当前位置:文档之家› 选修三第二章第1节共价键第二课时教案

选修三第二章第1节共价键第二课时教案

选修三第二章第1节共价键第二课时教案
选修三第二章第1节共价键第二课时教案

键角

二、 键参数一键能、键长与键角

1. 键能:气态基态原子形成I mol 化学键释放的最低能量。通常取正值。 键能越大,化学键越稳定。

2. 键长:形成共价键的两个原子之间的核间距。 键长越短,键能越大,共价键越稳定。

3.

键角:在原子数超过2的分子中,两个共价键间的夹角称为键角。 键角决定

了分子的空间构型 三、 等电子原理

等电子原理:原子总数相同、价电子总数相同的分子具有相似的化学键特 征,它们的许多性质是相近的。

教学过程

教学方法、手段、

师生活动

[创设问题情境] N 2与H 2在常温下很难反应,必须在高温下才能 发生反应,而F 2与H 2在冷暗处就能发生化学反应,为什么?

[复习]b 键、n 键的形成条件及特点。

[过渡]今节课我们继续研究共价键的三个参数。

[板书]二、键参数一键能、键长与键角

[问]电离能概念。

[讲]在第一章讨论过原子的电离能,我们知道,原子失去电子要吸 收能量。反过来,

原子吸引电子,要放出能量。因此,原子形成共 价键相互结合,放出能量,由此形成了键能的概念。键能是气态基 态原子形成I mol 化学键释放的最低能量。例如,形成 I mol

H — H 键

释放的最低能量为 436. 0 kJ ,形成1 moIN 三N 键释放的最低能量为

高中化学教学教案

课题:第二章第一节共价键(2) 授课班级

课时

教 学 目 标 知识 1.认识键能、键长、键角等键参数的概念 与 2.能用键参数一一键能、键长、键角说明简单分子的某些性质 技能

3.知道等电子原理,结合实例说明“等电子原理的应用 w.w.w.zxxk.c.o.m 用键能、键长、键角等说明简单分子的某些性质

-识

构 与 板 书

教学步骤、内容

946 J ,这些能量就是相应 化学键的键能,通常取正值。

[板书]1、键能:气态基态原子形成I mol 化学键释放的最低 能量。通常取正值。

[讲]单位kJ/moI ,大■家要注意的是,应为气态原子,以确保释放 能量最低。

[投影]表2-1某些共价键键能

[思考与交流]键能大■小与化学键稳定性的关系?

[讲]键能越大,即形成化学键时放出的能量越多,意味着这个化学 键越稳

定,越不容易被打断。结构相似的分子中,化学键键能越大, 分子越稳定。

[板书]键能越大,化学键越稳定。

[讲]键长是衡量共价键稳定性的另一个参数,是形成共价键的两个 原子之间

的核间距。

[板书]2.键长:形成共价键的两个原子之间的核间距。

[投影]表2-2某些共价键的键长

[讲]1pm=1012

n 。因成键时原子轨道发生重叠,键长小于成键原子的 原子半

径各。是衡量共价键稳定性的另一个叁数。

[投影]资料卡片---共价半径:相同原子的共价键键长的一半称为 共价半径。

俺- mol -■

tttrtfe 小J k :r.ol - 1

J — I o

17—n 1朽丁

o

C?l — <'] :i 再 X- 7

607

T 知一Kr

1 fPS- Y (.> (>

L 12

】一】

1 nK. 7 i

3

C2 — <3 :i IT- 7 — I -11 3. -1

0 — C3

CSS

C — H G 匕三_<2

Z —

3m>r G

asi II — F

C —電J

7 45 ]I — <21 碑?3

冲一JN

1牛i 1 1—Jir

rsi i 7 dlS

II —1

T

ilf [i/rurfP

锂氏/pm

H —H 74 d: p?-F Ld 1 c- H

CL —CL

1荻 m

Hr —br 22R N —H

Ifll 1 = 1 ^Q7

110 c —u

1,4 j

2觸

c=c

导1

1 Si-O

14】旳 ■: :— 匕h ■二

J-— —J 死 pq —

=尹F 壬:电 =寻匸*

■亠二,q 1- -— . _3—-

—6

[思考与交流]键长与键能的关系?

[板书]键长越短,键能越大,

[过渡]分子的形状有共价键之间的

夹角决定,下面我们学习键角。

[板书]3、键角:在原子数超过2的分子中,两个共价键间的 夹角称为键角。

[讲]在原子数超过2的分子中,两个共价键之间的夹角称为键角。例 如,

三原子分子CO 的结构式为0= C = 0,它的键角为180 °,是一种 直线形分子;又如,三原子分子 ^0的H — 0- H 键角为105 °,是一

角形(V 形)分子。多原子分子的键角一定,表明共价键具有方向性。 键角是描述分子立体结构的重要参数,分子的许多性质都与键角有 关。

[板书]键角决定了分子的空间构型

[讲]多原子分子中共价键形成的键角,表明共价键具有方向性。 [投影小结]

[思考与交流]1、试利用表2—1的数据进行计算,1 mo1 H 2分别跟|

molCl 2、ImolBr 2(蒸气)反应,分别形成2 molHC 分子和2molHBr 分

子, 哪一个反应释放的能量更多 ?如何用计算的结果说明氯化氢分子和 溴化氢分子哪个更容易发生热分解生成相应的单质?

2. Nk 、02、F 2跟H 2的反应能力依次增强,从键能的角度应如何理解这

一化学事实?

71 -pin

分子空间构型 键角]

实例

正四面体

109 ° 28' CH4、CC4、(NH/)

60 ° 白磷:P4 平面型 120°

苯、乙烯、SC3、BF3等

三角锥型 107° 18' NH S 角型

104° 30' H 2O 直线型

180°

CQ 、CQ 、CH^ CH

昭:fr 芈经 IL4 pin

I 斗pm

共价键越稳定。 L 墓―毎

3. 通过上述例.子,你认为键长、键能对分子的化学性质有什么影响?

[汇报]1.形成2 molHCI 释放能量:2 X 431.8 kJ — (436.0kJ+242.7kJ)= 184.9 kJ

形成 2 molHB 释放能量:2X 366kJ — (436.0kJ+193.7kJ)=

102.97kJ

HCI 释放能量比HBr 释放能量多,因而生成的HCI 更稳定,即HBr 更容易 发生热分解生成相

应的单质 .

2、 键能大小是:F-H>O-H>N-H

3、 键长越长,键能越小,键越易断裂,化学性质越活泼。 [投影]表2— 3: CO 分子和Nb 分子的某些性质

[讲]表2— 3数据表明,C 酚子和N 2分子在许多性质上十分相似, 这些

相似性,可以归结为它们具有相等的价电子总数,导致它们具有相 似的化学结构,由此形成了等电子原理的概念一一原子总数相同、 价电子总数相同的分子具有相似的化学键特征,它们的许多性质是 相近的。

[板书]三、等电子原理

等电子原理:原子总数相同、价电子总数相同的分子具有相 似的化学键特征,它们的许多性质是相近的。

[讲]等电子体的价电子总数相同,而组成原子核外电子总数不一 定相同。

[思考]我们学过的等电子物质还有哪些?试举例。

[投影小结]常见的等电子体

用等电子体在性质上的相似性制造新材料;利用等电子原理针对某

井子

co

-210.00

m ]阴.81

在水屮的制賊〔诃} ■刖解讎

kt * tiHr'

分子的能电子总數

£- 3 niL

1 075 10 h 6 mL

Die

10

物质找等电子体。

[自学.]科学■视野:用质谱仪测定分子结构

教学反思:

教学中,有些问题要引导学生提出,有些话要留给学生讲,有些事要让学生做。

共价键键参数和分子的性质及其强化练习

五十六、共价键的键参数和分子的性质 一、共价键的参数与意义 1、键能:气态原子形成1mol化学键所释放的能量。共价键的键能与键长一起用于解释原 子晶体的熔点沸点的高低;与键长一起用于解释共价分子的稳定性;用于解释反应物和生成物都是气体的反应的△H。 2、键长:形成共价键的两个原子之间的核间距。共价键的键能与键长一起用于解释原子晶 体的熔点沸点的高低;与键能一起用于解释共价分子的稳定性。 3、键角:在多原子分子中,两个相邻的共价键之间的夹角。共价键的键角与键长一起用于 解释几何构型。 4、键极性:共价键中共用电子对是否偏移的性质。键极性用于解释共价化合物的原子的化 合价。与分子的几何构型一起用于解释分子的极性。 二、共价键的键参数对物质性质的影响 1、在原子晶体中,共价键的键能越大,键长越小,共价键就越强,熔点沸点就越高。 例如:金刚石、晶体硅、金刚砂都是原子晶体,由于键能C—C>C—Si>SI—Si,键长 C—C金刚砂>晶体硅。 2、在分子晶体中,共价键的键能越大,键长越小,共价键就越强,分子就越稳定,受热就 越难分解。 例如:在氟化氢、氯化氢、溴化氢、碘化氢分子中,键能H—F>H—Cl>H—Br>H—I,键长H—FHCl>HBr>HI。 3、对于反应物和生成物都是气体的反应,气体反应物的总键能与气体生成物的总键能之差 就是该气体反应的反应热。 △H=E(气体反应物)—E(气体生成物),如果气体反应物的总键能与气体生成物的总键能之差大于0,说明反应为吸热反应;气体反应物的总键能与气体生成物的总键能之差小于0,说明反应为放热反应。 4、共价键的键角大小和键长大小决定了几何构型。 例如:在CH4分子中,键角为109°28’,四个C—H键长相等,所以CH4是正四面体构型。而CH3Cl分子中,键角也为109°28’,但C—H键长与C—Cl键长不相等,所以CH3Cl分子只是四面体,而不是正四面体构型。 5、共价键的键极性决定了共价化合物的化合价。共用电子对偏向的元素的原子显负价,共 用电子对偏离的元素的原子显正价。 例如:在CO2分子中,两对共用电子对偏向氧原子,氧元素呈-2价,碳元素呈+4价。 6、共价键的键极性和分子的几何构型一起决定了分子的极性。分子的极性是指电荷的分布 是不均匀的,不对称的性质。电荷的分布是不均匀的,不对称的的分子是极性分子;电荷的分布是均匀的,对称的分子是非极性分子。没有键的极性就没有分子的极性,有了键的极性才有可能使分子呈极性。但键极性不等于分子的极性。如果分子的几何构型,不能使键的极性相互抵消,分子就呈极性;如果分子的几何构型,能够使键的极性相互抵消,分子就不呈极性。一般判定方法是:对于ABn型分子,如果中心原子A的最外层电子都用于成键,则该分子就是非极性分子。分子是否具有极性可以用于解释物质的溶解性:极性分子易溶于极性分子的溶剂中,非极性分子易溶于非极性分子的溶剂中。 例如:在CO2分子中,C=O是极性键,共用电子对都偏向O,由于CO2是直线型分子,键角为180°,两个C=O的键极性大小相等,方向相反,互相抵消,使整个二氧化碳分子不显极性,所以CO2是非极性分子。而H2O分子,H—O是极性键,共用电子对偏向O,由于H2O是角形分子,键角小于109°28’,两个H—O的键极性虽然大小相等,但

高二化学选修3第二章第一节共价键习题

课时跟踪检测(五)共价键 1.下列分子中的σ键是由一个原子的s轨道和另一个原子的p 轨道以“头碰头”方式重叠构建而成的是( ) A.H2B.HCl C.Cl2 D.N2 解析:选B H2中的σ键是s-s σ键,Cl2、N2中的σ键都是p-p σ键。 2.对σ键的认识不正确的是( ) A.σ键不属于共价键,是另一种化学键 B.s-s σ键与s-p σ键的对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键的化合物与只含σ键的化合物的化学性质不同 解析:选A A项,σ键属于共价键;B项,s-s σ键与s-p σ键都属于σ键,对称性相同;D项,π键容易断裂,而σ键不易断裂,所以含有π键的化合物与只含σ键的化合物的化学性质不同。 3.下列物质的分子中既有σ键,又有π键的是( ) ①HCl②H2O ③N2④H2O2⑤C2H4⑥C2H2

A.①②③B.③④⑤⑥ C.①③⑥ D.③⑤⑥ 解析:选D N2分子中有三个共价键:一个σ键,两个π键;C2H4中碳碳原子之间有两个共价键:一个σ键,一个π键;C2H2中碳碳原子之间有三个共价键:一个σ键,两个π键。 4.下列说法中正确的是( ) A.双原子分子中化学键键能越大,分子越稳定 B.双原子分子中化学键键长越长,分子越稳定 C.双原子分子中化学键键角越大,分子越稳定 D.在双键中,σ键的键能要小于π键 解析:选A 在双原子分子中没有键角,C错误;当共价键键能越大、键长越短时,分子越稳定,A正确,B错误;一般σ键的重叠程度要大于π键,σ键的键能大于π键,D错误。 5.根据等电子原理,下列分子或离子与NO-3有相似结构的是( ) ①SO3②BF3③CH4④NO2 A.①②B.②③ C.③④ D.②④ 解析:选A NO-3是4原子,24(5+6×3+1=24)个价电子(最外

第一节共价键第二课时

第二章分子结构与性质 第一节共价键 第二课时 [教学目标]: 1?认识键能、键长、键角等键参数的概念 2?能用键参数一一键能、键长、键角说明简单分子的某些性质 3?知道等电子原理,结合实例说明“等电子原理的应用” [教学难点、重点]: 键参数的概念,等电子原理 [教学过程]: [创设问题情境] N2与H 2在常温下很难反应,必须在高温下才能发生反应,而F 2与H2在冷 暗处就能发生化学反应,为什么? [学生讨论] [小结]引入键能的定义 [板书] 二、键参数 1.键能 ①概念:气态基态原子形成1 mol化学键所释放出的最低能量。 ②单位:k J/ mol [生阅读书33页,表2-1]回答:键能大小与键的强度的关系? (键能越大,化学键越稳定,越不易断裂)键能化学反应的能量变化的关系? (键能越大,形成化学键放出的能量越大) ① 键能越大,形成化学键放出的能量越大,化学键越稳定。 [过渡] 2.键长 ①概念:形成共价键的两原子间的核间距 ②单位:1 pm (1 pm=10 一12m) ③键长越短,共价键越牢固,形成的物质越稳定 [设问]多原子分子的形状如何?就必须要了解多原子分子中两共价键之间的夹角。3.键角:多原子分子中的两个共价键之间的夹角。 例如:CO 2结构为O=C = O,键角为180。,为直线形分子。 H 2 O 键角1 0 5°V形 CH 4键角10 9°28 '正四面体 [小结] 键能、键长、键角是共价键的三个参数键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。 [板书] 三、等电子原理 1?等电子体:原子数相同,价电子数也相同的微粒如如: CO和N 2,CH 4和NH 4 + 2 ?等电子体性质相似 [阅读课本表2 —3] [小结]

高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

化学选修三2.1《共价键》

第二章第1节共价键 (第1课时) 【使用说明与学法指导】 1.请同学门认真阅读教材,划出重要知识,规范完成学案预习自学内容并熟记基础知识,用红笔做好疑难标 记. 2.规范完成学案巩固练习,改正完善并落实好学案所有内容. 3.把学案中自己的疑难问题和易忘易出错的知识点以及解题方法规律,及时整理在典型题本上,多复习记 忆. 【学习目标】 1. 复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2. 知道共价键的主要类型δ键和π键。 3. 说出δ键和π键的明显差别和一般规律。 【重点、难点分析】 学习重点:1.共价键的类型及其区别.2. 共价键的特征.。 学习难点:1.共价键的类型及其区别.2. 共价键的特征.。 【知识链接】 复习必修2中所学的化学键的知识。 【自主学习】先阅读课本,理解填写下列概念 1. 共价键是常见化学键之一,它是指,其本质是。 2.共价键的基本特征是⑴具有__________。⑵具有___________。 3.σ键的特征:σ键的电子云具有___________。 4.σ键的分类 ⑴s-sσ键:由两个___________重叠形成,如H-H。 ⑵s-pσ键:由一个_______和一个_______重叠形成,如H-Cl。 ⑶p-pσ键:由___________重叠形成,如Cl-Cl。 5.π键: 由___________重叠形成。 6.π键的特征:π键的电子云具有___________。 7.由原子轨道相互重叠形成的______和______总称为价键轨道,其一般规律是:共价单键是_____;而共价双键中有一个_____,另一个是_______;共价三键由_______和______组成。 【合作探究】 教材P29科学探究 【疑难点拨】 共价键的实质、分类、特征、形成条件

高二化学物质结构与性质课时作业3:2.1.2共价键的键参数

第2课时共价键的键参数 [基础过关] 一、共价键参数及其应用 1.关于键长、键能和键角,下列说法不正确的是() A.键角是描述分子空间构型的重要参数 B.键长的大小与成键原子的半径和成键数目有关 C.键能越大,键长越长,共价化合物越稳定 D.键角的大小与键长、键能的大小无关 [答案] C [解析]键能越大,键长越短,共价化合物越稳定。 2.下列说法中正确的是() A.在分子中,两个成键的原子间的距离叫键长 B.共价键的键能越大,共价键越牢固,由该键形成的分子越稳定 C.CF4、CCl4、CBr4、CI4中C—X键的键长、键角均相等 D.H2O分子中两个O—H键的键角为180° [答案] B [解析]形成共价键的两个原子之间的核间距叫键长,故A项错误;由于F、Cl、Br、I的原子半径不同,故C—X键的键长不相等,C项错误;H2O分子中的键角为104.5°,故D项也错。 3.下列事实不能用键能的大小来解释的是() A.N元素的电负性较大,但N2的化学性质很稳定 B.稀有气体一般难发生反应 C.HF、HCl、HBr、HI的稳定性逐渐减弱 D.F2比O2更容易与H2反应 [答案] B [解析]本题主要考查键参数的应用。由于N2分子中存在叁键,键能很大,破坏共价键需要很大的能量,所以N2的化学性质很稳定;稀有气体都为单原子分子,分子内部没有化学键;卤族元素从F到I原子半径逐渐增大,其氢化物中的键长逐渐变长,键能逐渐变小,所以稳定性逐渐减弱;由于H—F的键能大于H—O,所以更容易生成HF。

4.从实验测得不同物质中氧氧之间的键长和键能的数据: 其中x、y y>x;该规律性是() A.成键的电子数越多,键能越大 B.键长越长,键能越小 C.成键所用的电子数越少,键能越小 D.成键时电子对越偏移,键能越大 [答案] B [解析]研究表中数据发现,O2与O+2的键能大者键长短。按此规律,O2-2中O—O键长比O-2中的长,所以键能要小。按键长由短而长的顺序为O+2z>y>x。故B正确,A不正确。这些微粒都是由相同的原子组成,电子对无偏移,D项错误;对于这些微粒,在成键时所用电子情况,题中无信息,已有的知识中也没有,说明这不是本题考查的知识点,故不选C项。 二、键能与反应热的互求方法 5.化学反应可视为旧键的断裂和新键的形成过程。化学键的键能是形成化学键时释放的能量。已知白磷和P4O6的分子结构如图所示,现提供以下化学键的键能(kJ·mol-1):P—P:198 P—O:360O===O:498,则反应P4(白磷)+3O2===P4O6的反应热ΔH为()

新课标高中化学选修3第一节共价键的键参数

第 2课时共价键的键参数 学业要求素养对接 知道键能、键长、键角等键参数的概念,能用键参数说明简单分子的某些性质。微观探析:用键参数说明简单分子的某些性质。 [知识梳理] 1. 键参数概念和特点 概念特点 键能气态基态原子形成1 mol化学键释 放的最低能量 键能越大,键越稳定 键长形成共价键的两个原子之间的核间 距 键长越短,键能越大,键越稳定 键角分子内两个共价键之间的夹角表明共价键有方向性,决定分子的 立体结构 2. 键参数对物质性质的影响 【自主思考】 1.试从键长和键能的角度分析卤素氢化物稳定性逐渐减弱的原因。 提示卤素原子从F到I原子半径逐渐增大,分别与H原子形成共价键时,按H—F、H—Cl、H—Br、H—I,键长逐渐增长,键能逐渐减小,故分子的稳定性逐渐减弱。 2.是否原子半径越小、键长越短,键能越大,分子就越稳定? 提示不一定,电负性大的双原子分子,键长较短的键能不一定大。如F2中氟原子的半径很小,因此键长比较短,而两个氟原子形成共价键时,核间距离很小,排斥力很大,即其键能不大,因此F2的稳定性差。 [自我检测]

1.判断正误,正确的打“√”;错误的打“×”。 (1)键长越短,键能一定越大。() (2)等电子体并不都是电中性的。() (3)双原子分子中化学键键能越大,分子越牢固。() (4)双原子分子中化学键键长越长,分子越牢固。() (5)双原子分子中化学键键角越大,分子越牢固。() (6)同一分子中,σ键与π键的原子轨道重叠程度一样多,只是重叠的方向不同。() 答案(1)×(2)√(3)√(4)×(5)×(6)× 2.关于键长、键能和键角,下列说法不正确的是() A.键角是描述分子立体结构的重要参数 B.键长的大小与成键原子的半径和成键数目有关 C.键能越大,键长越长,共价化合物越稳定 D.键角的大小与键能的大小无关 解析键长越短,键能越大,共价键越稳定。 答案 C 3.HBr气体的热分解温度比HI气体的热分解温度高的原因是() A.HBr分子中的键长比HI分子中的键长短,键能大 B.HBr分子中的键长比HI分子中的键长长,键能小 C.HBr的相对分子质量比HI的相对分子质量小 D.HBr分子间作用力比HI分子间作用力大 解析HBr和HI均是共价化合物,含有共价键。由于HBr分子中的键长比HI分子中的键长短,键能大,破坏共价键消耗的能量多,所以HBr气体的热分解温度比HI气体的热分解温度高。 答案 A 学习任务共价键参数与分子的性质 【合作交流】 键能与键长是衡量共价键稳定性的参数,键长和键角是描述分子立体构型的参数。

最新选修3第二章《共价键》第一课时教案讲课稿

一、共价键(第一课时) 一、教学目标 (一)知识与技能 1、能从电子云重叠的角度更深入地了解共价键的实质。 2、知道共价键的基本类型σ键和π键的形成及其特点。 3、学会判断常见分子共价键中的σ键和π键。 (二)过程与方法 (1)通过类比、归纳、推理、判断,掌握学习抽象概念的方法,培养学生准确描述概念,深刻理解概念,比较辨析概念的能力。 (2)通过动画演示和学生小组探究活动,培养学生的观察能力、动手能力及分析问题的能力。 (三)情感态度与价值观 (1)通过创设探究活动,使学生主动参与学习过程,激发学生学习兴趣,体会成功获得知识的乐趣。 (2)在分子水平上进一步形成有关物质结构的基本概念,能从物质结构决定性质的视角解释分子的某些性质,并能预测物质的有关性质,体验科学探究过程的乐趣,进而 形成科学的价值观。 二、教学重难点 教学重点:σ键和π键的特征和性质 教学难点:σ键、π键的特征 三、教学方法 根据本节课的内容特点,在教学上采用多媒体动画演示和模型实例相结合的方式,尽可能将抽象的知识具体化、形象化。指导学生从s、p两种形状的电子云按不同方式进行重叠成键的探究入手,帮助学生了解不同种类的共价键(σ键和π键)的特征和性质。 四、设计思想 本节课的关键在于设法以尽可能形象化、生动化的手段解决相对抽象的问题。只要能在教学中有效突破电子云按不同方式进行重叠而形成共价键这一基本要点,就可以使学生更好理解两种共价键的特征和性质。 五、教学流程图 知识铺垫(能层、能级、电子云和原子轨道)→过渡引入→探索新知(对比用电子式表示共价键的形成过程,引导学生从电子云角度分析共价键→学生自主探究s、p轨道以何种方式重叠程度比较大→利用分类思想归纳总结共价键的两种类型——σ键、π键→对比探究σ键、π键的共性和差异性)→学以致用(探究利用电子云重叠方式判断共价键成键的规律)→习题巩固强化→归纳总结

高中化学选修3第二章第一节共价键

第二章分子结构与性质 教材分析: 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第一节共价键 第一课时 教学目标: 1、复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2、知道共价键的主要类型δ键和π键。 3、说出δ键和π键的明显差别和一般规律。 教学重点、难点: 价层电子对互斥模型 教学过程: [复习引入] NaCl、HCl的形成过程

第二章第一节共价键导学案

第二章第一节共价键(第1课时) 【学习目标】 1.复习化学键的概念,能用电子式表示常见物质的形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 【学习重点】:理解σ键和π键的特征和性质 【学习难点】:σ键和π键的形成与特征 【学习过程】 [复习提问] 1、什么是化学键?化学键的类型有哪些? 2、用电子式表示H2、HCl、Cl2分子的形成过程。 3、写出H、Cl、Ar的价电子排布图,并解释为什么H、Cl形成双原子分子,Ar为单原子分子。 [自主预习] 一、共价键 1.共价键的形成条件和本质 (1)定义:间通过形成形成共价键。 (2)本质:成键原子相互接近时,发生重叠,自旋方向的未成对电子形成,两原子核间的电子云发生重叠,体系总能量,达到相对稳定的状态。 (3)形成条件:共价键一般由元素之间形成。(特例如等) 2.共价键的特征: (1):每个原子形成共价键的数目是确定的。 (2):根据电学原理,成键电子云越密集,共价键越。要使成键的原子轨道最大程度地重叠,原子轨道必须沿一定方向重叠。 3.共价键的类型: ①根据共用电子对的数目,可将共价键分为、、。 ②根据共用电子对是否偏移,可将共价键分为和。 ③根据原子轨道重叠的方向不同,可将共价键分为和。

σ键 1、写出N原子的轨道排布图并分析形成共价键的原子轨道。 归纳:如何判断原子形成共价键的轨道? 2、用准备好的轨道模型模拟氮氮三键的原子轨道重叠方式并判断分别属于σ键,还是π键。 规律总结:两原子间形成共价键时,优先形成较稳定的,且最多只能形成1个。 即:共价单键全是,共价双键中一个是,另一个是;共价三键中一个,另两个为。 【当堂检测】 1. 下列说法正确的是() A. 含有共价键的化合物一定是共价化合物 B. 分子中只有共价键的化合物一定是共价化合物 C.单质分子中一定含有共价键 D. 只有非金属原子间才能形成共价键 2、下列说法中正确的是() A、p轨道之间以“肩并肩”重叠可形成σ键 B、p轨道之间以“头碰头”重叠可形成π键 C、s和p轨道以“头碰头”重叠可形成σ键 D、共价键是两个原子轨道以“头碰头”重叠形成的 3.在氧气分子中,形成共价键的原子轨道是 ( ) A、氧原子的2p轨道和氟原子的1s轨道 B、氧原子的3p轨道和氟原子的1s轨道 C、氧原子的2p轨道和氟原子的2p轨道 D、氧原子的3p轨道和氟原子的3p轨道 4.σ键的常见类型有(1)s-sσ键,(2)s-pσ键,(2)p-pσ键,请指出下列分子σ键所属类型: ①HBr ②NH3③F2④H2 5、

选修三第二章第1节共价键第二课时教案

课题:第二章第一节共价键(2)授课班级 课时 教学目标知识 与 技能 1.认识键能、键长、键角等键参数的概念 2.能用键参数――键能、键长、键角说明简单分子的某些性质 3.知道等电子原理,结合实例说明“等电子原理的应用 重点用键能、键长、键角等说明简单分子的某些性质难点键角 知识结构与板书设计二、键参数—键能、键长与键角 1.键能:气态基态原子形成l mol化学键释放的最低能量。通常取正值。 键能越大,化学键越稳定。 2.键长:形成共价键的两个原子之间的核间距。 键长越短,键能越大,共价键越稳定。 3.键角:在原子数超过2的分子中,两个共价键间的夹角称为键角。 键角决定了分子的空间构型 三、等电子原理 等电子原理:原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质是相近的。 教学过程 教学步骤、内容 教学方法、手段、 师生活动 [创设问题情境]N2与H2在常温下很难反应,必须在高温下才能发生反应,而F2与H2在冷暗处就能发生化学反应,为什么? [复习]σ键、π键的形成条件及特点。 [过渡]今节课我们继续研究共价键的三个参数。 [板书]二、键参数—键能、键长与键角 [问]电离能概念。 [讲]在第一章讨论过原子的电离能,我们知道,原子失去电子要吸收能量。反过来,原子吸引电子,要放出能量。因此,原子形成共价键相互结合,放出能量,由此形成了键能的概念。键能是气态基态原子形成l mol化学键释放的最低能量。例如,形成l mol H—H键释放的最低能量为436.0 kJ,形成1 molN三N键释放的最低能量为946 kJ,这些能量就是相应化学键的键能,通常取正值。 [板书]1、键能:气态基态原子形成l mol化学键释放的最低

2018届高考化学专项复习共价键键参数——键能、键长与键角(2)练习苏教版解析

键参数——键能、键长与键角 1.下列分子中键角最大的是() A.CH4 B.NH3 C.H2O D.CO2 2. Al和Si、Ge和As在元素周期表中金属和非金属过渡的位置上,其单质和化合物在建筑业、电子工业和石油化工等领域应用广泛.请回答下列问题: (1)As的价电子构型为________. (2)AlCl3是化工生产中的常用催化剂,熔点为192.6℃,熔融状态以二聚体Al2Cl6形式存在,其中铝原子与氯原子的成键类型是________. (3)超高导热绝缘耐高温纳米氮化铝(AlN)在绝缘材料中应用广泛,AlN晶体与金刚石类似,每个Al原子与________个N原子相连,与同一个Al原子相连的N原子构成的空间构型为________.在四大晶体类型中,AlN属于________晶体. (4)Si和C同主族,Si、C和O成键情况如下: 在C和O2 ____________________________________________________. (5)SiCl4(l)常用作烟雾剂,原因是Si存在3d轨道,能同H2O(l)配位而剧烈水解,在潮湿的空气中发烟,试用化学方程式表示其原理______________________. 3.键能的大小可以衡量化学键的强弱,也可以用于估算化学反应的反应热(△H),化学反应的△H等于反应中断裂旧化学键的键能之和与反应中形成新化学键的键能之和的差。参考以下表格的键能数据,回答下列问题: SiC__________Si; SiCl4___________SiO2 (2)工业上高纯硅可通过下列反应制取: SiCl4(g) + 2H2(g)高温 Si(s)+4HCl(g) 计算该反应的反应热△H为___ ___ kJ/mol。4.以下说法中正确的是() A.分子中键能越大,键长越长,则分子越稳定 B.元素周期表中的第ⅠA族(除H外)和第ⅦA族元素的原子间不能形成共价键 C.水分子可表示为HO—H,分子中键角为180° D.H—O键键能为463 kJ·mol-1,即18gH2O分解成H2和O2时,消耗能量为2×463 kJ

高二化学选修3:2-1-2共价键的键参数与等电子体达标作业(人教)

一、选择题 1.下列单质分子中,键长最长,键能最小的是() A.H2B.Cl2 C.Br2D.I2 答案:D 2.下列变化中释放能量的是() A.1s22s22p63s1→1s22s22p6 B.N≡N(g)→N(g)+N(g) C.2p2x2p1y2p1z→2p1x2p1y2p2z D.2H(g)→H—H(g) 答案:D 点拨:A项失去3s电子,要吸收能量;B项共价键断裂,吸收能量;C项2p x、2p y、2p z的能量相等,无能量变化;D项,形成共价键,释放能量。 3.下列各微粒属于等电子体的是() A.N2O4和NO2B.CH4和NH3 C.C2H6和N2H2+6D.CO2和NO2 答案:C 点拨:A、B两项原子总数不相等;C项原子总数均为8,电子总数均为18(价电子总数均为14);D项电子总数、价电子总数均不相等。 4.下列说法中正确的是()

A.难失去电子的原子,获得电子的能力一定强 B.易得到电子的原子所形成的简单阴离子,其还原性一定强 C.分子中键能越大,键长越长,则分子越稳定 D.电子层结构相同的简单离子,核电荷数越多,离子半径越小 答案:D 点拨:难失去电子的原子,获得电子的能力不一定强,如C、Si等;原子得到电子形成阴离子的过程容易,说明其逆向过程困难,阴离子的还原性越弱;分子中键能越大,键长越短,共价键越牢固,分子越稳定。 5.在白磷(P4)分子中,4个P原子分别处在正四面体的四个顶点,结合有关P原子的成键特点,下列有关白磷的说法正确的是() A.白磷分子的键角为109°28′ B.分子中共有4对共用电子对 C.白磷分子的键角为60° D.分子中有6对孤电子对 答案:C 点拨:根据共价键的方向性和饱和性,每个磷原子都以3个共价键与其他3个磷原子结合形成共价键,从而形成正四面体结构,所以键角为60°。分子中有6个共价单键,4对孤电子对。 6.氨分子、水分子、甲烷分子中共价键的键角分别为a、b、c,则a、b、c的大小关系为() A.a

高中化学选修3知识点全部归纳

高中化学选修3知识点全部归纳(物质的结构与性质 第一章原子结构与性质. 一、认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义. 1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7. 2.(构造原理) 了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1~36号元素原子核外电子的排布. (1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子. (2).原子核外电子排布原理. ①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. ②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子. ③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1. (3).掌握能级交错图和1-36号元素的核外电子排布式. ①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。 ②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。基态原子核外电子的排布按能量由低到高的顺序依次排布。 3.元素电离能和元素电负性 第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。常用符号I1表示,单位为kJ/mol。 (1).原子核外电子排布的周期性. 随着原子序数的增加,元素原子的外围电子排布呈现周期性的变化:每隔一定数目的元素,元素原子的外围电子排布重复出现从ns1到ns2np6的周期性变化. (2).元素第一电离能的周期性变化. 随着原子序数的递增,元素的第一电离能呈周期性变化: ★同周期从左到右,第一电离能有逐渐增大的趋势,稀有气体的第一电离能最大,碱金属的第一电离能最小; ★同主族从上到下,第一电离能有逐渐减小的趋势. 说明: ①同周期元素,从左往右第一电离能呈增大趋势。电子亚层结构为全满、半满时较相邻元素要大即第ⅡA 族、第ⅤA 族元素的第一电离能分别大于同周期相邻元素。Be、N、Mg、

第二章-第一节-共价键第二课时详解

第一节共价键教学设计 一、教材分析 本节内容的课标要求是“知道共价键的主要类型σ键和п键,能用键能、键长、键角等说明简单分子的某些性质;结合实例说明等电子原理的应用。”教材主要介绍了从电子云和原子轨道的角度理解共价键的形成、价键的特点、σ键和π键的特征以及共价键参数,是对必修2中共价键内容的加深,使学生进一步丰富物质结构的知识,提高分析问题和解决问题的能力。本节内容理论性较强,使学生在分子水平上进一步形成有关物质结构的基本观念,能从物质结构决定性质的视角解释分子的某些性质,并预测物质的有关性质,体验科学的魅力,进一步形成科学的价值观。 课时分配: 共价键的形成及共价键的类型 1课时 键参数---键能、键长、键角;等电子原理 1课时 二、学生分析 1、知识能力方面: (1)对于电子运动状态的描述,量子的观点、能量的观点已经为学生所认同,意识到电子的运动不是完全无序的,而是有一定规律可循的。 (2)对于如何描述元素的性质,学生的认识方式完成了由宏观到微观、从定性到定量的转变,具备了一定的理解力或者是解释力。 (3)初步了解了原子的微观结构,结合有关的实验事实和数据认识了元素周期律,原子结构与元素性质的关系,以及化学键的涵义等关于物质结构和性质的基本知识。 2、思维发展方面: 高一学生抽象逻辑思维属于理论性,他们能够用理论作指导来分析综合各种事实材料从个人不断扩大自己的知识领域。他们基本上可以掌握辩证思维(一般到特殊的演绎过程、特殊到一般的归纳过程)。 3、情感发展方面:独立性自主性是学生情感发展的主要特征。学生的意志行为越来越多,他们追求真理正义善良和美好的东西。自我调控在行为控制中占主导地位,一切外控因素只有内化为自我控制时才能发挥其作用。

人教版版高二化学选修3第二章-第一节--共价键教案

第二章分子结构与性质 第一节共价键第一课时 知识与技能: 1. 复习共价键的概念,能用电子式表示物质的形成过程。 2.知道共价键的主要类型为σ键和π键。 3. 说出σ键和π键的明显差别和一般规律。 过程与方法: 类比、归纳、判断、推理的方法,注意概念之间的区别和联系,熟悉掌握各知识点的共性和差异性。 情感态度与价值观: 使学生感受到在分子水平上进一步形成有关物质结构的基本观念,能从物质结构决定性质的角度解释分子的某些性质,并预测物质的有关性质,体验科学的魅力,进一步形成科学的价值观。 教学重点:σ键和π键的特征和性质。 教学难点:σ键和π键的特征。 教学过程: [引入] 在第一章中我们学习了原子结构和性质,知道了大多数原子是会构成分子。那么原子是如何构成分子的呢?通过必修二的学习我们知道原子之间可以通过离子键形成离子化合物,通过共价键形成分子。这节课我们先来讨论共价键。 [板书]第一节共价键 [复习] 请大家回忆如何用电子式表示H2,HCl,C12的形成过程? [学生活动] 请学生写在黑板上。 [师生讨论] 讨论H2,HCl,C12 的共同点。 ]板书]一.共价键的本质:原子之间形成共用电子对。 [师生互动]“按共价键的共用电子对理论,不可能有H3,H2Cl和Cl3分子,这表明共价键具有饱和性. ”此句话的含义。 [总结]共价键的饱和性:按照共价键的共用电子对理论,一个原子有几个未成对电子,便可和几个自旋相反的未成对电子配对成键,这就是共价键的“饱和性”。H 原子、Cl原子都只有一个未成对电子,因而只能形成H2、HCl、Cl2分子,不能形成H3、H2Cl、Cl3分子。 [设问]我们在第一章学习了H原子1s原子轨道是球形,那么当两个氢原子形成氢分子时,它们的原子轨道的是如何重叠的呢?请同学们不看课本,用橡皮泥做出两个S轨道,从数学的角度试试他们有几种重叠方式呢? [师生互动]请学生讲讲他们的想法。 [阅读教材]图2-1

选修三第二章第1节共价键第一课时教案

课题:第二章第一节共价键(1)授课班级 课时 教学目的 知识 与 技能 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的 形成过程。 2.知道共价键的主要类型δ键和π键。 3.说出δ键和π键的明显差别和一般规律。 过程 与 方法 学习抽象概念的方法:可以运用类比、归纳、判断、推理的方法,注意各概念的区别与联系,熟悉掌握各知识点的共性和差异性。 情感 态度 价值观 使学生感受到:在分子水平上进一步形成有关物质结构的基本观念,能从物质结构决定性质的视角解释分子的某些性质,并预测物质 的有关性质,体验科学的魅力,进一步形成科学的价值观。 重点σ键和Π键的特征和性质难点σ键和Π键的特征 知识结构与板书设计第二章分子结构与性质第一节共价键 一、共价键 1.共价键的形成条件: (1) 两原子电负性相同或相近 (2) 一般成键原子有未成对电子 (3) 成键原子的原子轨道在空间上发生重叠 2.共价键的本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间的电子云密度增加,体系能量降低 3.共价键的类型 (1)σ键:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。如H-H键。 类型:s—sσ、s—pσ、p—pσ等 特点:肩并肩、两块组成、镜像对称、容易断裂。 (2)π键:由两个原子的p电子“肩并肩”重叠形成。 (3)价键轨道:由原子轨道相互重叠形成的σ键和π键 (4)判断共价键类型规律:共价单键是σ键;而共价双键中有一个σ键,另一个是π键;共价三键由一个σ键和两个π键组成 4.共价键的特征 (1)饱和性 (2)方向性

高二化学选修3第二章第一节共价键习题

限时练共价键 A级 1.下列分子中得σ键就是由一个原子得s轨道与另一个原子得p轨道以“头碰头”方式重叠构建而成得就是( ) A.H2 B.HCl C.Cl2 D.N2 2.对σ键得认识不正确得就是( ) A.σ键不属于共价键,就是另一种化学键 B.s-s σ键与s-p σ键得对称性相同 C.分子中含有共价键,则至少含有一个σ键 D.含有π键得化合物与只含σ键得化合物得化学性质不同 3.下列物质得分子中既有σ键,又有π键得就是( ) ①HCl ②H2O ③N2④H2O2⑤C2H4⑥C2H2 A.①②③ B.③④⑤⑥ C.①③⑥ D.③⑤⑥ 4.下列说法中正确得就是( ) A.双原子分子中化学键键能越大,分子越稳定 B.双原子分子中化学键键长越长,分子越稳定 C.双原子分子中化学键键角越大,分子越稳定 D.在双键中,σ键得键能要小于π键 5.根据等电子原理,下列分子或离子与NO-3有相似结构得就是( ) ①SO3②BF3③CH4④NO2 A.①② B.②③ C.③④ D.②④ 6.根据下表中所列得键能数据,判断下列分子中最不稳定得就是( ) 化学键H—H H—Cl H—Br Br—Br 键能/(kJ·mol-1) 436、0 431、8 366 193、7 A、HCl B.HBr C.H2 D.Br2 7.下列各组物质化学性质不相似得就是( ) A.HF与H2O B.NH3与PH3 C.CO与N2 D.H3O+与NH3 8.下列说法正确得就是( ) A.若把H2S分子写成H3S分子,违背了共价键得饱与性 B.H3O+离子得存在,说明共价键不应有饱与性 C.所有共价键都有方向性 D.两个原子之间形成共价键时,可形成多个σ键 9.(1)如图,写出下列价键得名称,并各举一例说明含有这种价键类型得物质。 ①②③④⑤ 化学键类型 举例

新人教版化学选修3高中《共价键》教学设计(精品).doc

正确判断非极性键和极性键; 构。

NaCl、HCl的形成过程 【学习过程】: 一、共价键: (一)定义:原子通过而形成的化学键称为共价键; (二)共价键的形成及本质: 1、共价键的本质是; 2、形成规律:通常,电负性或的非金属元素的原子形成的化 学键为共价键。 3、表示方法:电子式:是指在符号周围用小点(或×)来描述分子中原子__ __ _ 以及原子中________________________的情况的式子。 (三)共价键分类 1、按共用电子对的数目分类:、、 2、按共用电子对是否偏移分类:、 3、按轨道重叠方式不同可分为键、键。 (1)δ键:(以“头碰头”重叠形式)人们把原子轨道以导致 而形成的共价键称为σ键。 例:H HCL、CL2的形成 2 、

归纳δ键: a、特征: b、种类: (2)π键:人们把原子轨道以导致而形成的共价键称为π键。 π键特征 (3)δ键和π键比较 ①重叠方式 δ键:π键:②δ键比π键的强度 ③成键电子:δ键π键 ④δ键形成π键形成(双键中含有 和,叁键中含有) ⑤在由两个原子形成的多个共价键中,只能有一个键,而键可以是一个或多个。 【预习检测】、分析下列化学式中划有横线的元素,选出符合要求的物质, 填空A、NH 3 B、H 2 O C、HCl D、CH 4 E、C 2 H 6 F、N 2 (1)所有的电子都参与形成共价键的是(2)只有一个价电子参与形成共价键的是(3)最外层有未参与成键电子对的是(4)既有σ键又有π键的是 【课堂探究】 1、判断下列物质中的化学键类型:H 2 N 2 HCl H 2 O NH 3 AlCl 从组成元素、元素的电负性角度回答共价键的形成条件: 2、以H 2 为例分析原子在形成共价键前后的能量变化。从能量的角度分析共价键的形成条件

相关主题
文本预览
相关文档 最新文档