当前位置:文档之家› 波粒二象性知识点教学教材

波粒二象性知识点教学教材

波粒二象性知识点教学教材
波粒二象性知识点教学教材

波粒二象性知识点总结

一:黑体与黑体辐射

1.热辐射

(1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。

(2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。

2.黑体

(1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物

体就是绝对黑体,简称黑体。

(2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑

体的温度有关。

注意:一般物体的热辐射除与温度有关外,还与材料的种类及

表面状况有关。

二:黑体辐射的实验规律

如图所示,随着温度的升高,一方面,各种波长的辐射强度都

有增加;另—方面,辐射强度的极大值向波长较短的方向移动。

三:能量子

1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某

个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。

2.大小:E=hν。

其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展:

1、对热辐射的理解

(1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。

在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越

多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。

(3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体

(1).黑体是一个理想化的物理模型。

(2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人

小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔

射出。这个空腔近似看成一个绝对黑体。

注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于

自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。

3、普朗克能量量子化假说

(1).如图所示,假设与实验结果“令人满意地相符”,

图中小圆点表示实验值,曲线是根据普朗克公式作出的。

(2).能量子假说的意义

普朗克的能量子假说,使人类对微观世界的本质有了全

新的认识,对现代物理学的发展产生了革命性的影响。普朗

克常量h是自然界最基本的常量之一,它体现了微观世界的

基本特征,架起了电磁波的波动性与粒子性的桥梁。

注意:物体在发射或接收能量的时候,只能从某一状态“飞跃”地过渡到另一状态,而不可能停留在不符合这些能量的任何一个中间状态。

二、光电效应现象 1、光电效应:

光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论:

①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频率................,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最大初动能与入射光的强度无关..................,只随着入射光频率的增大..而增大..

。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③入射光照到金属上时,光电子的发射几乎是瞬时的............

,一般不超过10-9

s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用:

光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。

注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的

光电流随着反向电压的增加而减小,当反向电压U 0满足:02

max 2

1eU mv =,光电流将会减小到零,

所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象:

①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。

②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。

③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 三、光子说 1、普朗克常量

普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说

在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。 四、光电效应方程

1、逸出功W 0: 电子脱离金属离子束缚,逸出金属表面克服离子引力做的功。

2、光电效应方程:如果入射光子的能量hv 大于逸出功W 0,那么有些光电子在脱离金属表面后还有剩余的动能——根据能量守恒定律,入射光子的能量hv 等于出射光子的最大初动能与逸出功之和,即

02

max 21W mv hv += 其中2max 2

1mv 是指出射光子的最大初动能。

3、 光电效应的解释:

①极限频率:金属内部的电子一般一次只能吸收一个光子的能量,只有入射光子的能量hv 大

于或者等于逸出功W 0 即:h W

v 0≥时,电子才有可能逸出,这就是光电效应存在极限频率的原因。

②遏制电压:由02max 21W mv hv +=和02

max 2

1eU mv =有:00W eU hv +=,所以遏制电压只与入射

光频率有关,与入射光的强度无关,这就是光电效应存在遏制电压的原因。 五、康普顿效应(表明光子具有动量)

1、康普顿效应:用X 射线照射物体时,一部分散射出来的X 射线的波长会变长,这个现象叫康普顿效应。康普顿效应是验证光的波粒二象性的重要实验之一。

2、康普顿效应的意义:证明了爱因斯坦光子假说的正确性,揭示了光子不仅具有能量,还具有动量。光子的动量为λh p =

3、现象解释:碰撞前后光子与电子总能量守恒,总动量也守恒。碰撞前,电子可近似视为静止的,碰撞后,电子获得一定的能量和动量, X 光子的能量和动量减小,所以X 射线光子的波长λ变长。

六、光的波粒二象性 物质波 概率波 不确定关系

1、光的波粒二象性:干涉、衍射和偏振........以无可辩驳的事实表明光是一种波;光电效应和康普.......顿效..应.

又用无可辩驳的事实表明光是一种粒子,由于光既有波动性,又有粒子性,只能认为光具有波粒二象性。但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。

2、光子的能量E=h ν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ。由以上两式和波速公式c=λν还可以得出:E = p c 。

3、物质波(德布罗意波):1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任

何一个运动.. 4、概率波:从光子的概念上看,光波是一种概率波。光子落在明条纹的概率高,落在暗条纹的概率低。干涉条纹是光子落在感光片上各点的概率分布的反映。 注意:亮纹是光子落的概率大,暗纹是概率小,不是光子照不到。

5、电子云:原子核外电子的概率分布图。概率大的地方小圆点密一些,概率小的地方小圆点疏一些。讨论微观粒子的运动,轨道的概念毫无意义。

6、不确定关系:微观粒子的坐标和动量不能同时完全精确地确定。如果用x ?表示微观粒子位

置的不确定性,用p ?表示微观粒子在x 方向上动量的不确定性,则有π

4h

p x ≥???。原因是因为

微观粒子具有波动性。

(1)由不确定性关系可知,坐标和动量,其中一个测量得越准确,另外一个的不确定性就越大。 (2)微观粒子的波粒二象性和不确定性关系本质是一样的,导致共同的结果:微观粒子的运动状态,不能通过确定的轨道来描述,只能通过概率波做统计性的描述。 (3)不确定性关系对宏观物体没有意义。

㈠①频率高波长短,粒子性明显 ②频率低波长长,波动性明显

㈡①传播时,波动性明显 ②光的产生,与其他物质作用,粒子性明显 ㈢①个别时,粒子性明显 ②大量时,波动性明显

例题讲解

例1:用如图所示的装置研究光电效应现象, 当用光子能量为2.5eV的光照射

到光电管上时,电流表G的读数为0.2mA。移动变阻器的触点c,当电压表的

示数大于或等于0.7V时,电流表读数为零。则:( )

A.光电管阴极的逸出功为1.8eV;

B.电键k断开后, 有电流流过电流表G;

C.光电子的最大初动能为0.7eV;

D.改用能量为1.5eV的光子照射,电流表G也有电流,但电流较小;

例2:关于不确定关系,下列说法中正确的是:

A.不确定关系表明:想要同时准确测量一个粒子的位置和动量,这是不可能的;

B.不确定关系表明:想要同时准确测量一颗子弹的位置和动量,这是不可能的;

C.由于不确定关系,所以测量粒子的位置已经没有意义了;

D.如果将来实验技术进步了,同时准确测量一个粒子的位置和动量是有可能的;

例3:已知钠发生光电效应的极限波长为λ0=5×10-7m,现用波长为4×10-7m的光照射用钠作阴极的光电管.求:

(1)钠的逸出功W

(2)为使光电管中的光电流为零,在光电管上所加反向电压至少多大?

针对练习

1.下列关于光的波粒二象性的说法中,正确的是( )

A.有的光是波,有的光是粒子

B.光子与电子是同样的一种粒子

C.光的波长越长,其波动性越显著,波长越短,其粒子性越显著

D.大量光子产生的效果往往显示粒子性

2.在做双缝干涉实验时,在观察屏的某处是亮纹,则对光子到达观察屏的位置,下列说法正确的是( )

A.到达亮条纹处的概率比到达暗条纹处的概率大

B.到达暗条纹处的概率比到达亮条纹处的概率大

C.该光子可能到达观察屏的任意位置

D.以上说法均不正确

3.对光的认识,以下说法正确的是( )

A.个别光子的行为表现为粒子性,大量光子的行为表现为波动性

B.光的波动性是光子本身的一种属性,不是光子之间的相互作用引起的

C.光表现出波动性时,就不具有粒子性了,光表现出粒子性时,就不具有波动性了

D.光的波粒二象性应理解为:在某种场合下光的波动性表现明显,在另外某种场合下,光的粒子性表现明显.

4.如图所示,电路中所有元件完好,光照射到光电管上,灵敏电流计中没有

电流通过,其原因可能是( )

A.入射光太弱B.入射光波长太长

C.光照时间太短D.电源正负极接反

5.频率为ν的光照射某种金属材料,产生光电子的最大初动能为E k,若以频率为2ν的光照射

同一金属材料,则光电子的最大初动能是( )

A.2E k B.E k+hν

C.E k-hνD.E k+2hν

6.一个质量为m、电荷量为q的带电粒子,由静止开始经加速电场加速后(加速电压为U),该粒子的德布罗意波长为( )

A.

h

2mqU

B.

h

2mqU

C.

h

2mqU

2mqU D.

h

mqU

7.A、B两束不同频率的光波均能使某金属发生光电效应, 如果产生光电流的最大值分别为I

A 、I

B

,

且I

A

B

, 则下列关系正确的是 ( )

A.照射光的波长λ

A >λ

B

B.照射光的光子能量E

A

B

C.单位时间内照射到金属板的光子数N

A

B

D.照射光的频率γ

A

B

8.频率为ν的光子,具有的能量为hν、动量为hν

c

.将这个光子打在处于静止状态的电子上,

光子将偏离原运动方向,这种现象称光子的散射.下列关于光子散射说法中正确的是( ) A.光子改变原来的运动方向,且传播速度变小

B.光子由于在与电子碰撞中获得能量,因而频率增大

C.由于受到电子碰撞,散射后的光子波长小于入射光子的波长

D.由于受到电子碰撞,散射后的光子频率小于入射光子的频率

9.激光的主要特点之一是它的瞬时功率很大, 设P表示激光功率, λ表示激光波长, 则激光器每秒射出的光子数( )

A.

P

hc

λ

B.

hP

C

λ

C.

P c

h

λ

D. Pλhc

10.三种不同的入射光A、B、C分别射在三种不同的金属a、b、c表面, 均恰可使金属逸出光电子,

若入射光的波长λ

A >λ

B

C

, 则( )

A.用入射光A照射金属b或c , 金属b、c均可发生光电效应现象

B.用入射光A、B同时照射金属c , 金属c可发生光电效应现象

C.用入射光C照射a或b, 金属a、b均可发生光电效应现象

D.用入射光B或C照射金属a , 均可使金属a发生光电效应现象

11.如图所示是光电管的原理图,已知当有波长为λ0的光照到阴极K时,电路中有光电流,则( )

A.若换用波长为λ1(λ1>λ0)的光照射阴极K时,电路一定没有光电流

B.若换用波长为λ2(λ2<λ0) 的光照射阴极K时,电路中光电流一定增大

C.若将变阻器滑动头P从图示位置向右滑一些,仍用波长λ0的光照射,则电路中光电流一定增大

D.若将变阻器滑动头P从图示位置向左滑过中心O点时,其他条件不变,则电路中仍可能有光电流

12.人类对光的本性认识的过程中先后进行了一系列实验,如图所示的四个示意图所示表示的实验能说明光具有波动性的是( )

13.用波长为1λ的单色光照射某光电管阴极时,测得光电子的最大动能为1K E ;用波长为1λ的单色光照射时,测得光电子的最大动能为2K E 。若12K K E E >,则1λ 2λ。(填><或)

14.入射的X 射线光子的能量为0.60 MeV ,被自由电子散射后波长变化了20%,则反冲电子的动能为

MeV 。

15.二氧化碳能强烈吸收红外长波辐射,这种长波辐射的波长范围是1.4×10-3~1.6×10-3m ,相应的频率范围是________,相应的光子能量的范围是________,“温室效应”使空气全年的平均温度升高,空气温度升高, 从微观上看就是空气中分子的________.(已知普朗克恒量h =6.6×10-34

J·s,真空中的光速c =3.0×108m/s ,结果取两位有效数字) 16.铝的逸出功是4.2eV ,现在用波长200nm 的光照射铝的表面.

(1)光电子的最大初动能是________; (2)遏止电压是________; (3)铝的极限频率是________.

17.如图所示,一静电计与锌板相连,在A 处用一紫光灯照射锌板,关灯后,指针保持一定偏角.

(1)现用一带负电的金属小球与锌板接触,则静电计指针偏角将________.(填“增大”、“减小”或“不变”)

(2)使静电计指针回到零,再用相同强度的钠灯发出的黄光照射锌板,静电计指针无偏转,那么,若改用强度更大的红外线照射锌板,可观察到静电计指针________(填“有”或“无”)偏转.

18.如图所示为证实电子波存在的实验装置,从F 上漂出的热电子可认为初速度为零,所加加速电压U =104V ,电子质量为m =0.91×10-30kg.电子被加速后通过小孔K 1和K 2后入射到薄的金膜上,发生衍射,结果在照相底片上形成同心圆明暗条纹.试计算电子的德布罗意波长.

19.具有波长λ=0.71A 。

的伦琴射线使金箔发射光电子,电子在磁感应强度为B 的匀强磁场区域内做最大半径为r 的匀速圆周运动,已知rB =1.88×10-4m·T,试求:

(1)光电子的最大初动能; (2)金属的逸出功;

(3)该电子的物质波的波长是多少?

20.一质量为40g 的子弹以1. 0 ? 103 m/s 的速率飞行,求:(1)其德布罗意波的波长;(2)若子弹位置的不确定量为0.10 μm ,利用关系2

x p ?≥h V V ,求其速率的不确定量。

21.科学家设想未来的宇航事业中利用太阳帆来加速星际飞船,设该飞船所在地每秒每单位面积接收到的光子数为n ,光子平均波长为λ,太阳帆面积为S ,反射率100%,设太阳光垂直射到太阳帆上,飞船总质量为m ,求飞船加速度的表达式.(光子动量p =h /λ),若太阳帆是黑色的,飞船的加速度又为多少?

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3)

高考物理最新近代物理知识点之波粒二象性真题汇编附答案解析(3) 一、选择题 1.氢原子能级关系如图,下列是有关氢原子跃迁的说法,正确的是 A.大量处于n=3能级的氢原子,跃迁时能辐射出2种频率的光子 B.用n=2能级跃迁到n=1能级辐射出的光子照射逸出功为4.54eV的金属钨能发生光电效应 C.用能量为10.3eV的光子照射,可使处于基态的氢原子跃迁到n=2能级 D.氢原子从n=3能级向基态跃迁时,辐射出的光子能量为1.51eV 2.如图所示为光电管的示意图,光照时两极间可产生的最大电压为0.5V。若光的波长约为6×10-7m,普朗克常量为h,光在真空中的传播速度为c,取hc=2×10-25J·m,电子的电荷量为1.6×10-19C,则下列判断正确的是 A.该光电管K极的逸出功大约为2.53×10-19J B.当光照强度增大时,极板间的电压会增大 C.当光照强度增大时,光电管的逸出功会减小 D.若改用频率更大、强度很弱的光照射时,两极板间的最大电压可能会减小 3.下表是按照密立根的方法进行光电效应实验时得到的某金属的遏止电压U c和入射光的频率ν的几组数据. U c/V0.5410.6370.7140.809 0.878 ν/1014Hz 5.644 5.888 6.098 6.303 6.501 由以上数据应用Execl描点连线,可得直线方程,如图所示.

则这种金属的截止频率约为 A .3.5× 1014Hz B .4.3× 1014Hz C .5.5× 1014Hz D .6.0× 1014Hz 4.如图为氢原子能级图,氢原子中的电子从n=5能级跃迁到n=2能级可产生a 光,从n=4能级跃迁到n=2能级可产生b 光,a 、b 光照射到逸出功为2. 29eV 的金属钠表面均可产生光电效应,则( ) A .a 光的频率小于b 光的频率 B .a 光的波长大于b 光的波长 C .a 光照射所产生的光电子最大初动能0.57k E eV = D .b 光照射所产生的光电子最大初动能0.34k E eV = 5.用一定频率的入射光照射锌板来研究光电效应,如图,则 A .任意光照射锌板都有光电子逸出

对波粒二象性的理解和认识_光学小论文

对波粒二象性的理解 和认识 电子工程与信息科学系 黄金 PB11210054

从我们出生的那一刻起,光就伴随着我们。我们的生活离不开阳光,有了光,才有了我们色彩斑斓的生活。人们对光学最初的研究,也是从“人类为何能看到周围的物体开始”。经历了半个多学期的光学学习我对光又有了全新的认识。 大学以前,我们接触到的主要是几何光学,它让我们对光有了最初的认识。它让我们知道光是沿直线传播的,同时又引出了光的反射、折射等基本性质。费马定理更是让我们对光有了更为全面的认识。我们似乎觉得这好像就是光的全部。其实不然,大学又为我们开启了一扇全新的大门,让我们更进一步的认识光,了解光。 光的干涉衍射让我们知道了光是一种波。而对于光电效应和黑体辐射等问题的研究又让我们看到了光的电磁性!既能像波浪一样向前传播,又表现出粒子的特征,我们称光具有“波粒二象性”。 从光的波粒二象性的发现到发展经历了相当长的时间,也是一段无比辉煌的阶段。光一直被认为是最小的物质,虽然它是个最特殊的物质,但可以说探索光的本性也就等于探索物质的本性。历史上,整个物理学正是围绕着物质究竟是波还是粒子而展开的。17 世纪以前,人们对光的认识只停留在简单的几何光学的层面上,例如光的反射、折射等光的直线传播现象,这也是光学的初期发展。十七世纪初期,人们逐渐发现了与光的直线传播不完全符合的事实,意大利人格里马第率先观察到了光的衍射现象,接着1672-1675 年间胡克也观察到了光的衍射现象,并且和波意耳互相独立地研究了薄膜所产生的彩色干涉条纹,衍射现象,简而言之,就是光波遇到小障碍物或小孔时,绕过障碍物进入几何

阴影区继续传播,并在障碍物后的观察屏上呈现出光强的不均匀分布的现象。所有这些现象的发现都为光的波动理论的萌芽奠定了坚实的基础。17 世纪下半叶,英国物理学家牛顿以极大的兴趣和热情开始了对光学的研究。通过白光实验并根据光的直线传播的性质,他提出了光是微粒流的理论,然而他的这一理论因无法解释光在绕过障碍物之后所发生的衍射现象,遭到了以惠更斯为代表的波动学说的强烈反对。光的研究在18 世纪实际上并没有什么发展,由于牛顿在学术界的权威和盛名,大多数科学家仍在支持光的微粒学说,不过笛卡儿学派中瑞士的欧拉和法国的伯努利却捍卫并发展了光的波动理论。 人们探索的脚步永不停息。到了十九世纪,初步发展起来的波动光学的体系已经形成。杨氏(托马斯?杨)和菲涅耳的著作对光学的发展起到了决定性的作用,著名的“杨氏双缝干涉试验”还第一次成功地测定了光的波长,光学界沉闷的空气再次活跃起来。后来菲涅耳用杨氏干涉原理补充了惠更斯原理,形成人们所熟知的惠更斯--菲涅耳原理,1800年光的偏振现象的发现,更证明了光是横波的事实。1845年,法拉第发现光的振动面在强磁场中的旋转,从而揭示了光现象和电磁现象的内在联系,同时使人们认识到在研究光学现象的时候必须把光学现象同其他物理现象联系起来考虑。后来麦克斯韦在1865 年的理论研究中指出:光是一种电磁波。这一结论后来被赫兹用试验所证实。19 世纪末到20 世纪初,光的研究深入到光的发生,光和物质的相互作用的微观体系中,然而光的电磁理论却不能解释光和物质的相互作用的某些现象,例如黑体辐射中能量按波长的分布的问题;赫兹发现的光电效应等。

波粒二象性知识点教学教材

波粒二象性知识点总结 一:黑体与黑体辐射 1.热辐射 (1)定义:我们周围的一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫热辐射。 (2)特点:热辐射强度按波长的分布情况随物体的温度而有所不同。 2.黑体 (1)定义:在热辐射的同时,物体表面还会吸收和反射外界射来的电磁波。如果一些物体能够完全吸收投射到其表面的各种波长的电磁波而不发生反射,这种物 体就是绝对黑体,简称黑体。 (2)黑体辐射特点:黑体辐射电磁波的强度按波长的分布只与黑 体的温度有关。 注意:一般物体的热辐射除与温度有关外,还与材料的种类及 表面状况有关。 二:黑体辐射的实验规律 如图所示,随着温度的升高,一方面,各种波长的辐射强度都 有增加;另—方面,辐射强度的极大值向波长较短的方向移动。 三:能量子 1.能量子:带电微粒辐射或吸收能量时,只能是辐射或吸收某 个最小能量值的整数倍,这个不可再分的最小能量值E叫做能量子。 2.大小:E=hν。 其中ν是电磁波的频率,h称为普朗克常量,h=6.626x10—34J·s(—般h=6.63x10—34J·s)。四:拓展: 1、对热辐射的理解 (1).在任何温度下,任何物体都会发射电磁波,并且其辐射强度按波长的分布情况随物体的温度而有所不同,这是热辐射的一种特性。 在室温下,大多数物体辐射不可见的红外光;但当物体被加热到5000C左右时,开始发出暗红色的可见光。随着温度的不断上升,辉光逐渐亮起来,而且波长较短的辐射越来越 多,大约在1 5000C时变成明亮的白炽光。这说明同一物体在一定温度下所辐射的能量在不同光谱区域的分布是不均匀的,而且温度越高光谱中与能量最大的辐射相对应的频率也越高。(2).在一定温度下,不同物体所辐射的光谱成分有显著的不同。例如,将钢加热到约800℃时,就可观察到明亮的红色光,但在同一温度下,熔化的水晶却不辐射可见光。 (3)热辐射不需要高温,任何温度下物体都会发出一定的热辐射,只是温度低时辐射弱,温度高时辐射强。2、2.什么样的物体可以看做黑体 (1).黑体是一个理想化的物理模型。 (2).如图所示,如果在一个空腔壁上开—个很小的孔,那么射人 小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔 射出。这个空腔近似看成一个绝对黑体。 注意:黑体看上去不一定是黑色的,有些可看做黑体的物体由于 自身有较强的辐射,看起来还会很明亮。如炼钢炉口上的小孔。 3、普朗克能量量子化假说 (1).如图所示,假设与实验结果“令人满意地相符”, 图中小圆点表示实验值,曲线是根据普朗克公式作出的。 (2).能量子假说的意义 普朗克的能量子假说,使人类对微观世界的本质有了全 新的认识,对现代物理学的发展产生了革命性的影响。普朗 克常量h是自然界最基本的常量之一,它体现了微观世界的

光电效应与光的波粒二象性

高中精品试题 高中精品试题 光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v 0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV

人教版高中物理选修3-5章总结复习素材:第17章 波粒二象性知识点

选修3-5知识点 第十七章波粒二象性 17.1能量量子化 一、黑体与黑体辐射 1、热辐射:一切物体都 在辐射电磁波,这种辐 射与物体的温度有关。 物体在室温时,热辐射的主要成分是波长较长的电磁波,不能引起人的視觉。当温度升高时,热辐射中较短波长的成分越来越强。 2、热辐射的特性:辐射强度按波长的分布情况随物体的温度而有所不同。 3、黑体:物体表面能够完全吸收入射的各种波长的电磁波而不发生反射。 除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。常温下我们看到的物体的颜色就是反射光所致。一些物体在光线照射下看起来比较黑,那是因为它吸收电磁波的能力较强,而反射电磁波的能力较弱。 4、黑体辐射:辐射电磁波的强度按波长的分布只与黑体的温度有关。 二、黑体辐射的实验规律

1、从中可以看出,随着温度的升高,一方面,各种波长的强度有所增加,另一方面,辐射强度的极大值向波长较短的方向移动。 2、维恩公式在短波区与实验非常接近,在长波区则与实验偏离很大。 3、瑞利公式在长波区与实実验基本一致,但 在短波区与实验严重不符,不但不符,而且 当趋于0时,辐射强度竟变成无穷大,这显 然是荒谬。 三、能量子 1、ε叫能量子,简称量子,能量是量子化的,只能一份一份地按不连续方式辐射或吸收能量。 2、普朗克常量:对于频率为ν的能量子最小能量: ε=hν h=6.62610-34J/s。——普朗克常量 17.2光的粒子性 光是电磁波:光的干涉、衍射现象说明光是波。 一、光电效应的实验规律 1、光电效应:即照射到金属表面的光,能使金属中的电子从表面逸出,发射出来的电子叫光电子。

2、研究光电效应的电路图:①K在受到光照时能够发射光电子汗,②光电子在UAK电场作用下形成光电流,③阳极A吸收阴极K发出的光电子。 3、存在着饱和电流:入射光越强,单位时间内发射的光电子数越多。 4、存在着遏止电压和截止频率 ①使光电流减少到0的反向电压称为遏止电压。遏止电压的存在意味着光电子具有一定的初速度。 ②入射光的频率低于截止频率时不发生光电效应。 ③入射光强度决定着:单位时间内发射出来的电子数(光电子)。 ④入射光的频率(颜色)决定着能否发生光电效应和发生光电效应时光电子的最大初动能。 ⑤光电子的能量只与入射光的频率有关,而与入射光的强弱无关。 5、光电效应具有瞬时性。 二、光电效应解释中的疑难 1、逸出功W0:使电子脱离某种金属所做功的最小值。 ①金属表面层内存在一种力,阻碍电子的逃逸。 2、光越强,逸出的电子数越多,光电流也就越大。 3、经典理论无法解释光电效应的实验结果 三、爱因斯坦的光电效应方程 1、爱因斯坦的光量子假设:在空间传播的光也不是连续的,光不仅在发射和吸收时能量是一份一份的,而且光本身就是由一个个不可分割的能量子

高考物理近代物理知识点之波粒二象性难题汇编附解析(4)

高考物理近代物理知识点之波粒二象性难题汇编附解析(4) 一、选择题 1.关于近代物理,下列说法正确的是() A.射线是高速运动的氦原子 B.核聚变反应方程,表示质子 C.从金属表面逸出的光电子的最大初动能与照射光的频率成正比 D.玻尔将量子观念引入原子领域,其理论能够解释氦原子光谱的特征 2.已知钙和钾的截止频率分别为7.73×1014Hz和5.44×1014Hz,在某种单色光的照射下两种金属均发生光电效应,下列说法正确的是() A.钾的逸出功大于钙的逸出功 B.钙逸出的电子的最大初动能大于钾逸出的电子的最大初动能 C.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的波长D.比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的动量 3.在光电效应实验中,用同一光电管在不同实验条件下得到了甲、乙、丙三条光电流与电压之间的关系曲线.下列判断正确的是() A.甲光的频率大于乙光的频率 B.乙光的波长小于丙光的波长 C.乙光的强度低于甲光的强度 D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能 4.用大量处于n=4能级的氢原子向低能级跃迁释放的光子,照射某种金属,结果有两种频率的光子能使该金属发生光电效应。已知氢原子处在n=1、2、3、4能级时的能量分别为E1、E2、E3、E4,能级图如图所示。普朗克常量为h,则下列判断正确的是() A.这些氢原子共发出8种不同频率的光子 B.氢原子从n=4能级跃迁到n=1能级释放光子,氢原子核外电子的动能减小 C.能使金属发生光电效应的两种光子的能量分别为E4﹣E3、E4﹣E2 D.金属的逸出功W0一定满足关系:E2﹣E1<W0<E3﹣E1 5.下列说法正确的是()

光的波粒二象性

1.了解事物的连续性与分立性是相对的. 2.了解光既具有波动性,又具有粒子性. 3.了解光是一种概率波. 【教材内容全解】 光电效应以及以后发现的康普顿效应都证明了光是一种粒子,但光的干涉现象和光的衍射现象又表明光是一种波.我们可以看出,光既具有波动性,又具有粒子性,即光具有波粒二象性. 光是一种粒子,它和物质作用是“一份一份”的,但我们无法用宏观世界的规律来描述这些粒子的运动规律,当光子数很少时,可以清楚地看到光子的痕迹,但光子的数量很多时,我们就无法把它们区分开,看起来就是连续的,正如沙堆是一颗颗沙粒组成的,但是建筑工地上的一堆沙子包含的沙子太多了,测量沙堆的体积可以认为它们是连续的.从波动性来看,单个光子的运动无法预测,但大量的光子就有了规律,它们出现在某个区域内的可能性就能看出来,这是微观世界具有的特殊规律.这样的现象表明,大量光子运动的规律表现出光的波动性,单个光子的运动表现出光的粒子性,光子在空间各点出现的可能性大小(概率)可以用波动的规律来描述,物理学中把光波叫做概率波. 光既然是一种概率波,但它和水波、绳子上的波等机械波在本质上完全不同,决定光子在空间不同位置出现概率的规律表现为波的规律.课本图21-3的实验中,光子在和感光胶片作用时的表现和通常的粒子一样,在通过狭缝时却和我们印象中的波一样,正如光子的能量E=hv 和动量λ h c hv p ==,等式的左边表示粒子性,等式右边表示波动的性质,这两种性质通过普朗克常量h 定量地联系起来,这是光的波粒二象性的体现,但不能把它简单地理解为光子以波浪式前进.从波的特性可以看出,光子波长越长,越容易看到光的干涉和衍射现象,波动性越明显;光波的频率越高,粒子性越明显,穿透本领越强. 【难题巧解点拨】 例 关于光的本性,下列说法中正确的是 ( ) A .光子说并没有否定光的电磁说 B .光电效应现象反映了光的粒子性 C .光的波粒二象性是综合了牛顿的微粒说和惠更斯的波动说得出来的 D .大量光子产生的效果往往显示出粒子性,个别光子产生的效果往往显示出波动性 解析 光既有粒子性,又有波动性,但这两种特性并不是牛顿所支持的微粒说和惠更斯提出的波动说,它体现出的规律不在是宏观粒子和机械波所表现出的规律,而是自身体现的一种微观世界特有的规律.光子说和电磁说各自能解释光特有的现象,两者构成一个统一的整体,而微粒说和波动说是互相对立的. 答案 A 、B 点拨 本章主要是对微观世界的规律进行了讲解,要对微观世界了解,就不能再以宏观世界的规律进行理解.我们的经验局限于宏观物体的运动,微观世界的某些属性与宏观世界

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

对波粒二象性的理解

量子力学 题目: 专题理解:波粒二象性 学生姓名 专业 学号 班级 指导教师 成绩 工程技术学院 2016 年 1 月

专题理解:波粒二象性 前言: 波粒二象性(wave-particle duality)是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。在量子力学里,微观粒子有时会显示出波动性(这时粒子性较不显著),有时又会显示出粒子性(这时波动性较不显著),在不同条件下分别表现出波动或粒子的性质。这种量子行为称为波粒二象性,是微观粒子的基本属性之一。但从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。那么究竟自由理解波粒二象性呢?通过对量子力学课程的学习以及查阅相关资料,我对其有了更深的理解并做了以下整理与总结。 一、波粒二象性理论的发展简述 较为完全的光理论最早是由克里斯蒂安·惠更斯发展成型,他提出了一种光波动说。稍后,艾萨克·牛顿提出了光微粒说。光的波动性与粒子性的争论从未平息。十九世纪早期,托马斯·杨完成的双缝实验确切地证实了光的波动性质。到了十九世纪中期,光波动说开始主导科学思潮,因为它能够说明偏振现象的机制,这是光微粒说所不能够的。同世纪后期,詹姆斯·麦克斯韦将电磁学的理论加以整合,提出麦克斯韦方程组。应用电磁波方程计算获得的电磁波波速等于做实验测量到的光波速度。麦克斯韦于是猜测光波就是电磁波。1888年,海因里希·赫兹做实验发射并接收到麦克斯韦预言的电磁波,证实麦克斯韦的猜测正确无误。从这时,光波动说开始被广泛认可。 为了产生光电效应,光频率必须超过金属物质的特征频率,称为其“极限频率”。根据光波动说,光波的辐照度或波幅对应于所携带的能量,因而辐照度很强烈的光束一定能提供更多能量将电子逐出。然而事实与经典理论预期恰巧相反。1905年,爱因斯坦对于光电效应给出解释。他将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”。1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。 在光具有波粒二象性的启发下,法国物理学家德布罗意在1924年提出一个“物质波”假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都有波粒二象性。他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h 跟粒子动量mv 的比,即λ= h/(mv)。这个关系式后来就叫做德布罗意公式。根据德布罗意假说,电子是应该会具有干涉和衍射等波动现象。1927年,克林顿·戴维森与雷斯特·革末设计与完成的戴维森-革末实验成功证实了德布罗意假说。 2015年瑞士洛桑联邦理工学院科学家成功拍摄出光同时表现波粒二象性的照片。

对波粒二象性的理解和认识

对波粒二象性的理解与认识 摘要:光的波粒二象性被发现之后,德布罗意由此得到启发,大胆地把这二象性推广 到物质客体上去,提出了实物粒子也具有波粒二象性的理论。本文结合所学知识,通过对波粒二象性发展的简单梳理,阐述了目前自己对其的理解与认识。 引言 量子论和相对论是近代物理学的两大支柱, 两者都改变了人们对物质世界的根 本认识并对20世纪的科学技术、生产实践起到了决定性的推动作用。相对论以相对时空观取代源于常识的绝对空观, 量子力学则用以物质粒子的波粒二象性为基础的 概率来描述物质粒子的行为, 使物质粒子的行为具有了神秘的不确定性。经过课本 上的知识的学习,我进行了进一步的了解总结与思考。 1.光的波粒二象性 光究竟是粒子还是波?这个问题涉及对光的本性的不同认识。1672年,牛顿向英国皇家学会递交了一篇《关于光和色的新理论》的论文。他认为光是由许多机械微粒组成的,提出了光的微粒说。19世纪托马斯·扬和其他一些人决定性的证明了, 光的粒子理论是错误的。他们认为,光更应该是一种波。关于波,我们熟悉的一种特性是,干涉。托马斯·扬利用他的著名的双缝实验装置制造出两个光波源, 并观察到光也 有类似的干涉图案。这样,在19世纪下半叶,光的波动说占了统治地位。 但是,没有过多久,19世纪末进行的一些实验,发现了一些新的实验现象,不能用光 的波动理论解释。这些实验里面最著名的就是光电效应和康普顿效应,。而爱因斯坦在普朗克的量子假说基础上提出的光量子假说,对光电效应成功地解释,又复兴了以前的光的粒子论。但这一次并没有否定波动说, 而是由此得出了光的波粒二象性的 结论。 2.物质波 1923 年, 德布罗意在光有波粒二象性的启示下, 提出实物粒子也具有波动性的 假说。德布罗意认为, 任何运动着的物体都伴随着一种波动, 而且不可能将物体的运动和波的传播分开, 这种波称为相位波。存在相位波是物体的能量和动量同时满足 量子条件和相对论关系的必然结果。后来薛定愕解释波函数的物理意义时称为,物 质波,。 德布罗意的物质波理论是在没有得到任何已知事实支持的情况下提出来的, 所 以还只能是一种假说。1 927 年初, 戴维孙和革末通过电子束在镍单晶体表面上散射的实验,观察到了和X射线衍射类似的电子衍射图像,首先证实了德布罗意假说的正确性。同年G. P. 汤姆逊用多晶体薄膜做电子衍射实验,也观察到了和X射线衍射类似的电子衍射图像,实验观测和由德布罗意理论得到的结果非常一致, 这充分证明 了电子具有波动性, 再一次用无可辩驳的事实向人们展示了德布罗意理论是正确的。 以后, 人们通过实验又观察到原子、分子等微观粒子都具有波动性。实验证明了物质具有波粒二象性, 不仅使人们认识到德布罗意的物质波理论是正确的, 而且为

光的波粒二象性

第二节光的波粒二象性 教学目标: 一、知识目标 1.了解事物的连续性与分立性是相对的; 2.了解光既具有波动性,又具有粒子性; 3.了解光是一种概率波。 二、能力目标 1.能自己举出实例理解连续性与分立性是相对的; 2.能通过日常和实验事例理解概率的意义; 3.能领会课本的实验意义。 三、德育目标 通过这节课的学习,领会实验是检验真理的唯一标准;体会我们唯有敢于打破旧的传统的经验才能有所创新、有所发现。 教学重点:1.光具有波粒二象性;2.光是一种概率波。 教学难点:1.概率概念;2.光波是概率波。 教学方法:在学生阅读课文及《康普顿效应》材料的基础上对分立性和连续性、概率、光波是概率波等问题展开课堂讨论,由学生回答课本提出的问题,最后由教师归纳,统一认识。 教学过程: 一、引言:干涉和衍射现象说明了光具有波动性。而光电效应现象又无可辩驳地证明了光具有粒子性,这使人们感到困惑,光的面目究竟是什么样的?我们好象很难在脑子里描绘出光既是粒子又是波的图景。所以这一节课我们将继续学习关于光是什么的课题光的波粒二象性。 二、布置学生阅读课本,同时思考课本中的“思考与讨论”及练习二的(1)、(2)、(3)。 三、课堂讨论: (一)、光的波粒二象性

1.光的波动性和粒子性的实验基础。 2.分立与连续是相对的 老师问:谁能仿照课本的例子举例说明分立性与连续性是相对的? 例子: a.在地上撒一把米,这些米看起来是分立的,如果直接倒 几筐米组成米堆时,测一堆米的体积可以认为它是连续的。 b.下雨天,一开始是雨点,是分立的,下大了以后,就变 成连续的了。 c.课本中的实验,当曝光量很少时,在胶片上是一个一个 的点,这时光看起来是分立的;曝光量多的时候就变成亮带了, 这时又是连续的。 引导学生回答出:当通过狭缝的光很少时,这时它们就像撒在地上的一把米,表现出粒子性;当曝光量很大时表现出连续性。 说明:当曝光量很大时出现的干涉亮条纹的地方和利用机械波的干涉公式计算的结果刚好又是相符的,正是某种波通过双缝后发生 干涉时振幅加强的区域。故说明光是一种波,具有波动性。 教师归纳:少量光子的行为表现为粒子性,大量光子的行为表现为波动性。 3.概率概念 教师:我们现在来讨论概率的意义,概率表征某一事物出现的可能性。 让我们来看看课本的思考题,你们能否举例说明有些事件个别出现时看不出什么规律,而大量出现时则显示出一定的规律性? 例子: 在热学中研究分子热运动的速率。温度升高时,不一定每一个分子运动的速率都增大,每个分子速率的变化没规律,但多数分子的速率在某一个值附近。随着温度的升高这一值会向速率大的方向移动。也就是说,个别分子的运动是完全无规律的,但对大量分子所做的统计分析却表现出一种规律概率规律。 教师引导回到课本上来:当曝光量很大时,实验就得到了丁图,那

二年级语文思维导图

二年级语文思维导图 思维导图是一种图像式思维工具。它可以使知识结构条理更清晰,增强学生的超强记忆能力及立体思维能力,让学习变成一件轻松快乐的事情。而语文更是记忆根理解性东西,二年级的语文更是开启语文之路的大门,这时可以利用二年级语文思维导图来帮助学习。“授人以鱼不如授人以渔”我们现在要做的就是把二年级语文思维导图教给孩子,让孩子利用二年级语文思维导图的学习方法更好的去学习。 语文能力是一种认知能力,即理解所呈现的口头语言和书面语言的内容并用口头语和书面语表情达意的能力,在小学语文二年级教学中,主要是指口头语和书面语,阅读和习作,教学、自学和互学,一般和特殊等能力的和谐发展。而二年级语文思维导图是一个直观、简单、有效的思维工具。它依据全脑的概念,按照大脑自身的规律进行思考,全面调动左脑的逻辑、顺序、条例、文字、数字以及右脑的图像、想象、颜色、空间、整体思维,以一种与众不同的独特的有效的方法驾驭整个范围的皮层技巧——词汇、图形、数字、逻辑、节奏、色彩空间感,利于思考、探究和联想,能够在充分激发学生学习兴趣的同时,极大地发掘人的记忆、创造、身体、语言、精神、社交等各方面的潜能,全方位地锻炼和提高学生的语文学习能力。在基础教育阶段,语文能力的学习基本遵循着“字-词-句-篇”这一学习规律。将二年级语文思维导图引入语文教学,将有助于学生理顺这一学习规律,循序渐进地开展学习,引导学生在教师的帮助下逐渐学会自己思考和解决问题,形成并不断提高自身的语文能力。 传统的词语教学只是让学生围绕着单个生字进行组词,不够形象直观,很难让学生保持兴趣,而二年级语文思维导图强调学生思想发展过程的多向性、综

为什么说光具有波粒二象性word版

为什么说光具有波粒二象性_如何理解光的波粒二象性 如何理解光的波粒二象性四川省冕宁中学刘彬学很多同学在学完光的本性——波粒二象性后,都觉得非常困惑无法理解光子为什么会具有波的特性?从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。 那么究竟自由理解光的波粒二象性呢?为了使中学生能够理解,又不失去其科学性。我认为应从如下几个方面来讲解。 1、物体从宏观到微观,即物体由大到小改变时,量变将导致质变——使得微观物体的运动规律不能用牛顿定律来描述。 (1)宏观物体的运动具有严格的决定性规律“一个宏观物体的运动规律或一种宏观物理现象的变化,只要知道了它的初始条件,原则上就能知道它以后的运动状态或变化状况。一个宏观物体可以在任何轨道上被连续跟踪。表示宏观物体各种物理性质的物理量原则上都可同时被确定”。 例如一个质量为m 的物体,在动摩擦因素为μ的水平面上受到水平拉力F 的作用,以初速度V0 开始做匀加速直线运动,则在t 秒末物体的位移和速度多大?解物体受力分析如图所示

而f=μN=μmg 根据牛顿第二定律得F-f=ma a=(F-f)/m=(F-μ mg)/m 由运动学公式有s=V0t+at /2 =V0t+(F-μmg)t2/2m Vt=V0+(F -μmg)t/m 显然,只要知道了物体的初始条件初速度和始位置就可以预先确定物体在t 秒(任意时间)后的位置和速度及运动轨道等。即宏观物体的运动具有决定性的规律。 (2)微观物体的运动不具有宏观意义的决定论。当一个宏观物体用二分法不停分割时,最初的变化仅仅是量的变化,仍可用牛顿运动理论来解决其速度、位移等问题;但当分割到一定程度时,物体的运动规律将发生质的变化,不能再用牛顿运动定律来描述其规律。为什么呢?我们知道,物理学是一门测量基础上的科学而测量宏观物体的各物理量时,由于测量仪器对被测物体的影响相对于受到的其它力而言是很小很小的,完全可以忽略不计;而测量微观物体的各物理量时,由于测量仪器对被测物体的影响不满足宏观物体那样的条件,因此,测量仪器对被测物体的影响不能忽略,测量仪器和被测对象形成一个统一的不可分割的整体,即“观测过程是一个不可分割的整体,观测结果是一个完整的不可分割2

光的波粒二象性

光的波粒二象性 ━━本章总结 一部光学说的发展史,就是人类认识光本性的认识史。让我们再次作一个简略的回顾,肯定比第一课有更深刻的理解。 光的干涉、衍射有力地证明光是一种波。但它是一种什么性质的波泥? 两种不同的光波理论 1、惠更斯的波动说──把光看作是某种在介质中传播的波。这是一种典型的机械波观念,需借助介质,且波是连续的。 2、麦克斯韦的电磁说──把光波看作是一种电磁波。 两种观点的争论焦点是:光波传播是否需要介质?⑴、寻找这种介质“以太”的彻底失败(本来无一物,何来自寻烦?)。⑵、电磁波本身就是物质,自身携带能量,无须借助介质传播。⑶、但还有另一个主要问题还未解决,光波是否就是电磁波?麦克斯韦的电磁场理论证明了电磁场的速度等于光速,并由此看到了两者间的联系。赫兹又从实验得到了证实,光的行为与电磁波的行为一致,从而在理论和实验上证明了光确实是一种电磁波。它揭露了光现象的电磁本质,把光、电、磁统一起来,加深了我们对物质世界的联系和认识。光的电磁说是对光的波动说的扬弃,保留了波的特质,抛弃了它机械振动、传播连续的成份。 光电效应现象对光的电磁说提出了严重的挑战。使我们不得不再回到微粒说方面来。 3、牛顿的微说──把光看作沿直线传播的粒子流。它带有明显的机械运动的痕迹,也无法解释光的干涉、衍射这些现象。但这个学说中仍含有其合理的成份,这就是光的粒子性。 4、爱恩斯坦抛弃了牛顿微说中机械运动的成份,吸收了(对方──波动说)电磁辐射量子化的研究成果,把电磁辐射量子化转变、发展成为光行为的量子化,即光子说,重新恢复了光的粒子性的权威。 但是,光子的物质性、不连续性并非牛顿微粒说意义下的实物粒子,光子没有静止质量,就个别光子而言,它与宏观质点的运动不同,没有一定的轨道,因而无法对个别光子的行为作出“科学的”预测,它的行为不服从牛顿经典力学。光子说使光的粒子性有了新质的内容。 5、在对光本性的认识过程中,惠更斯的波动说和牛顿的微粒说是相互排斥、相互对立的。后来发展成为光的电磁说和光子说。人们发现,这两种相互对立的学说彼此都含有对方的成份,无法划清界线,更无法绝对独立,谁都不能说自己就是客观真理。光学说发展到此,已无法逃避辩证的综合。中国有句古话,叫做两极相通。人们终于明白,光的波动性和粒子性,不过是光这一客观事物矛盾对立的两个方面,它们共存于光这个统一体中,是矛盾的对立统一,彼此以对方存在为前提,这就是光的波粒二象性。它排除了非此即彼的形而上学观念(这正是形式逻辑的重大特征!),建立了亦此亦彼的辩证观念,即在一定条件下承认非此即彼,在另一条件下又承认亦此亦彼。对光来说,一定条件下(大量光子、传播过程、低频率光)波动性上升为矛盾主要方面,则波动性显著;而在另一条件下(个别光子、光与物质作用、高频率光子)粒子性上升为矛盾主要方面,则粒子性显著。所谓彼一时也,此一时也,在微观世界里也存在着。在宏观物体来说不可思议的波粒二象性,在微观世界里却是真实的图景。矛盾啊!然而是事实。只有辩证思维才可以把握。恩格斯曾经指出:“常识在它自己的日常活动范围内是极可尊敬的东西,但它一跨入广阔的研究领域,就会遇到惊人的变故。形而上学的思维方式,虽然在相当广泛、各依对象的性质而大小不同的领域是正当的,甚至是必要的,可是它每一次迟早都要达

光的波粒二象性的发展与唯物辩证法

光的波粒二象性的发展与唯物辩证法 08013338 黄威龙自古以来,人们就不断地在探索自然地真谛,试图搞清自然现象背后的秘密。而唯物辩证法作为自然、社会、思维发展一般规律的科学,是人们认识世界和改造世界的根本方法,这两者就不可避免的紧密联系在了一起。这其中,对于光本质的探索的过程更是对唯物辩证法的完美诠释。 光一直被认为是最小的物质,最特殊的物质,探索光的本性可以说就等于探索物质的本性。 十七世纪中期格里马第发现了光的衍射现象,不久后,胡克通过对肥皂泡沫颜色的观察,提出了“光是以太的一种纵向波”,也就是认为光是一种波。1672年,伟大的牛顿发表了论文《关于光和色的新理论》,并用微粒说阐述了光的颜色理论,这也成为了光的粒子说与波动说的第一次争论的导火索。荷兰科学家惠更斯通过仔细研究钻研,提出了较完整的光的波动学理论,并顺利的解释了光的干涉、衍射、双折射等现象。而同期的牛顿也不甘示弱,修改和完善了他的著作《光学》,并对惠更斯的波动理论提出两点批驳。在此对光本质的探索就以两条矛盾的主线分别发展着。 有矛盾并不一定是坏事,相反,在唯物辩证法中,矛盾分析法居于核心的地位,是根本的认识方法。毛泽东指出:“辩证法的宇宙观,主要地就是教导人们要善于去观察分析各种事物的矛盾的运动,并根据这种分析,指出解决矛盾的方法。”如何解决这两大水火不容学说的矛盾呢,让我们继续看下去。 在两方学说初步建立后,许多杰出科学家比如:菲涅尔、托马斯·杨、马吕思等又各自提出理论支持波动学说,粒子学说。无数纷争谁也说服不了谁,这时一位科学巨匠兼哲学大师站了出来,1905年,他在德国物理年报上发表了题为《关于光的产生和转化的一个推测性观点》的论文,他认为对于时间的平均值,光表现为波动性;对于时间的瞬时值,光表现为粒子性。这是历史上第一次揭示光的粒子性与波动性的统一,及波粒二象性。他,就是爱因斯坦。辩证法中的对立统一的观点得到了完美的诠释。 在此之后,德布罗意将光的波粒二象性推广到一切物质,提出了物质波的假说。这体现了辩证思维法中的归纳与演绎,从个别事实中概括出一般性的结论。 具体的自然科学是唯物辩证法的基础,而唯物辩证法又为自然科学的发展提供方法论的指导。因此,唯物辩证法与自然科学相互依存,谁也离不开谁。

如何理解光的波粒二象性

如何理解光的波粒二象性 四川省冕宁中学:刘彬学 很多同学在学完光的本性——波粒二象性后,都觉得非常困惑:无法理解光子为什么会具有波的特性?从经典物理学的观点来看,“微粒”和“波”是相互排斥的概念,或者说“波”与“微粒”是两种截然对立的存在。一个东西要么是波,要么是微粒,即“非此即彼”。 那么究竟自由理解光的波粒二象性呢?为了使中学生能够理解,又不失去其科学性。我认为应从如下几个方面来讲解。 1、物体从宏观到微观,即物体由大到小改变时,量变将导致质变——使得微观物体的运动规律不能用牛顿定律来描述。 (1)宏观物体的运动具有严格的决定性规律:“一个宏观物体的运动规律或一种宏观物理现象的变化,只要知道了它的初始条件,原则上就能知道它以后的运动状态或变化状况。一个宏观物体可以在任何轨道上被连续跟踪。表示宏观物体各种物理性质的物理量原则上都可同时被确定”。 例如:一个质量为m的物体,在动摩擦因素为μ的水平面上受到水平拉力F 的作用,以初速度V0开始做匀加速直线运动,则在t秒末物体的位移和速度多大? 解:物体受力分析如图所示:

而f=μN=μmg 根据牛顿第二定律得: F-f=ma a=(F-f)/m=(F-μmg)/m 由运动学公式有: s=V t+at2/2 =V t+(F-μmg)t2/2m V t =V +(F-μmg)t/m 显然,只要知道了物体的初始条件:初速度和始位置就可以预先确定物体在t 秒(任意时间)后的位置和速度及运动轨道等。即宏观物体的运动具有决定性的规律。 (2)微观物体的运动不具有宏观意义的决定论。当一个宏观物体用二分法不停分割时,最初的变化仅仅是量的变化,仍可用牛顿运动理论来解决其速度、位移等问题;但当分割到一定程度时,物体的运动规律将发生质的变化,不能再用牛顿运动定律来描述其规律。为什么呢?我们知道,物理学是一门测量基础上的科学:而测量宏观物体的各物理量时,由于测量仪器对被测物体的影响相对于受到的其它力而言是很小很小的,完全可以忽略不计;而测量微观物体的各物理量时,由于测量仪器对被测物体的影响不满足宏观物体那样的条件,因此,测量仪器对被测物体的影响不能忽略,测量仪器和被测对象形成一个统一的不可分割的整体,即:“观测过程是一个不可分割的整体,观测结果是一个完整的不可分割

相关主题
文本预览
相关文档 最新文档