的分类

铀矿床的分类 铀矿床分类是认识和阐明自然界种类繁多、形态各异、规模悬殊的各种矿床间的内在联系和共同规律的简单而又重要的一种方法,即用分类的方法找出同类矿床的共性和各类矿床之间的联系及差异,把复杂的自然现象加以归纳,从而研究其共同的、一般的规律。不同时期的矿床分类,在一定程度上代表着人们对矿床的研究程度和认识水平。正确的合理的分类有利于促进科学研究和指导生产实践。因此,任何一位自然科学工作者都十分重视分类的研究。 根据分类目的,分类原则和解决问题的实质,矿床分类可分为:工业分类、勘探分类和成因分类等,这些分类又可具体进行细分。 如在铀矿床成因分类中,不同的学者建立分类所依据的主要标准或赖以建立分类的基础不同,有的按成矿作用和成矿温度划分的,以地质-构造环境为第一分类标准;有的以含矿主岩为分类基础,而有的以成矿物质来源为分类的基本准则等等。因此近四十年来,至少出现了四十多种铀矿床的成因分类。各种分类的合理程度决定于它是否能概括和反映客观实际。作为一种合理的分类应该是既不过于简单,也不过于复杂,而且分类中应有统一的标准,便于认识和掌握。 铀矿床的最早分类见于1946年由前苏联学者谢尔宾纳和谢尔巴科夫提出,铀矿床的成因具体分类可参阅有关文献。 现在采用的铀矿床分类多是以含矿主岩岩性为基础建立的主要工业铀矿床分类,出现了较多的描述性的分类方案,而从成因方面作为分类依据已经逐渐不被看重。这是因为对矿床成因问题还有许多悬而未决的问题,而成因认识是不断变化的,且可以因人而异,对同一个矿床,或因研究程度、认识深度不同,或因研究者的出发点不同,可提出不同的成因观点。但是矿床的围岩(或含矿主岩)一经正确鉴定是不会改变的。因此,许多年来,国际原子能机构、以及一些国际机构和有关学者,常常把矿床的围岩作为主要的分类标志。如把主要工业铀矿床分为白岗岩型、古砾岩型、砂岩型等等。或据工业类型进行分类,有的矿床或强调其形态,如脉型;或强调其产出的独特的地质环境,如不整合面型。这种分类方法和所划分出来的矿床类型,也已被铀矿地质界沿用成习。 我国自70年代开始,也采用了类似的分类方案,把主要工业铀矿床归纳为“四大类型”,即花岗岩型、火山岩型、砂岩型和碳硅泥岩型。这种以含矿主岩为依据划分的铀矿床类型,易于被铀矿工作人员认识和掌握,较少出现争议,也有利于指导普查勘探工作。 非中央计划经济国家学者从主要勘查类型的工业价值前提下根据铀矿床的含矿岩性、构造、蚀变矿物共生组合、形成年代和空间分布等特点,按目前和近阶段的工业等级依次筛选出15种主要铀矿床类型,近40个亚类和分类,该分类是目前国际原子能机构推荐的矿床分类方案,具体如下: 1.不整合-接触型1.1 与元古代不整合面有关;1.2与显生宙不整合面有关。 2.准不整合-浅变质2.1无钠长石化;2.2钠长石化。 3.脉型3.1与花岗岩有关;3.2与花岗岩无关。 4.砂岩4.1板状/准整合型;4.2卷锋型(或卷状型);4.3构造-岩性。 5.塌陷角砾岩筒型。 6.表生型6.1钙质壳型(非成土型);6.2泥炭和沼泽型;6.3喀斯特溶洞型;6.4表生成土和构造充填型。 7.石英-卵石砾岩型7.1以铀为主,伴有稀土元素;7.2以金为主,金含量大于铀。 8.角砾杂岩型。 9.侵入岩型9.1白岗岩;9.2花岗岩-二长岩型;9.3碳酸岩型;9.4过碱性正

相关主题
文本预览
相关文档 最新文档