当前位置:文档之家› 锅炉内胆水温PID控制实验

锅炉内胆水温PID控制实验

锅炉内胆水温PID控制实验
锅炉内胆水温PID控制实验

第五节锅炉内胆水温PID控制实验

一、实验目的

1. 根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。

2. 比较不同PID参数对系统的性能产生的影响。

3. 分析P、PI、PD、PID四种控制规律对本实验系统的作用。

二、实验设备

1. THJ-2型高级过程控制系统实验装置

2. 计算机及相关软件

3. 万用电表一只

三、实验原理

本实验以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。本实验要求锅炉内胆的水温稳定至给定量,将铂电阻TT1检测到的锅炉内胆温度信号作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。在锅炉内胆水温的定值控制系统中,其参数的整定方法与其它单回路控制系统一样,但由于加热过程容量时延较大,所以其控制过渡时间也较长,系统的调节器可选择PD或PID控制。本实验系统结构图和方框图如图5-1所示。

图5-1 锅炉内胆温度特性测试系统

(a)结构图(b)方框图

可以采用两种方案对锅炉内胆的水温进行控制:

(一)锅炉夹套不加冷却水(静态)

(二)锅炉夹套加冷却水(动态)

显然,两种方案的控制效果是不一样的,后者比前者的升温过程稍慢,降温过程稍快。无论操作者采用静态控制或者动态控制,本实验的上位监控界面操作都是一样的。

四、实验内容与步骤

1.先将储水箱贮足水量,将阀门F1-1、F1-4、F1-5、F1-13全开,打开电磁阀开关,其余阀门关闭,启动380伏交流磁力泵,给锅炉内胆贮存一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13、F1-4及电磁阀,打开阀F1-12,为给锅炉夹套供冷水做好准备。

2.接通控制系统电源,打开用作上位监控的的PC机,进入的实验主界面,在实验主界面中选择本实验项即“锅炉内胆水温PID控制实验”。

3.合上三相电源空气开关,三相电加热管通电加热,适当增加/减少输出量,使锅炉内胆的水温稳定于设定值。

4.按指导书第二章第一节中的经验法或动态特性参数法整定调节器参数,选择PID控制规律,并按整定后的PID参数进行调节器参数设置。

5.待锅炉内胆水温稳定于给定值时,将调节器切换到“自动”状态,然后记录曲线。

6.开始往锅炉夹套打冷水,重复步骤3~5,观察实验的过程曲线与前面不加冷水的过程有何不同。

7.分别采用P、PI、PD控制规律,重复上述实验,观察在不同的PID参数值下,系统的阶跃响应曲线。

8.上述实验用计算机实时记录的响应曲线。

(1)P

(2)PI

(3)PD

(4)PID

9.计算

(1)P

稳态误差=30℃-29.37℃=0.63℃

上升时间:tr=5:48:27-5:47:23=64(s)

(2)PI

峰值时间:tp=6:22:25-6:19:26=2:59=179(s)

超调量=(44.25-35)/ (35-2.528)*100%=28.5%

(3)PD

稳态误差=35℃-34.04℃=0.86℃

上升时间:tr=6:49:25-6:48:10=75(s)

(4)PID

上升时间:tr=7:05:50-7:04:40=70(s)

峰值时间:tp=7:07:30-7:04:40=170(s)

超调量=(44.15-35)/ (35-2.626)*100%=28.3%

10.分析

(1)根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。

分析:系统在阶跃扰动作用下,当比例系数较大时,系统的静态误差也较大,这是因为比例系数会加大幅值;在加入微分环节以后,系统的动态误差明显减小,但调节时间却延长,这是因为微分具有超

前的作用,可以增加系统的稳定度。

(2)比较不同PID参数对系统的性能产生的影响。

Ti:为了消除稳态误差,在控制器中必须引入“积分项”,积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样即便误差很小,积分项也会随着时间的增加而增大,他推动控制器的输出增大使稳态误差进一步减小,知道为零,由于积分项的存在会使调节时间增大。因此,PI控制器可使系统在进入稳太后无稳态误差。

Kp:放大误差的幅值,快速抵消干扰的影响,使系统上升时间降低,如果仅有比例环节,系统会存在稳态误差。

Td:自动控制系统在克服误差的调解过程中可能会出现振荡甚至失稳,在控制器中仅引入“比例P”往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,他能预测误差的变化趋势。这样具有比例加微分的控制器,就能够提前十抑制误差的的控制作用等于零,甚至为负值,从而避免了被控量的严重失调。所以对有较大惯性或滞后的被控对象,PD控制器能改善系统在调解过程的动态特性。

(3)分析P、PI、PD、PID四种控制规律对本实验系统的作用。

P:是基本的控制作用,比例调节对控制作用和扰动作用的响应都很快但会带来余差。

PI: PI调节中P调节快速抵消干扰的影响,同时利用I调节消除残差,但是I调节会降低系统的稳定性。

PD:由于微分的超前作用,能增加系统的稳定度,震荡周期变短,减小了误差,但是微风抗干扰能力差,且微分过大易导致调节阀动作向两端饱和。

PID:常规调节器中性能最好的一种调节器,具有各类调节器的优点,具有更高的控制质量。

五、思考题

1.在温度控制系统中,为什么用PD 和PID 控制,系统的性能并不比用PI 控制有明显地改善?

答:目前温度传感器采用热电偶或热电阻有零点几秒到十几秒的延迟,在控制中必须加微分D做提前产生作用。在实际运用中会觉得与工况变化不相符,往往是觉得超调严重而调乱PID参数。

2.为什么内胆动态水的温度控制比静态水时的温度控制更容易稳定,动态性能更好?

答:内胆是一个封闭的空间,几乎就不向外界散热,使用传感器测温时,测的是某一点的温度,内胆其它地方的温度可能与测量点的温度并不完全一致,静态水不流动,无法快速进行热传递,而动态水却因为它是流动的,使水温保持均匀,当然也就更容易控制。

3.如果要消除系统的余差为什么采用PI 调节器,而不采用纯积分器?

答:因为比例积分适用于滞后比较小,负荷变化不大,不允许有余差的控制系统。而纯积分器会使系统稳定性变差。积分能在比例的基础上消除系统的余差,它适用于控制通道滞后较小、负荷变化不大、被控参数不允许有余差的场合。

4.在阶跃扰动作用下,用PD调节器控制时,系统有没有余差存在?为什么?

答:系统会存在余差,但余差会减小。因为P调节系统始终都存在稳态误差,加入微分调节,误差会减小,但不能完全消除误差,要消除误差,需引入积分调节。

如有侵权请联系告知删除,感谢你们的配合!

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

自动控制原理-PID控制特性的实验研究——实验报告

自动控制原理-PID控制特性的实验研究——实验报告

2010-2011 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理 实验名称: PID控制特性的实验研究实验教室: 6111 指导教师: 小组成员(姓名,学号): 实验日期:2010 年月日评分:

一、实验目的 1、学习并掌握利用MATLAB 编程平台进行控制系统复数域和时域仿真的方法; 2、通过仿真实验,学习并掌握应用根轨迹分析系统性能及根据系统性能选择系统参数的方法; 3、通过仿真实验研究,总结PID 控制规律及参数变化对系统性能影响的规律。 二、实验任务及要求 (一)实验任务 针对如图所示系统,设计实验及仿真程序,研究在控制器分别采用比例(P )、比例积分(PI )、比例微分(PD )及比例积分微分(PID )控制规律和控制器参数(Kp 、K I 、K D )不同取值时,控制系统根轨迹和阶跃响应的变化,总结PID 控制规律及参数变化对系统性能、系统根轨迹、系统阶跃响应影响的规律。具体实验内容如下: ) s (Y ) s (R ) 6)(2(1 ++s s ) (s G c 1、比例(P )控制,设计参数Kp 使得系统处于过阻尼、临界阻尼、欠阻尼三种状态,并在根轨迹图上选择三种阻尼情况的Kp 值,同时绘制对应的阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 的变化情况。总结比例(P )控制的规律。 2、比例积分(PI )控制,设计参数Kp 、K I 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制对应的系统阶跃响应曲线,确定三种情况下系统性能指标随参数Kp 和K I 的变化情况。总结比例积分(PI )控制的规律。 3、比例微分(PD )控制,设计参数Kp 、K D 使得由控制器引入的开环零点分别处于: 1)被控对象两个极点的左侧; 2)被控对象两个极点之间; 3)被控对象两个极点的右侧(不进入右半平面)。 分别绘制三种情况下的根轨迹图,在根轨迹图上确定主导极点及控制器的相应参数;通过绘制

锅炉内胆水温PID控制实验

第五节锅炉内胆水温PID控制实验 一、实验目的 1. 根据实验数据和曲线,分析系统在阶跃扰动作用下的动、静态性能。 2. 比较不同PID参数对系统的性能产生的影响。 3. 分析P、PI、PD、PID四种控制规律对本实验系统的作用。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 本实验以锅炉内胆作为被控对象,内胆的水温为系统的被控制量。本实验要求锅炉内胆的水温稳定至给定量,将铂电阻TT1检测到的锅炉内胆温度信号作为反馈信号,在与给定量比较后的差值通过调节器控制三相调压模块的输出电压(即三相电加热管的端电压),以达到控制锅炉内胆水温的目的。在锅炉内胆水温的定值控制系统中,其参数的整定方法与其它单回路控制系统一样,但由于加热过程容量时延较大,所以其控制过渡时间也较长,系统的调节器可选择PD或PID控制。本实验系统结构图和方框图如图5-1所示。

图5-1 锅炉内胆温度特性测试系统 (a)结构图(b)方框图 可以采用两种方案对锅炉内胆的水温进行控制: (一)锅炉夹套不加冷却水(静态) (二)锅炉夹套加冷却水(动态) 显然,两种方案的控制效果是不一样的,后者比前者的升温过程稍慢,降温过程稍快。无论操作者采用静态控制或者动态控制,本实验的上位监控界面操作都是一样的。 四、实验内容与步骤 1.先将储水箱贮足水量,将阀门F1-1、F1-4、F1-5、F1-13全开,打开电磁阀开关,其余阀门关闭,启动380伏交流磁力泵,给锅炉内胆贮存一定的水量(要求至少高于液位指示玻璃管的红线位置),然后关闭阀F1-13、F1-4及电磁阀,打开阀F1-12,为给锅炉夹套供冷水做好准备。

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

自动控制原理实验报告

《自动控制原理》 实验报告 姓名: 学号: 专业: 班级: 时段: 成绩: 工学院自动化系

实验一 典型环节的MATLAB 仿真 一、实验目的 1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。 2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。 3.定性了解各参数变化对典型环节动态特性的影响。 二、实验原理 1.比例环节的传递函数为 K R K R R R Z Z s G 200,1002)(211 212==-=-=- = 其对应的模拟电路及SIMULINK 图形如图1-3所示。 三、实验内容 按下列各典型环节的传递函数,建立相应的SIMULINK 仿真模型,观察并记录其单位阶跃响应波形。 ① 比例环节1)(1=s G 和2)(1=s G ; ② 惯性环节11)(1+= s s G 和1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节s s G =)(1 ⑤ 比例+微分环节(PD )2)(1+=s s G 和1)(2+=s s G ⑥ 比例+积分环节(PI )s s G 11)(1+=和s s G 211)(2+= 四、实验结果及分析 图1-3 比例环节的模拟电路及SIMULINK 图形

① 仿真模型及波形图1)(1=s G 和2)(1=s G ② 仿真模型及波形图11)(1+= s s G 和1 5.01)(2+=s s G 11)(1+= s s G 1 5.01 )(2+=s s G ③ 积分环节s s G 1)(1= ④ 微分环节

基于PLC系统的锅炉内胆水温控制系统设计

1 PLC构成及WinCC的组态 采用WinCC组态技术设计多机联网运行的实时监控系统,核心思想是通过计算机超强的处理能力,以软件实现实际生产过程变化,把传统控制中进行人工操作或数据分析与处理、数据输出与表达的硬件,利用方便的PC机软硬件代替。 建立WinCC组态监控系统。首先启动WinCC,建立一个单用户项目——添加通讯驱动程序——选择通道单元——输入逻辑连接名,确定与S7—300端口的通讯连接。然后在驱动程序连接下建立结构类型和元素,给过程变量分配一个在PLC中的对应地址(地址类型与通讯对象相关),给除二进制变量外的过程变量和内部变量设定上限值和下限值(当过程值超出上限值和下限值的范围时,数值将变为灰色,并且不可以再对其进行任何处理)。 接着创建和编辑主导航画面、单台空压机组态画面、远程监控画面、分析诊断画面、数据归档画面、报警显示画面、报警在线限制值画面、报表打印画面、用户登录方式画面等。对画面中添加的按钮、窗口和静态文本等,进行组态变量连接、状态显示设置等等。 再对远程控制画面中的启动/停止按钮进行变量连接,设置手动控制和自动控制两种方式,并且手动控制为高级控制方式。通过设置随变量值的变化范围而改变颜色的比功率棒图进行故障诊断分析;通过对过程值的归档,建立历史和当前的表格与曲线两种状态的监控界面;利用报警和报表打印等,实现信息上报、及时反馈的功能,实现最佳的生产状态监测控制。还可通过用户管理权限的设置,为不同级别的用户设置权限和等待空闲时间,以更好地安全防护。 1.1 PLC控制柜的组成 (1) 电源部分 (2) CPU模块 西门子S7-300PLC,型号为CPU315-2 DP,它集成了MPI接口,可以很方便的在PLC站点、操作站OS、编程器PG、操作员面板建立较小规模的通讯。它还集成了PROFIBUS-DP接口,通过DP可以组建更大范围的分布式自动化结构。 工作电压:DC 24V; 通讯方式:CP5611网卡进行通讯; 通讯协议:PROFIBUS-DP。 (3) 模拟量输入模块 采用西门子SM331-7NF00-OABO模拟量输入模块。输入所采集到的信号至控制单元。规格:AI 8×16bit; (4) 模拟量输出模块 采用西门子SM332-5HD01-OABO模拟量输出模块。输出控制信号至执行机构。规格:AO 4×12 bit (5) 数字量模块 本系统采用西门子SM323-1BH01-0AA0数字量模块,该模块集成了8路数字量输入通道和8路数字量输出通道。锅炉内胆水温控制系统没用到此模块,但在硬件组态时需编入硬件组态。 1.2 基于PLC的锅炉内胆水温控制的系统结构

锅炉的自动控制系统

锅炉自动控制系统 摘要 锅炉是国民经济中主要的供热设备之一。电力、机械、冶金、化工、纺织、造纸、食品等工业和民用采暖都需要锅炉供给大量的蒸汽。各种工业的生产性质与规模不同,工业和民用采暖的规模大小不尽相同。锅炉是供热之源,锅炉及其设备的任务在于安全,可靠,有效把燃料的化学能转化成热能,进而将热能传递给水,以生产热水和蒸汽。为了生产工艺有特殊要求外,所生产的热水不需要过高温的压力和温度,容量也无需很大。 随着现代工业技术的飞速发展,对能源利用率的要求越来越高。锅炉作为将一次能源转化为二次能源的重要设备之一,其控制和管理的水平也日趋提高。但在我国,大部分锅炉还采用仪表和继电器控制,甚至人工操作,已无法满足生产需求。因此,对锅炉控制系统采用先进的控制技术,不仅能够保证安全生产,而且能够节能增效,具有很好的市场发展空间和投资收益前景。 本论文的主要方向就是采用过程控制对工业锅炉进行控制。 关键字:锅炉;过程控制;控制算法;DCS;现场总线;工业以太网;监控软件 一、锅炉的基本构造及其工作原理 锅炉的主要设备包括汽锅、炉子、炉膛、锅筒、水冷壁、过热器、省煤器、燃烧热备、引风设备、送风设备、给水设备、空气预热器、水处理设备、燃烧供给设备以及除灰除尘设备等。 锅炉的原理及过程 锅炉的工作过程概括起来应该包括三个同时进行的过程:燃料的燃烧过程,烟气向水的传热过程,水的汽化过程。 一个锅炉进行工作,其主要任务是:(1) 要使锅炉出口蒸汽压力稳定;(2)保证燃烧过程的经济性;(3)保持锅炉负压稳定,通常我们是炉膛负压保持在微负压(-10~80Pa)。为了完成上述三项任务,我们对三个变量进行控制:燃烧

PID自控原理实验报告

自动控制原理实验 ——第七次实验

一、实验目的 (1)了解数字PID控制的特点,控制方式。 (2)理解和掌握连续控制系统的PID控制算法表达式。 (3)了解和掌握用试验箱进行数字PID控制过程。 (4)观察和分析在标PID控制系统中,PID参数对系统性能的影响。 二、实验容 1、数字PID控制 一个控制系统中采用比例积分和微分控制方式控制,称之为PID控制。数字PID控制器原理简单,使用方便适应性强,可用于多种工业控制,鲁棒性强。可以用硬件实现,也可以用软件实现,也可以用如见硬件结合的形式实现。PID控制常见的是一种负反馈控制,在反馈控制系统中,自动调节器和被控对象构成一个闭合回路。模拟PID控制框图如下: 输出传递函数形式: ()1 () ()p i d U s D s K K K s E s s ==++ 其中Kp为调节器的比例系数,Ti为调节器的积分常数,Td是调节器的微

分常数。 2、被控对象数学模型的建立 1)建立模型结构 在工程中遇到的实际对象大多可以表示为带时延的一阶或二价惯性环节,故PID 整定的方法多从这样的系统入手,考虑有时延的单容被控过程,其传递函数为: 0001 ()1 s G s K e T S τ-=? + 这样的有时延的单容被控过程可以用两个惯性环节串联组成的自平衡双容被控过程来近似,本实验采用该方式作为实验被控对象,如图3-127所示。 001211 ()11 G s K T S T S =? ?++ 2)被控对象参数的确认 对于这种用两个惯性环节串联组成的自平衡双容被控过程的被控对象,在工程中普遍采用单位阶跃输入实验辨识的方法确认0T 和τ,以达到转换成有时延的单容被控过程的目的。单位阶跃输入实验辨识的原理方框如图3-127所示。 对于不同的 、 和K 值,得到其单位阶跃输入响应曲线后,由 010()0.3()Y t Y =∞和020()0.7()Y t Y =∞得到1t 和2t ,再利用拉氏反变换公式得到

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

锅炉温度自动控制

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。

一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。

PID控制实验报告,DOC

实验二数字PID 控制 计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。因此连续PID 控制算法不能直接使用,需要采用离散化方法。在计算机PID 控制中,使用的是数字PID 控制器。 一、位置式PID 控制算法 按模拟PID 控制算法,以一系列的采样时刻点kT 代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID 位置式表达式: 式中,D p d I p i T k k T k k == ,,e 为误差信号(即PID 控制器的输入) ,u 为控制信号(即控制器的输出)。 在仿真过程中,可根据实际情况,对控制器的输出进行限幅。 二、连续系统的数字PID 控制仿真 连续系统的数字PID 控制可实现D/A 及A/D 的功能,符合数字实时控制的真实情况,计算机及DSP 的实时PID 控制都属于这种情况。 1.Ex3设被控对象为一个电机模型传递函数Bs Js s G += 21 )(,式中 J=0.0067,B=0.1。输入信号为)2sin(5.0t π,采用PD 控制,其中5.0,20==d p k k 。采用ODE45方法求解连续被控对象方程。 因为Bs Js s U s Y s G +==21 )()()(,所以u dt dy B dt y d J =+22,另y y y y ==2,1,则?? ???+-==/J)*u ((B/J)y y y y 12221 ,因此连续对象微分方程函数ex3f.m 如下 functiondy=ex3f(t,y,flag,para) u=para; J=0.0067;B=0.1; dy=zeros(2,1); dy(1)=y(2);

锅炉内胆温度二位式控制实验

实验三、锅炉内胆温度二位式控制实验 一、实验目的 1)、熟悉实验装置,了解二位式温度控制系统的组成。 2)、掌握位式控制系统的工作原理、控制过程和控制特性。 二、实验设备 过程控制实验装置、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。 三、实验原理 1、温度传感器 温度测量通常采用热电阻元件(感温元件)。它是利用金属导体的电阻值随温度变化而变化的特性来进行温度测量的。其电阻值与温度关系式如下: Rt=Rt [1+α(t-t0)] 式中Rt——温度为t(如室温20℃)时的电阻值; Rt 0——温度为t (通常为0℃)时的电阻值; α——电阻的温度系数。 可见,由于温度的变化,导致了金属导体电阻的变化。这样只要设法测出电阻值的变化,就可达到温度测量的目的。 虽然大多数金属导体的电阻值随温度的变化而变化,但是它们并不能都作为测温用的热电阻。作为热电阻的材料一般要求是:电阻温度系数小、电阻率要大、热容量要小;在整个测温范围内,应具有稳定的物理、化学性质和良好的重复性;并要求电阻值随温度的变化呈线性关系。 但是,要完全符合上述要求的热电阻材料实际上是有困难的。根据具体情况,目前应用最广泛的热电阻材料是铂和铜。本装置使用的是铂电阻元件PT100,并通过温度变送器(测量电桥或分压采样电路或者AI人工智能工业调节器)将电阻值的变化转换为电压信号。 铂电阻元件是采用特殊的工艺和材料制成,具有很高的稳定性和耐震动等特点,还具有较强的抗氧化能力。 在0~650℃的温度范围内,铂电阻与温度的关系为:

Rt =Rt 0(1+At+Bt 2+Ct 3) 式中Rt ——温度为t(如室温20℃)时的电阻值; Rt 0——温度为t 0(通常为0℃)时的电阻值; A 、 B 、 C 是常数,一般A=3.90802*10-31/℃,B=-5.802*10-71/℃,C=-4.2735*10-121/℃。 Rt-t 的关系称为分度表。不同的测温元件用分度号来区别,如Pt100、C U 50等。 2、二位式温度控制系统 二位控制是位式控制规律中最简单的一种。本实验的被控对象是1.5KW 电加热管,被控制量是复合小加温箱中内套水箱的水温T ,智能调节仪内置继电器线圈控制的常开触点开关控制电加热管的通断,图3-1为位式调节器的工作特性图,图3-2为位式控制系统的方块图。 图3-1、位式调节器的特性图 由图3-1可见,在一定的范围内不仅有死区存在,而且还有回环。因而图3-2所示的系统实质上是一个典型的非线性控制系统。执行器只有“开”或“关”两种极限输出状态,故称这种控制器为两位调节器。 该系统的工作原理是当被控制的水温测量值V P =T 小于给定值V S 时,即测量 值〈给定值,且当e=VS-VP ≥dF 时,调节器的继电器线圈接通,常开触点变成常闭,电加热管接通380V 电源而加热。随着水温T 的升高,Vp 也不断增大,e 相应变小。若T 高于给定值,即Vp 〉Vs ,e 为负值,若e ≤-dF 时,则两位调节器的继电器线圈断开,常开触点复位断开,切断电加热管的供电。由于这种控制方

实验六、锅炉内胆水温PID整定实验(动态)

实验六、锅炉内胆水温PID整定实验(动态) 一、实验目的 1)、了解单回路温度控制系统的组成与工作原理。 2)、研究P、PI、PD和PID四种调节器分别对温度系统的控制作用。 3)、改变P、PI、PD和PID的相关参数,观察它们对系统性能的影响。 二、实验设备 CS2000型过程控制实验装置, PC机,DCS监控软件,DCS控制系统。 三、实验原理 图6-1、温度控制系统原理图 本系统所要保持的恒定参数是锅炉内胆温度给定值,即控制的任务是控制锅炉内胆温度等于给定值。根据控制框图,采用DCS控制系统。 一、实验内容与步骤 1)、开通以水泵、电动调节阀、孔板流量计以及锅炉内胆进水阀所组成的水路系统,关闭通往其他对象的切换阀。 2)、将锅炉内胆的出水阀关闭。 3)、检查电源开关是否关闭。 4)、开启相关仪器和计算机软件,进入相应的实验六。 5)、点击上位机界面上的“点击以下框体调出PID参数”按钮,设定好给定值,并根据实验情况反复调整P、I、D三个参数,直到获得满意的测量值。 6)、比例调节(P)控制 待基本不再变化时,加入阶跃扰动(可通过改变调节器的设定值来实现)。观察并记录在当前比例P时的余差和超调量。每当改变值P后,再加同样大小的阶跃信号,比较不同P 时的ess和σp,并把数据填入表一中。 表一、不同比例P时的余差和超调量

记录实验过程各项数据绘成过渡过程曲线。(数据可在软件上获得) 7)比例积分调节(PI)控制 (1)、在比例调节器控制实验的基础上,待被调量平稳后,加入积分(I)作用,观察被控制量能否回到原设定值的位置,以验证系统在PI调节器控制下没有余差。 (2)、固定比例P值,然后改变积分时间常数I值,观察加入扰动后被调量的动态曲线,并记录不同I值时的超调量σp。 表二、不同Ti值时的超调量σp (3)、固定I于某一中间值,然后改变比例P的大小,观察加扰动后被调量的动态曲线,并记下相应的超调量σp。 表三、不同δ值时的超调量σp (4)、选择合适的P和I值,使系统瞬态响应曲线为一条令人满意的曲线。此曲线可通过改变设定值(如把设定值由50%增加到60%)来实现。 8)比例微分调节器(PD)控制 在比例调节器控制实验的基础上,待被调量平稳后,引入微分作用(D)。固定比例P 值,改变微分时间常数D的大小,观察系统在阶跃输入作用下相应的动态响应曲线。 表四、不同D时的超调量和余差 9)比例积分微分(PID)调节器控制 (1)、在比例调节器控制实验的基础上,待被调量平稳后,引入积分(I)作用,使被调量回复到原设定值。减小P,并同时增大I,观察加扰动信号后的被调量的动态曲线,验证

锅炉蒸汽温度控制系统

引言 随着科学技术的发展,自动控制在现代工业中起着主要的作用,目前已广泛应用于工农业生产及其他建设方面。生产过程自动化是保持生产稳定、降低成本、改善劳动成本、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是20世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。电力工业中电厂热工生产过程自动化技术相对于其他民用工业部门有较长的历史和较高的自动化水平,电厂热工自动化水平的高低是衡量电厂生产技术的先进与否和企业现代化的重要标志。 本次毕业设计的主要是针对单元机组汽温控制系统的设计。锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉汽水系统中的温度最高点,蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃。 如果过热蒸汽温度偏低,则会降低电厂的工作效率,据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。一般规定过热汽温下限不低于其额定值10℃。通常,高参数电厂都要求保持过热汽温在540℃的范围内。 由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下几个方面: (1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。 (2)汽温对象具有大延迟、大惯性的特点,尤其随着机组容量和参数的增加,蒸汽的过热受热面的比例加大,使其延迟和惯性更大,从而进一步加大了汽温控制的难度。 (3)汽温对象在各种扰动作用下(如负荷、工况变化等)反映出非线性、时变等特性,使其控制的难度加大。

PID实验报告

实验题目:PID控制实验 学生姓名:学号: 区队:日期: 学科名称现代控制系统实验 实验目的 1.理解一阶倒立摆的工作机理及其数学模型的建立及简化的方法;掌握使用Matlab/Simulink软件对控制系统的建模方法; 2.通过对一阶倒立摆控制系统的设计,理解和掌握闭环PID控制系统的设 计方法; 3.掌握闭环PID控制器参数整定的方法;理解和掌握控制系统设计中稳定 性、快速性的权衡以及不断通过仿真实验优化控制系统的方法。 实验设备倒立摆实验箱、MATLAB6.5 实验原理PID控制原理分析: 由前面的讨论已知实际系统的物理模型: Kp=30,Ki=0,Kd=0.5 60 122 .6 ) ( 2- = s s G 对于倒立摆系统输出量为摆杆的角度,它的平衡位置为垂直向上的情况。系统控制结构框图如图3-37,图中KD(s)是控制器传递函数,G(s)是被控对象传递函数。 图1 PID控制结构框图 其中s K s K K s KD D I P + + =)( 此次实验只考虑控制摆杆的角度,小车的位置是不受控的,即摆杆角度的单闭环控制,立起摆杆后,会发现小车向一个方向运动直到碰到限位信号。那么要使倒立摆稳定在固定位置,还需要增加对电机位置的闭环控制,这就形成了摆杆角度和电机位置的双闭环控制。立摆后表现为电机在固定位置左右移动控制摆杆不倒。

实验步骤: 1、使用MATLAB/Simulink 仿真软件建立以下控制模型: 图2 PID 控制模块组成 2、按照PID 参数整定方法调整PID 参数,设计PID 控制器。 3、在倒立摆教学实验软件中进行PID 控制器的仿真验证。 实验结果: 1、PID 参数整定: 设置PID 控制器参数,令Kp=1,Ki=0,Kd=0,仿真得到以下图形: 012345678910 00.5 1 1.5 2 2.53 3.5 4 4.5 x 1030时间t/s 摆杆角度Kp=1,Ki=0,Kd=0 从图中看出,曲线发散,控制系统不稳定。令Kp=20,Ki=0,Kd=0,仿真得到以下图形: 0246810 00.5 1 1.5 22.533.5 4 时间t/s 摆杆角度 Kp=20,Ki=0,Kd=0

锅炉内胆水温与循环水流量串级控制系统

九江学院电子工程学院 电子工程学院课外学分设计报告 题目:锅炉内胆水温与循环水流量串级控制系统 姓名:曾志成黄家平龙建平学号:25、32、29 专业:自动化实验室:开放实验室班级:A1031 设计时间:2012年9月10日——2012年12月30 日 评定成绩:审阅教师:

目录 1.专业综合设计任务 (1) 2.方案设计与论证 (1) 3.硬软件设计 (1) 4.实现与测试 (6) 5.分析与总结 (6) 1.专业综合设计任务

本实验选择锅炉内胆和循环水组成串级控制系统。实验之前先将储水箱中贮足水量,然后将阀门F2-1、F2-6、F1-12、F1-13全开,将锅炉出水阀门F2-11、F2-12关闭,其余阀门也关闭。将变频器A、B、C三端连接到三相磁力驱动泵(220V),打开变频器电源并手动调节变频器频率,给锅炉内胆和夹套贮满水。然后关闭变频器、关闭阀F1-12,打开阀F1-13,为给锅炉内胆供循环冷水作好准备。 具体实验内容与步骤可根据本实验的目的与原理参照本章第二节水箱液位串级控制中相应方案进行,实验的接线可按照下面电路图中的的接线图连接。 2. 方案设计与论证 本实验系统的主控量为锅炉内胆的水温T,副控量为锅炉内胆循环水流量Q,它是一个辅助的控制变量。内胆内的电热管持续恒压加热,执行元件为电动调节阀,它控制管道中流过的冷水的流量大小,以改变内胆中的水温。副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量T的控制目的,因而副调节器可采用P控制。但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。引入积分作用的目的不是消除静差,而是增强控制作用。显然,由于副对象管道的时间常数远小于主对象锅炉内胆的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路的调节作用可快速消除扰动的影响。本实验系统结构图和方框图如图5-21所示。 图5-21 锅炉内胆水温与循环水流量串级控制系统 (a)结构图(b)方框图 3. 硬软件设计

基于S7300锅炉内胆水温的前馈反馈控制系设计(组态)

基于S7300锅炉内胆水温的前馈反馈控制系设计(组态)

毕业设计(论文) 题目:基于S7-300锅炉内胆水温的前馈 -反馈控制系设计(组态) (英文):Design of Feedforward and Feedback Control Systems Based on S7-300 Boiler Water Temperature (Configuration) 院别:自 动化学院 专业:自

动化 姓名:肖 奎 学号: 2010104843020 指导教师:李 虎山 日期: 2014年4月 基于S7-300锅炉内胆水温的前馈-反馈控制系 统设计(组态) 摘要 温度是常见的过程参数之一,许多的生产过程都离不开对温度的控制,温度的控制往往是对加热和冷却的平衡,锅炉正是这样的系统,当加热大于冷却时整个系统升温;反之则降温;二者若是趋于相等就可以使温度趋于稳定。若是采用单纯的反馈控制对锅炉内胆水温进行控制,由于流量变化快而温度控制滞后大就会导致系统的稳定性、快速性较差,不能取得理想的控制效果。解决这个问题的办法就是加入对主要扰动流量的前馈补偿环节构成锅炉内胆水温的前馈-反馈控制系统,使得流量的变化能够迅速得到补偿,提高系统的响应速度。 近年来,可编程控制器(PLC)依托着可靠性高,抗干扰,功能强大等特点得到

了广泛的运用,随着生产和编程的技术不断进步,越来越多的控制方式得以在PLC上实现。本设计将围绕西门子S7-300 PLC从前馈-反馈控制系统的介绍、PLC及测量变送仪表设备的选择、软件的展示及组态编程这三个方面来阐述锅炉内胆水温的前馈-反馈控制系统的设计,力求展示出前馈-反馈控制系统的特点。通过本设计可以观测到前馈-反馈控制系统在以流量变化为主要扰动的情况下对锅炉内胆的水温可以取得较好的控制效果。 关键词:前馈-反馈控制; PLC;温度

锅炉蒸汽温度自动控制系统——模糊控制

锅炉蒸汽温度自动控制系统 摘要: 电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。锅炉是火力 发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。 本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID 控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。 关键词:锅炉蒸汽温度模糊控制 随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。 火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。其单元发电机组由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,大型机组多至上千个参数需要监视、操作或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,单元机组自动化水平受到特别的重视。 锅炉蒸汽温度自动控制系统的分析: 过热蒸汽温度自动控制是维持过热器出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。目前,汽包锅炉的过热器侧调温都是以喷水减温方式为主的。它的原理是将洁净的给水直接喷进蒸汽,水吸收蒸汽的汽化潜热,从而改变过热蒸汽温度。汽温的变化通过减温器喷水量的调节加以控制。 影响过热器出口蒸汽温度变化的原因很多,如蒸汽流量变化、燃烧工况变化、

PID控制电机实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ PID控制电机实验报告

编号:FS-DY-20618 PID控制电机实验报告 摘要 以电机控制平台为对象,利用51单片机和变频器,控制电机精确的定位和正反转运动,克服了常见的因高速而丢步和堵转的现象。电机实现闭环控制的基本方法是将电机工作于启动停止区,通过改变参考脉冲的频率来调节电机的运行速度和电机的闭环控制系统由速度环和位置环构成。通过PID调节实现稳态精度和动态性能较好的闭环系统。 关键词:变频器PID调节闭环控制 一、实验目的和任务 通过这次课程设计,目的在于掌握如何用DSP控制变频器,再通 过变频器控制异步电动机实现速度的闭环控制。为实现闭环控制,我们需完成相应的任务: 1、通过变频器控制电机的五段调速。

2、通过示波器输出电机速度变化的梯形运行图与s形运行图。 3、通过单片机实现电机转速的开环控制。 4、通过单片机实现电机的闭环控制。 二、实验设备介绍 装有ccs4.2软件的个人计算机,含有ADC模块的51单片机开发板一套,变频器一个,导线若干条。 三、硬件电路 1.变频器的简介 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,变频器还有很多的保护功能。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 2.变频器的使用 变频器事物图变频器原理图

锅炉内胆水温与循环水流量串级控制系统

第五节锅炉内胆水温与循环水流量串级控制系统 一、实验目的 1.熟悉温度-流量串级控制系统的结构与组成。 2.掌握温度-流量串级控制系统的参数整定与投运方法。 3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。 4.主、副调节器参数的改变对系统性能的影响。 二、实验设备(同前) 三、实验原理 本实验系统的主控量为锅炉内胆的水温T,副控量为锅炉内胆循环水流量Q,它是一个辅助的控制变量。内胆内的电热管持续恒压加热,执行元件为电动调节阀,它控制管道中流过的冷水的流量大小,以改变内胆中的水温。副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量T的控制目的,因而副调节器可采用P控制。但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。引入积分作用的目的不是消除静差,而是增强控制作用。显然,由于副对象管道的时间常数远小于主对象锅炉内胆的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路的调节作用可快速消除扰动的影响。本实验系统结构图和方框图如图5-21所示。

图5-21 锅炉内胆水温与循环水流量串级控制系统 (a)结构图 (b)方框图 四、实验内容与步骤 本实验选择锅炉内胆和循环水组成串级控制系统。实验之前先将储水箱中贮足水量,然后将阀门F2-1、F2-6、F1-12、F1-13全开,将锅炉出水阀门F2-11、F2-12关闭,其余阀门也关闭。将变频器A、B、C三端连接到三相磁力驱动泵(220V),打开变频器电源并手动调节变频器频率,给锅炉内胆和夹套贮满水。然后关闭变频器、关闭阀F1-12,打开阀F1-13,为给锅炉内胆供循环冷水作好准备。 具体实验内容与步骤可根据本实验的目的与原理参照本章第二节水箱液位串级控制中相应方案进行,实验的接线可按照下面的接线图连接。 智能仪表1常用参数设置如下,其他参数按照默认设置: HIAL=9999,LoAL=-1999,dHAL=9999, dLAL =9999, dF=0, CtrL=1,Sn=21, dIP =1, dIL =0, dIH =100, oP1=4, oPL=0, oPH=100,CF=0,Addr=1,bAud=9600。 智能仪表2(主控)常用参数设置如下,其他参数按照默认设置: HIAL=9999,LoAL=-1999,dHAL=9999, dLAL =9999, dF=0, CtrL=1,Sn=21, dIP =1, dIL =0, dIH =100, oP1=4, oPL=0, oPH=100,CF=0,Addr=2,bAud=9600。 智能仪表3(副控)常用参数设置如下,其他参数按照默认设置: HIAL=9999,LoAL=-1999,dHAL=9999, dLAL =9999, dF=0, CtrL=1,Sn=32, dIP =1, dIL =0, dIH =100, oP1=4, oPL=0, oPH=100,CF=9,Addr=3,bAud=9600。

相关主题
文本预览
相关文档 最新文档