当前位置:文档之家› worldview-3 的绝对辐射定标系数

worldview-3 的绝对辐射定标系数

worldview-3 的绝对辐射定标系数
worldview-3 的绝对辐射定标系数

常用材料摩擦系数表

常用材料摩擦系数 摩擦系数 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━摩擦副材料摩擦系数μ无润滑有润滑——————————————————————————————————————————————钢-钢 0.15* 0.1-0.12* 0.1 0.05-0.1 钢-软钢 0.2 0.1-0.2 钢-不淬火的T8 0.15 0.03 钢-铸铁 0.2-0.3* 0.05-0.15 0.16-0.18 钢-黄铜 0.19 0.03 钢-青铜 0.15-0.18 0.1-0.15* 0.07 钢-铝 0.17 0.02 钢-轴承合金 0.2 0.04 钢-夹布胶木 0.22 - 钢-钢纸 0.22 - 钢-冰 0.027* - 0.014 石棉基材料-铸铁或钢 0.25-0.40 0.08-0.12 皮革-铸铁或钢 0.30-0.50 0.12-0.15 材料(硬木)-铸铁或钢 0.20-0.35 0.12-0.16 软木-铸铁或钢 0.30-0.50 0.15-0.25 钢纸-铸铁或钢 0.30-0.50 0.12-0.17 毛毡-铸铁或钢 0.22 0.18 软钢-铸铁 0.2*,0.18 0.05-0.15 软钢-青铜 0.2*,0.18 0.07-0.15 铸铁-铸铁 0.15 0.15-0.16 0.07-0.12 铸铁-青铜 0.28* 0.16* 0.15-0.21 0.07-0.15 铸铁-皮革 0.55*,0.28 0.15*,0.12 铸铁-橡皮 0.8 0.5 皮革-木料 0.4-0.5* - 0.03-0.05 铜-T8钢 0.15 0.03 铜-铜 0.20 - 黄铜-不淬火的T8钢 0.19 0.03 黄铜-淬火的T8钢 0.14 0.02 黄铜-黄铜 0.17 0.02 黄铜-钢 0.30 0.02 黄铜-硬橡胶 0.25 - 黄铜-石板 0.25 - 黄铜-绝缘物 0.27 - 青铜-不淬火的T8钢 0.16 -

常用材料热辐射系数

热分析材料导热系数汇总 材料导热系数 Metal Material Conductivity Density W/m-C kg/m 3 Aluminum, 2024, Temper-T3 121 2.80E+03 Aluminum, 2024, Temper-T351 143 2.80E+03 Aluminum, 2024, Temper-T4 121 2.80E+03 Aluminum, 5052, Temper-H32 138 2.68E+03 Aluminum, 5052, Temper-O 144 2.69E+03 Aluminum, 6061, Temper-O 180 2.71E+03 Aluminum, 6061, Temper-T4 154 2.71E+03 Aluminum, 6061, Temper-T6 167 2.71E+03 Aluminum, 7075, Temper-O 130 2.80E+03 Aluminum, 7075, Temper-T6 130 2.80E+03 Aluminum, A356, Temper-T6 128 2.76E+03 Aluminum, Al-Cu, Duralumin, 95%Al-5%Cu 164 2.79E+03 Aluminum, Al-Mg-Si, 97%Al-1%Mg-1%Si-1%Mn 177 2.71E+03 Aluminum, Al-Si, Alusil, 80%Al-20%Si 161 2.63E+03 Aluminum, Al-Si, Silumim, 86.5%Al-1%Cu 137 2.66E+03 Aluminum, Pure 220 2.71E+03 Beryllium, Pure 175 1.85E+03 Brass, Red, 85%Cu-15%Zn 151 8.80E+03 Brass, Yellow, 65%Cu-35%Zn 119 8.80E+03 Copper, Alloy, 11000 388 8.93E+03 Copper, Aluminum bronze, 95%Cu-5%Al 83 8.67E+03 Copper, Brass, 70%Cu-30%Zn 111 8.52E+03 Copper, Bronze, 75%Cu-25%Sn 26 8.67E+03 Copper, Constantan, 60%Cu-40%Ni 22.7 8.92E+03 Copper, Drawn Wire 287 8.80E+03 Copper, German silver, 62%Cu-15%Ni-22%Zn 24.9 8.62E+03 Copper, Pure 386 8.95E+03 Copper, Red brass, 85%Cu-9%Sn-6%Zn 61 8.71E+03

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个

EFD仿真材料热辐射系数表

Emissivity Coefficients of some common Materials The radiation heat transfer emissivity coefficient of some common materials as aluminum, brass, glass and many more Sponsored Links The emissivity coefficient - - indicates the radiation of heat from a 'grey body' according the Stefan-Boltzmann Law, compared with the radiation of heat from a ideal 'black body' with the emissivity coefficient = 1. The emissivity coefficient - - for some common materials can be found in the table below. Note that the emissivity coefficients for some products varies with the temperature. As a guideline the emmisivities below are based on temperature 300 K. Surface Material Emissivity Coefficient - - Alloy 24ST Polished 0.9 Alumina, Flame sprayed 0.8 Aluminum Commercial sheet 0.09 Aluminum Foil 0.04 Aluminum Commercial Sheet 0.09 Aluminum Heavily Oxidized 0.2 - 0.31 Aluminum Highly Polished 0.039 - 0.057 Aluminum Anodized 0.77 Aluminum Rough 0.07 Antimony, polished 0.28 - 0.31 Asbestos board and paper 0.94 Asphalt 0.93 Basalt 0.72 Beryllium 0.18 Beryllium, Anodized 0.9 Bismuth, bright 0.34 Black Body Matt 1.00 Black Parson Optical 0.95 Black Silicone Paint 0.93 Resources, Tools and Basic Information for Engineering and Design of Technical Applications! Web The Engineering ToolBox Search

常用材料导热系数-中文

材料的导热系数 日期:2007-2-17 22:28:48 来源:来自网络查看:[大中小] 作者:不详热度: 1889 附录A 材料的导热系数(l) A.0.1 表A.0.1中给出材料的导热系数。 表 A.0.1 常用材料的导热系数

聚硫胶1700 0.40 纯硅胶1200 0.35 聚异丁烯930 0.20 聚脂树脂1400 0.19 硅胶(干燥剂)720 0.13 分子筛650 to 750 0.10 低密度硅胶泡末750 0.12 中密度硅胶泡末820 0.17 附录B 气体热物理性能 B.0.1下列表的线性公式系数,计算填充空气、氩气、氮气、氙气四种气体空腔的导热系数、粘度和常压比热容。传热计算时,假设所充气体是不辐射/吸收的气体。 表B.1气体的导热系数 气体系数a W/(m·k) 系数b W/(m·k2) λ(0℃时) W/(m·k) λ(10℃时) W/(m·k) 空气 2.873×10-3 7.760×10-5 0.0241 0.0249 氩气 2.285×10-3 5.149×10-5 0.0163 0.0168 氪气9.443×10-4 2.826×10-5 0.0087 0.0090 氙气 4.538×10-4 1.723×10-5 0.0052 0.0053 其中:[W/m.K] 表B.2气体的粘度 气体系数a N·S/m2 系数b N·S/(m2·k2) μ(0℃时)μ(10℃时) 空气 3.723×10-6 4.940×10-8 1.722×10-5 1.771×10-5 氩气 3.379×10-6 6.451×10-8 2.100×10-5 2.165×10-5 氪气 2.213×10-6 7.777×10-8 2.346×10-5 2.423×10-5 氙气 1.069×10-6 7.414×10-8 2.132×10-5 2.206×10-5 其中:[kg/m.s]

最新版ENVI5.3下高分二号(GF2)数据预处理

ENVI5.3下高分二号(GF2)数据预处理 以一景2015年1月23日获取的GF2-PMS1数据为例介绍在ENVI5.3下GF2数据预处理的详细操作步骤。GF2数据预处理基本流程如下: 图:GF2数据预处理流程 说明:1. 针对不同的应用,有不同的处理流程,上图中列出了两种常用的预处理流程。流程一主要针对高精度的定量遥感应用,也就是对大气校正精度要求

比较高应用,比如:植被参数定量反演等;流程二主要针对定性遥感或者对大气校正精度要求比较低的遥感应用,比如:土地利用类型分类等。本文介绍的主要是流程二的详细操作步骤,流程一的实现可参考日志:ENVI5.2下高分二号数据FLAASH大气校正;另外,中国资源卫星应用中心网站已经公布了最新的GF2数据绝对辐射定标系数和两个传感器的波谱响应函数,大家可以下载使用。2. 本例中所有操作都是在ENVI5.3版本下进行的,除NNDiffuse Pan Sharpening 图像融合(ENVI5.2新增,ENVI5.1中可以使用G-S融合方法)外,其他操作在ENVI5.1/5.2下同样可以完成。 1. 数据打开 启动ENVI5.3,在菜单栏中,选择File > Open,弹出Open对话框,找到GF2数据文件夹所在位置,选中扩展名为.tiff的两个文件,点击打开。 图2 打开GF2多光谱和全色数据

在左侧图层管理Layer Manager面板中,选择多光谱或全色数据图层,右键View Metadata查看其元数据信息,可以看到ENVI很好地识别了数据的RPC 信息。 图3 ENVI自动识别GF2数据RPC信息 2. 正射校正 有了RPC信息之后,下面我们就可以基于这些RPC信息分别对多光谱和全色数据进行正射校正。这里我们以多光谱数据正射校正为例,全色数据正射校正操作完全相同。

常见非金属、金属表面不同波段的辐射率

精心整理 第1章非金属的发射率表(n.r.=不推荐) 以下值为近似值,根据材料的实际表面和条件不同可能会有所变化。 材料发射率 1.0μm 5.0μm7.9μm8-14μm 石棉0.9 0.9 0.95 0.95 沥青n.r. 0.9 0.95 0.95 黑陶瓷n.r. 0.7 0.7 0.7 碳 未氧化0.8-0.95 石墨0.8-0.9 碳化硅n.r. 0.9 陶瓷0.4 0.95 黏土n.r. 0.95 混凝土0.65 0.95 布料n.r. 0.95 玻璃 平板n.r. 0.85 玻璃坯n.r. 沙砾0.95 0.95 0.95 石膏0.4-0.97 0.8-0.95 0.8-0.95 冰0.98 0.98 0.4-0.98 0.98 0.98 0.9-0.95 0.9-0.95 纸张n.r. 0.95 0.95 0.95 n.r. 0.95 0.95 0.95 n.r. n.r. 0.9 0.95 0.95 沙子n.r. 0.9 0.9 0.9 雪n.r. 0.9 0.9 泥土n.r. 0.9-0.98 0.9-0.98 水n.r. 0.93 0.93 木头,(天然)n.r. 0.9-0.95 0.9-0.95 0.9-0.95 第2章金属的发射率表 以下值为近似值,根据材料的实际表面和条件不同可能会有所变化。 材料发射率 1.0μm 1.6μm8-14μm

铝 未氧化0.1-0.2 0.02-0.2 n.r. 氧化0.4 0.4 0.2-0.4 铝合金A3003 氧化n.r. 0.4 0.3 毛面0.2-0.8 0.2-0.6 0.1-0.3 光面0.1-0.2 0.02-0.1 n.r. 黄铜 光面0.8-0.95 0.01-0.05 n.r. 砑光面n.r. n.r. 0.3 氧化0.6 0.6 0.5 铬0.4 铜 光面n.r. 毛面n.r. 氧化0.2-0.8 电气接线端子n.r. 金0.3 Haynes 合金0.5-0.9 铬镍铁合金 氧化 喷砂0.3-0.6 0.3-0.6 电抛光面0.25 0.15 铁 0.5-0.9 0.5-0.9 0.1-0.3 n.r. n.r. 0.6-0.9 0.5-0.7 0.35 0.4-0.6 n.r. 0.7-0.9 0.7-0.9 0.6-0.95 未氧化0.35 0.3 0.2 熔融.035 0.3-0.4 0.2-0.3 铁,锻造 钝铁0.9 0.9 0.9 铅 光面0.35 0.05-0.2 n.r. 毛面0.65 0.6 0.4 氧化n.r. 0.3-0.7 0.2-0.6 镁0.3-0.8 0.05-0.3 n.r. 汞n.r. 0.05-0.15 n.r. 钼 氧化0.5-0.9 0.4-0.9 0.2-0.6

星上比辐射定标器及性能评估方法研究

星上比辐射定标器及性能评估方法研究 高精度的星上定标是实现遥感数据定量化的重要途径之一。以太阳照明反射特性已知的聚四氟乙烯漫射板作为光源,采用比值辐射计进行漫反射板响应率衰减的监测和修正,实现对遥感器全光路、全视场、全口径的高精度绝对辐射定标,是当前可见短波红外波段星上定标技术的主要发展趋势。 星上比辐射定标器性能评估准确与否直接影响其在轨应用性能。在此背景下,本论文开展了星上比辐射定标器及其性能评估方法研究。 论文介绍了星上比辐射定标器工作原理,详细阐述了各关键环节设计方案。根据定标器原理和物理模型,分析得出星上定标不确定度主要来源为漫射板BRDF实时量值的不确定度,其关键在于比值辐射计对漫射板在轨衰减的修正精度。 对星上比辐射定标器性能参数测试需求进行了分析,识别出太阳观测几何因子波段比、辐射比、动态范围和信噪比等比值辐射计的关键表征参数。建立了定标器测试方案和流程,并在实验室内完成了比值辐射计、漫反射板以及星上比辐射定标器整机级的性能参数测试。 以卤钨灯作为测试光源,获取了比值辐射计太阳观测几何因子波段比查找表,不确定度优于0.18%;通过灯-板模拟系统完成了辐射比验证,预估在轨辐射比测量不确定度优于0.4%;使用已标定的大口径、多能级积分球光源对比值辐射计的动态范围、信噪比和稳定性进行了测试。结合漫射板和定标器整机测试结果,比值辐射计对漫反射板稳定性监视不确定度优于1.3%,漫射板BRDF实时量值不确定度优于1.76%,星上比辐射定标器的绝对辐射定标总不确定度优于3%。 本论文系统性地对星上比辐射定标器性能评估方法进行了研究,提出了定标

器测试方法以及测试流程,通过对星上比辐射定标器部件级以及整机级参数的测试,获取了定标器各项定标参数,完成星上定标不确定度的评估,验证了星上定标器设计以及性能评估方法的合理性,可以为定标器在轨应用以及定标精度预评估提供有效数据支撑。

各材料的传热系数

精心整理 玻璃结构膜层位置厚度 Mm 传热系数 W/m2K 遮阳系数Ht Gain W/m2 单层玻璃 6mmC 无 5.8 5.818 0.92 630 10mmC 无9.9 5.68 0.91 612 12mmC 无12.1 5.604 0.87 570 夹层玻璃 3mmC+0.38PVB+3mmC 无 6.1 5.727 0.91 610 5mmC+0.76PVB+5mmC 无10.1 5.58 0.86 579 5mmC+0.76PVB+6mmC 无11.3 3.54 0.74 489 普通中空 6mmC+6A+6mmC 无17.9 3.109 0.829 548 6mmC+6Ar+6mmC 无17.9 2.842 0.830 547 6mmC+9A+6mmC 无20.9 2.835 0.830 547 6mmC+9Ar+6mmC 无20.9 2.624 0.831 546 6mmC+12A+6mmC 无24.0 2.700 0.831 545 6mmC+16A+6mmC 无27.9 2.691 0.831 545 6mmC+12Ar+6mmC 无24.0 2.532 0.831 545 6mmC+16Ar+6mmC 无27.9 2.547 0.831 545 12mmC+12Ar+12mmc 无36.3 2.450 0.830 482 双中空玻璃 6mmC+6A+6mmC+6A+6mmC 无29.9 2.142 0.730 478 6mmC+6Ar+6mmC+6Ar+6mmC 无29.9 1.902 0.731 478 6mmC+9A+6mmC+9A+6mmC 无35.9 1.893 0.731 478 6mmC+9Ar+6mmC+9Ar+6mmC无35.9 1.7120.732477 6mmC+12Ar+6mmC+12Ar+6mmC无41.9 1.6130.732477单Low-E中空玻璃 6mmC+6A+6mmL0.16 3 17.9 2.516 0.771 506 6mmC+6Ar+6mmL0.16 3 17.9 2.082 0.777 507 6mmC+9A+6mmL0.16 3 20.9 2.084 0.777 507 6mmC+9Ar+6mmL0.16 3 20.9 1.731 0.782 507 6mmC+12A+6mmL0.16 3 24.0 1.890 0.780 507 6mmC+12Ar+6mmL0.16324.0 1.6160.785508 6mmC+12Ar+6mmL0.027 3 23.9 1.329 0.538 349 6mmC+12Ar+6mmL0.027 2 23.9 1.329 0.420 279 6mmC+12Ar+6mmL0.16 2 24.0 1.616 0.723 469 6mmC+16A+6mmL0.16 3 27.9 1.920 0.784 508 6mmC+16Ar+6mmL0.16 2 27.9 1.685 0.723 467 6mmC+16Ar+6mmL0.16327.9 1.6850.787508双Low-E中空玻璃

高精度卫星光学遥感器辐射定标技术_郑小兵

收稿日期:2011-04-24 基金项目:国家863计划(2008AA121203)资助。 高精度卫星光学遥感器辐射定标技术 郑小兵1,2 (1中国科学院通用光学定标和表征技术重点实验室,合肥230031) (2中国科学院安徽光学精密机械研究所光学遥感中心,合肥230031) 摘要随着长期气候变化等观测新需求和高分辨对地观测等新手段的发展,空间光学仪器面临进一步提高辐射定标精度的要求。文章从空间光学仪器定标精度的制约因素和全过程定标的实现等方面,分析了国际相关领域的技术进展,并就新型定标技术的研究和应用提出建议与展望。 关键词辐射定标光学遥感卫星 中图分类号:V443+.5 文献标识码:A 文章编号:1009-8518(2011)05-0036-08High-Accuracy Radiometric Calibration of Satellite Optical Remote Sensors Zheng Xiaobing (1Key Laboratory of Optical Calibration and Characterization,Chinese Academy of Sciences ,Hefei 230031,China ) (2Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences ,Hefei 230031,China ) Abstract Climate change monitoring and high resolution earth observation demand higher accuracy of abso -lute calibration for space optical sensors.This paper briefly discusses the progress and constrained factors of cur -rent radiometric calibration techniques.New calibration approaches and instrumentations such as hyperspectral and spectrally tunable reference light sources,and global calibration site network are introduced,and their ap -plications are suggested. Key words Radiometric calibration Optical remote sensing Satellite 1引言 光学辐射定标主要研究光辐射传感器的输出与已知的、用SI 单位表述的输入光辐射之间的定量关系,包括各种光辐射效应的定量化、光辐射的精确测量及其不确定度评估,光辐射传感器的综合特性表征,以及光辐射传感器的工作条件对其性能影响的评估等方面的内容。 光辐射是光学遥感信息的基本载体。各种平台上光学传感器的几何和光谱分辩能力都与其光辐射的准确测量能力直接相关。辐射定标在空间对地观测观测过程中所发挥的主要作用表现为: 1)实现各类光学传感器从预研-工程研制-在轨运行的全过程定标,保证传感器的精度能够满足应用需求; 2)统一不同平台、不同传感器的辐射量化标准,使不同时间、空间条件下获得的遥感信息可以比对、转换和融合; 3)通过动态监测,校正传感器的性能衰变,修正大气、照明条件、环境变化等对测量结果的影响,保证测第32卷第5期 2011年10月 航天返回与遥感SPACECRAFT RECOVERY &REMOTE SENSING 36

最新热辐射率整理

石墨及其他材料的热辐射率 材料热辐射率 石墨(石油焦基)0.70~0.90 石墨(炭黑基)0.85~0.95 模压石墨0.60~0.80 炭黑0.90~0.99 银0.04 氧化镍0.87 磨光钨0.15 辐射传热: 黑体:能吸收全部热射线的物体(A=1)成为绝对黑体,简称黑体。 谱郎克辐射定律:单位时间内从物体单位表面上向半球空间所辐射出去的总能量称为物体的全 辐射能力,用“E”,单位为W/m2 斯蒂芬-波尔茨曼定律(四次方定律) Eo=CO(T/100)4 CO—黑体的辐射系数,数值为 5.67[W/(m2.K4)] 在实际工程中,将辐射能力小于黑体的物体称为灰体。实际物体的辐射能力与同温度下黑体的辐射能力的比值称为该物体的黑度。 ε=E/EO E=εEO=εCO(T/100)4=C(T/100)4 式中ε—回体的黑度,ε=0–1 C—灰体的辐射系数,[W/m2.K4.℃]C=εCO

常用工程材料的黑度ε 材料名称温度 (℃) ε值材料名称温度(℃)ε值 精密磨光的纯铜80–1150.018-0.023高铝砖、镁 砖 ——0.8 无光泽的黄铜23-3500.22炭化硅板1300-14000.9-0.94磨光的钢件770-10400.52-0.56硅藻土粉-0.25 新轧制的钢200.24水泥板10000.63 钢板表层氧化200.82水泥-0.54 表面氧化钢件940-11000.80水(> 0.1mm) 0-1000.95-0.96氧化后的铁125-5250.78-0.82石膏200.8-0.9铸铁500-12000.85-0.95石棉水泥 板 200.96 玻璃22-900.94石棉粉-0.4-0.6红砖200.93煤100-1600.81-0.79耐火黏土砖200.85雪00.8 耐火黏土砖10000.75木材200.8-0.92耐火的砖体12000.59硬橡皮200.95 抹灰的砖体200.94

常见材料导热系数(史上最全版)汇总

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

常见材料换算方法

一、基础垫层材料换算方法: 1、灰土、砂、碎砖、碎石等单一材料、定额用量按下式取定: 定额用量:定额计量单位×压实系数×(1+损耗率) 压实系数=虚铺厚度÷压实厚度 2、多种材料混合垫层则用混合物的半成品数量遍入定额,其压实系数在定额附录配合比中已经考虑。 3、碎石或碎砖灌浆垫层,其砂浆或砂的用量按下式计算: 砂浆(砂)= ×填充密实度×(1+损耗率)×定额计量单位。 实例计算:以计价表2-116子目1:1砂石垫层为例(配合比以体积比计算): (1)石子的空隙率为×100%=44.4%,石子的空隙用砂填缝的密实度为90%。 (2)碎石40MM用量:0.5(定额计量体积)×1.04(压实系数)×1.5(容重)×1.02(损耗)=0.8T (3)黄砂用量:0.5(定额计量体积)×1.04(压实系数)×〖1.46(容重)×1.05(密实系数)÷1.18(此处应考虑干砂含水膨胀率18%)〗=0.676T 填缝隙用黄砂:〖0.5-0.5×0.56(石子密实体积)〗×0.9×1.04×(1.46×1.05÷1.18)=0.28T 合计黄砂用量:(0.676+0.28)×1.02(损耗)=0.98T。 二、砖砌体材料换算方法: 每立方米各种不同厚度砖墙用砖和砂浆用量的理论计算公式如下: A= ×K A:砖理论耗用量 K:墙厚的砖数×2(墙厚的砖数指0.5,1,1.5,2等) 砂浆净用量=1-砖墙×每块砖体积 实例计算:以计价表3-29一砖外墙子目为例 标准砖用量:=529.10块/M3 凸出墙面砖线条、扣梁头、垫块、预制板头等增加0.268%,即529.10×(1+0.268%)=530.51块/M3,另计损耗按1%计算:530.51×(1+1%)=536块/M3。 砂浆用量:1-0.24×0.115×0.053×529.10=0.266M3/M3,损耗率按1%计算,则(0.226+门窗四周嵌缝6.0×0.01×0.10)×(1+1%)=0.234M3/M3。 三、空心砌块墙、硅酸盐砌块墙 砌块= ×砌块比率×(1+损耗率) 标准砖=1M3砖砌体用砖量×比率 砂浆=1-各种规格砌块数×各种规格砌块每块砌体体积-每块砖体积×砖数 实例计算,以计价表3-22KP1砖砌体为例: KP1砖用量:×95%×(1+2%)=336块/M3 标准砖用量:15块/M3 四、桩基混凝土用量换算方法: 桩基混凝土用量=定额计量单位×充盈系数×操作损耗 其中混凝土充盈系数一般是指沉管灌注桩实灌混凝土体积与理论体积之比,即 充盈系数=实际灌注混凝土量÷按设计图计算混凝土量×(1+操作损耗%)。 实例计算:以计价表2-35、2-36钻孔灌注混凝土桩子目为例, 钻土孔:混凝土充盈系数取1.20,则混凝土用量=1.0×1.20×1.015=1.218M3/M3

常用材料的导热系数表完整版

常用材料的导热系数表 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM

常用材料的线膨胀系数一览表

常用材料的线膨胀系数一览表 不同温度下钢材的平均线膨胀系数值如表1所示。 非金属材料的线膨胀系数如表2所示 表1不同温度下钢材的平均线膨胀系数值 在下列温度与20℃之间的平均线膨胀系数,“α”,10-6×℃-1材料 -196-150-100-50050100150200250300350400450500550600650700750800碳素钢、碳钼钢、9.1 低铬钼钢(至 Cr3Mo)9.449.8910.3910.76 11.12 11.5311.88 12.25 12.5612.90 13.24 13.5813.93 14.22 14.42 14.6214.74 14.90 15.02—铬钼钢(Cr5Mo~ 8.468.909.369.7710.16 10.52 10.9111.15 11.39 11.6611.90 12.15 12.3812.63 12.86 13.05 13.1813.35 13.48 13.58—Cr9Mo) 奥氏体不锈钢14.67 15.08 15.45 15.9716.28 16.54 16.8417.06 17.25 17.4217.61 17.79 17.9918.19 18.34 18.58 18.7118.87 18.97 19.07 19.29(Cr18-Ni9) 高铬钢(Cr13、7.748.108.448.959.299.599.9410.20 10.45 10.6710.96 11.19 11.4111.61 11.81 11.97 12.1112.21 12.32 12.41—Cr17) Cr25-Ni20 蒙纳尔 (Mone1) Ni67-Cu30 铝 灰铸铁

常见非金属、金属表面辐射率

常见非金属表面辐射率 材料辐射率值可棉0.95 沥青0.95 玄武岩0.70 砖红色的0.93 金钢砂陶瓷0.90 0.95 粘土0.95 混凝土0.95 布0.95 玻璃0.85 石子0.95 石膏0.80-0.95冰0.95 油漆无色透明0.92 暗黑色0.97 橡胶石灰0.95 0.98 涂料无碱性0.90-0.95 纸任何颜色0.95 塑料不透明0.95 雪0.90 土壤干0.92 泥0.95 水沙(粗矿石)0.93 0.90 木料自然的0.90-0.95 常见金属表面辐射率 材料辐射率值 铝非氧化0.02-0.10 氧化0.20-0.40 氧化铝氧化0.30 粗糙的0.10-0.30抛光的0.02-0.10 黄铜抛光的0.01-0.05 磨亮的0.30 氧化的0.50 铬0.02-0.20 铜抛光的0.03 磨亮的0.05-0.10氧化的0.40-0.80 金0.01-0.10

镍铬铁合金氧化的0.70-0.95 磨沙的0.30-0.60电解抛光0.15 铗氧化的0.50-0.90 非氧化的0.05-0.20生锈的0.50-0.70 铸铁氧化的0.60-0.95 非氧化的0.20 熔化的0.20-0.30 锻铗无光泽的0.90 铅抛光的0.05-0.10 粗糙的0.40 氧化的0.20-0.60 镁0.02-0.10汞0.05-0.15 钼氧化的0.20-0.60 非氧化的0.10 镍铜合金0.10-0.14 镍氧化的0.20-0.50 电解质的0.05-0.15 铂黑0.90 银0.02 锡非氧化的0.05 钨抛光的0.03-0.10 钢冷轧钢0.70-0.90 毛板0.40-0.60抛光板0.10 氧化的0.70-0.90不锈钢0.10-0.80 钛抛光的0.05-0.20 氧化的0.50-0.60 锌氧化的0.10 抛光的0.02

常用材料的热物性参数

表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.88(20C) =7.3(1500C) =7.0(1600C) =7.86(15C) =7.86(15C) =7.85(15C) =7.85(15C) =7.83(15C)

续表1 各种金属的热物性值 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.73(15C) Ts=1488 T L=1497 =7.84(15C) T S=1420 T L=1520 =7.7(15C) 13.1Cr,0.5Ni T S=1399 T L=1454 =7.0(15C) 比热相对于 普通铸铁

=7.1(15C) 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) =7.5~7.8(15C) =8.92 T S=T L=1083

s=2.70(15C) T S=T M=660.2 温度 C 比热 cal/(g·C) 导热系数 cal/(cm·s· C) 密度(g/cm3)液相线、固相线温度 (C) s=1.74 T L=T S=651 s=6.09 T S=1395 T L=1427

表2 铸型的热物性计算公式

硅砂,干型,呋喃铸型600C以下 0.385<<0.494 0.0058

常用材料分析方法简写.doc

A AAS 原子吸收光谱法 AES 原子发射光谱法 AFS 原子荧光光谱法 ASV 阳极溶出伏安法 ATR 衰减全反射法 AUES 俄歇电子能谱法 C CEP 毛细管电泳法 CGC 毛细管气相色谱法 CIMS 化学电离质谱法 CIP 毛细管等速电泳法 CLC 毛细管液相色谱法 CSFC 毛细管超临界流体色谱法CSFE 毛细管超临界流体萃取法CSV 阴极溶出伏安法 CZEP 毛细管区带电泳法 D DDTA 导数差热分析法 DIA 注入量焓测定法 DPASV 差示脉冲阳极溶出伏安法DPCSV 差示脉冲阴极溶出伏安法DPP 差示脉冲极谱法 DPSV 差示脉冲溶出伏安法 DPVA 差示脉冲伏安法 DSC 差示扫描量热法 DTA 差热分析法 DTG 差热重量分析法 E EAAS 电热或石墨炉原子吸收光谱法ETA 酶免疫测定法 EIMS 电子碰撞质谱法 ELISA 酶标记免疫吸附测定法EMAP 电子显微放射自显影法EMIT 酶发大免疫测定法 EPMA 电子探针X射线微量分析法ESCA 化学分析用电子能谱学法ESP 萃取分光光度法 F FAAS 火焰原子吸收光谱法FABMS 快速原子轰击质谱法 FAES 火焰原子发射光谱法 FDMS 场解析质谱法 FIA 流动注射分析法

FIMS 场电离质谱法 FNAA 快中心活化分析法 FT-IR 傅里叶变换红外光谱法 FT-NMR 傅里叶变换核磁共振谱法 FT-MS 傅里叶变换质谱法 GC 气相色谱法 GC-IR 气相色谱-红外光谱法 GC-MS 气相色谱-质谱法 GD-AAS 辉光放电原子吸收光谱法 GD-AES 辉光放电原子发射光谱法 GD-MS 辉光放电质谱法 GFC 凝胶过滤色谱法 GLC 气相色谱法 GLC-MS 气相色谱-质谱法 H HAAS 氢化物发生原子吸收光谱法 HAES 氢化物发生原子发射光谱法 HPLC 高效液相色谱法 HPTLC 高效薄层色谱法 I IBSCA 离子束光谱化学分析法 IC 离子色谱法 ICP 电感耦合等离子体 ICP-AAS 电感耦合等离子体原子吸收光谱法ICP-AES 电感耦合等离子体原子发射光谱法ICP-MS 电感耦合等离子体质谱法 IDA 同位素稀释分析法 IDMS 同位素稀释质谱法 IEC 离子交换色谱法 INAA 仪器中子活化分析法 IPC 离子对色谱法 IR 红外光谱法 ISE 离子选择电极法 ISFET 离子选择场效应晶体管 L LAMMA 激光微探针质谱分析法 LC 液相色谱法 LC-MS 液相色谱-质谱法 M MECC 胶束动电毛细管色谱法 MEKC 胶束动电色谱法 MIP-AAS 微波感应等离子体原子吸收光谱法MIP-AES 微波感应等离子体原子发射光谱法MS 质谱法

相关主题
文本预览
相关文档 最新文档