当前位置:文档之家› 新型直流无刷电机控制参考

新型直流无刷电机控制参考

新型直流无刷电机控制参考
新型直流无刷电机控制参考

一种无刷直流电动机控制系统设计

一种无刷直流电动机控制系统设计

————————————————————————————————作者:————————————————————————————————日期:

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y联结全控电路,使用六支高速MOSFET 开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushless DC Motors SUN GuanQun;SHI Ming;TONG LinYi;XU YiPing Abstract:It introduces the MOTORALA company used for the characteristics o f the chip MC33035 and MC33039 which control the brushless direct curren t motor exclusively and its work principle. The system design divides into tw o major parts: the control circuit and the power driver circuit, the control circ uit take MC33035/33039 as the core, receive feedback position signal, with th e speed to the quota synthesis, the judgment circular telegram winding and p roduces the switching signal. In the actuation circuit design, uses the three-p hase Y joint all to control the electric circuit, uses six high speed MOSFET swit ching valve to compose. Through the experiment, the electric motor moveme nt stable is reliable. Keywords:Brushless DC motor;MC33035/33039;control circuit;drive circuit 1.引言 永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。该电机由定子、 转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特 性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便 等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实 现。本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置 信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需 外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试 相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、 运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。

通用无刷直流电机控制器PES331

PES331 3-Phase Brushless DC Motor Controller 10F-2, No. 1, Sec. 2, Dong-Da Road, Hsin-Chu 300, Taiwan, R.O.C. TEL: 886-3-532-7598 + https://www.doczj.com/doc/0414122789.html, Key Features: Support 3-Phase Brushless DC motor with hall IC interface Applications for electric screwdriver, electric drill and electric tooling Programmable motor phase sequence Automatically stop after lockup Re-lockup protection Over current protection 5V operating voltage Pin Diagram and Pin Description PWM_BH DIR_IN PWM_AL PWM_CL AVDD VDD HALL_A HALL_C NC2 PWM_CH PWM_BL PWM_AL START_IN GND VBus AGND CUR_SEN T_CMD NC1 HALL_B PES331(SSOP20-150mil) Pin No. Pin Name I/O Description 1 PWM_CH Output C output signal to control the high side of motor driver 2 PWM_AL Output A output signal to control the low side of motor driver 3 PWM_BL Output B output signal to control the low side of motor driver 4 START_IN Input Start to operate 5 GND - Ground 6 AGND - Analog Ground 7 T_CMD Input Clutch signal Input to set the required torque 8 CUR_SEN Input Analog input to sense motor current

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

基于无刷直流电机控制系统设计与实现

基于无刷直流电机控制系统设计与实现 发表时间:2017-10-20T11:19:09.350Z 来源:《防护工程》2017年第15期作者:樊圣至[导读] 为了摆脱此系统对进口技术的依赖性,应深入研究其控制系统,提升设计水平,从而实现煤矿开采的自动化。交通运输部东海第一救助飞行队摘要:无刷直流电机具备体积小、效率高以及控制精度高等优势,且在多个领域得到了广泛使用。但在部分控制系统中,外加干扰以及参数摄动等因素干扰了系统的动静态性,基于此,本文在分析无刷直流电机结构与运行原理的基础上,指出了其软硬件方面的优化控制措施,以期为此后无刷直流电机控制系统的设计工作提供更多的参考依据。 关键词:无刷直流电机;控制系统;设计与实现 1 无刷直流电机结构 电机本体、位置测算结构、电子换相逻辑等均属于无刷直流电机的组成结构,且其与永磁同步电机较为相似。相较直流电机,无刷直流电机旋转的转子为磁极,而直流电机为绕组。且定子主要由电枢绕组、定子铁芯以及其他固定部件组成,电枢绕组一般采用三相Y型绕法,而转子磁极则采用稀土永磁钢片组成,安装在转子表面。 2 无刷直流电机软硬件设计2.1系统硬件部分 2.1.1系统硬件结构 系统硬件主要包括整流电路、开关电源电路、控制芯片、信号隔离电路、调试电路、逆变功率电路以及电流电压检测与保护电路等,其具体结构如下图1所示。 图1 无刷直流电机控制系统硬件结构组成图其中键盘控制系统信息,比如完成启动、停机、速度给定以及系统参数的在线修改等工作。系统交流电源通过整流桥获得直流电源,并供给全桥逆变以及开关电源电路。而开关电源电路则为系统提供24V以及5V的直流电源,电压检测电路通过模数转换获得电压时值,通过母线电压的监控实行过压保护动作,而主控芯片则通过判断输入信息进行控制命令。 2.1.2电源部分分路 整个系统能量的主要来源便是电源,且其呈现出交流、直流以及交流的变化过程,整个电路被分为强电与弱电两个组成部分,且单相220伏的交流电在整合后会形成310伏的直流电,为逆变电路以及开关电路提供能量。首先是整流电路,包括单相全桥不可控整流电路以及电容充电电流限制电路两个组成部分,当电机功率为1.5kW时,控制器的输出能力设定为2.2kW,且上电瞬间直流电源对电容充电,断开继电器,且电流在经过电阻的过程中得到缓冲。其次是电源电路,主要由变压器、IC1以及MC7085等部分组成,其中IC1为电源的专门控制面板。且开关电源处于电压工作模式,IC1通过电压反馈调整PWM的输出功率,从而维持电源电压的稳定运行。最后是芯片电源电路,主要采用主控芯片为3.3伏的工作电平。 2.1.3主控芯片以及周边电路研究中采用适合电机控制领域的32位Cortex -M3核的单片机,可以达到较高的运算效率,且其时钟频率为72赫兹,具备丰富的外设资源。在设计管脚分配以及附属电路时应在参考专业手册的基础上进行,第一,对于引脚60的外接电路,芯片应处于下载设置状态,且系统完成后还应焊接0欧姆的电阻,以保持引脚的低电平状态。第二,对于晶振电路应采用8M外部晶体的振荡器,且电源与大地之间连接电容,以排除电源的耦合干扰。第三,PWM信号输出控制电路,应采用安全性较强的芯片,且在芯片输出后以及光电隔离之前设置74ACT244以有效控制信号的总输出。第四,键盘系统属于独立通信模块,设计时应按照协议要求编写通讯软件即可使用。 2.1.4功率器元件以及驱动电路GTO、MOSFET、GTR、IGBT以及IPM等均属于常用的功率开关元件,且设计期间,应根据元件管件的耐压程度、最大开关频率等因素进行选择。本次研究中,电机控制要求较高的开关频率;较小的导通阻抗以及较小的驱动功率,因此可以选择MOSFET、IPM以及IGBT。比较发现,IGBT具备大电流以及低导通阻抗的特点,可以保持开关频率;而IPM则在内部集成了过高电压、过大电流以及高温的检测系统,且可以在引脚处输出故障信号,降低了系统的损害率。但考虑到此次研究的试验性质,因此应选择IGBT的分立元件组建全桥逆变电路,并确定1200伏的耐压与25安的额定电流,上升时间为50毫秒。 2.1.5模拟量采集与故障电路

无刷直流电机控制器的综述【文献综述】

文献综述 电气工程及自动化 无刷直流电机控制器的综述 摘要:实现由专用集成芯片及外围电路构成的一种体积小、结构紧凑、调试方便的无刷 直流电机控制器,实现电机的正反转,并分析了各部分的电路结构。 关键词: MC33035; MC33039;无刷直流电机;控制器; 1引言 无刷直流电机是随着大功率开关器件、专用集成电路、稀有永磁材料、微机、新型控制理论及电机理论的发展而迅速发展起来的一种新型电动机,它比交流电动机的结构简单、运行可靠、维护方便等优点,又具备直流电动机运行效率高、无励磁损耗、调速性能好等特点,因此在当今国民经济的各个领域(如医疗器械、仪器仪表、化工、轻纺以及家用电器等方面) 的应用日益普及。 2无刷电机的控制结构及原理 所谓无刷直流电动机是利用半导体开关电路和位置传感器代替电刷和换向器的直流电动机,也就是,它是把电刷与换向器的机械整流变换为霍尔元件与半导体功率开关元件的电子整流。无刷直流电机由转子和定子两部分组成,转子用永磁材料制成,构成永磁磁极,定子由绕组和铁芯组成,定子铁芯由导磁硅铁片迭压而成,其周上均匀分布的槽中嵌放有很多相电枢绕组。直流无刷驱动器包括电源部及控制部:电源部提供三相电源给电机,控制部分需要转换输入电源频率。 图一 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先用换流器将直流

电压转换成3 相电压来驱动电机,换流器一般由6个功率晶体管分为上臂(A+、B+、C+)臂(A-、B-、C-)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器换相的时机。直流无刷电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器作为之闭回路控制,同时也作为相序控制的依据。 要让电机转动起来,首先控制部就必须根据hall-sensor 感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如下(图二)inverter 中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/ 逆时转动。当电机转子转动到hall-sensor 感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 图二 基本上功率晶体管的开法可举例如下: AH、BL 一组→AH、CL 一组→BH、CL 一组→BH、AL 一组→CH、AL 一组→CH、BL 一组,但绝不能开成AH、AL 或BH、BL 或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则当上臂(或下臂)尚未完全关闭,下臂(或上臂)就已开启,结果就造成上、下臂短路而使功率晶体管烧毁。当电机转动起来,控制部会再根据驱动器设定的速度及加/减速率所组成的命令(Command)与hall-sensor 信号变化的速度加以比对(或由软件运算)再来决定由下一组(AH、BL 或AH、CL 或BH、CL 或……)开关导通,以及导通时间长短。速度不够则开长,速度过头则减短,此部份工作就由PWM 来完成。PWM 是决定电机转速快或慢的方式,如何产生这样的PWM 才是要达到较精准速度控制的核心。高转速的速度控制必须考虑到系统的CLOCK 分辨率是否足以掌握处理软件指令的时间,另外对于hall-sensor信号变化的资料存取方式也影响到处理器效能与判定正确性、实时性。至于低转速的

直流无刷电机的控制技术

直流无刷电机的控制技术 摘要围绕直流无刷电机控制运用广泛技术——基于DSP的控制系统进行了系统研究,采取模糊控制策略,设计出上位监控系统,数字化、智能化的控制系统提出方案,实践证明了系统的平稳性和快速性满足要求。 关键词直流无刷电机;DSP控制;模糊控制 0引言 数字信号(Digital Signal Processing ,DSP)是涉及很多学科,它广泛被用于很多学科与技术领域。数字信号处理器称为DSP芯片,适用在数字信号处理运算的微处理器,能够快速的在数字信号处理算法上实现。现今,DSP芯片用于运动上的控制、数控机床的控制、航天航空的控制、电力系统上的操作、自动化仪器的控制等各个领域[1],该文主要介绍这种基于DSP芯片控制直流无刷电机智能化控制系统的设计。 1 系统结构设计 系统组成由“PC 上位机、电源单元、TMS320LF2407 DSP芯片、无刷直流电机、检测单元、功率驱动模块、通讯接口”等。(见图1) 1.1 DSP芯片的选择 DSP芯片的选择是很重要的,选对了DSP芯片才能设计出其外围电路和其他电路。DSP芯片的选择要根据实际的应用系统进行确定。DSP芯片由于场合不同选择的也就不同,我们要考虑DSP芯片的运算速度、价格、运算精度、功耗、硬件的资源等。我们根据系统要求,选择TI公司TMS320LF2407芯片。 1.2无刷直流电机 该电机采取1500转/分, 无刷直流电机采用1.78A、27V电压进行供电,电机换向电路主要是由控制和驱动组成,直流无刷电机自身属于机电能量转换部分,该部分由电机电枢、永磁、传感器组成。我们把电机的电轴绕组在定子上、把永磁放在转子上,其目的是为了实现换向。无刷直流电机的工作方式是两相导通的星型3相6状态,这样操作方式是因为转子在旋转定子电流中进行不断换相来保证两个磁场电流方向不发生改变,控制3相定子电流通电顺序与大小控制电机旋转的速度。 1.3功率的驱动模块 TOSHIBA公司采用IPM系列智能型模块,IPM主要集成了检测、控制、逻辑、保护电路这样有效提高了稳定性与可靠性。东芝的高速光耦TLP550(F)是

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言 1.1 题目综述 直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。基于这么多的优点无刷直流电机有了广泛的应用。比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。 1.2 国内外研究状况 目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。近些年来,计算机和控制技术快速发展。单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。 经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。 1.3 课题设计的主要内容 本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。本课题涉及的技术概括如下:

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

无刷直流电机控制系统的Proteus仿真

无刷直流电机控制系统的Proteus仿真-机械制造论文 无刷直流电机控制系统的Proteus仿真 王家豪潘玉民 (华北科技学院电子信息工程学院,河北三河101601) 【摘要】基于Proteus软件仿真平台,提出了一种对无刷直流电机(BLDCM)控制系统实现了转速闭环控制的方案。该系统以AT89S52单片机为核心,采用IR2101芯片驱动及AD1674实现速度,并利用数码动态显示转速,通过增量式PID调节对无刷直流电机实现转速闭环稳定控制。仿真结果表明该系统具有可控调速、显示直观等特点。 关键词无刷直流电机(BLDCM);Proteus;增量式PID;闭环控制 0引言 无刷直流电机(BLDCM)既有直流有刷电机的特性,又有交流电机无刷的优点,在快速性、可控性、可靠性、输出转矩、结构、耐受环境和经济性等方面具有明显的优势,近年来得到迅速推广[1]。BLDCM是一种用电子换向取代机械换向的新一代电动机,与传统的直流电动机相比,它具有过载能力强,低电压特性好,启动电流小等优点。近年来在工业运用方面大有取代传统直流电动机的趋势,所以研究无刷直流电机的驱动控制技术具有重要的实际应用价值。 本设计采用增量式PID控制策略控制无刷电动机,并在Proteus平台上进行转速闭环系统仿真。搭建了无刷直流电动机转速控制系统的仿真模型,基于80C51控制核心,采用keil C51软件编写C程序。 1系统硬件组成 控制系统的硬件组成如图1所示。采用Atmel公司的AT89S52单片机为系统

控制核心、IR2101驱动的MOSFET三相桥式逆变器、无刷直流电机、A/D转换转速检测、闭环PID控制、按键检测、档位和转速显示等部分组成。 2控制系统核心及外围电路 系统核心AT89S52单片机最小系统及按键电路如图2所示。 AT89S52芯片是8位单片机,具有廉价、实用及运算快等优点,它有两个定时器,两个外部中断接口,24个I/O口,一个串行口。 单片机首先进行初始化,将显示部分(转速显示、档位显示)送显“0”然后通过中断对按键进行检测当检测到启动键按下时,系统启动,控制核心输出初始控制码,与此同时通过AD转换器读取当前的实时转速,一方面用于显示,另一方面将当前转速与设定转速送入PID控制环节然后输出下一时刻的控制码。 在本次设计中使用80C51的外部中断接口0(INT0)作按键检测(见图3),通过四个与门,当有任何一个按键按下去时tap端都会出现低电平引发中断。

开题报告无刷直流电机的控制系统

合肥师范学院本科生毕业论文(设计)开题报告 (学生用表) 装 订 线

第l章主要叙述了无刷直流电机的发展趋势、无刷直流电机的控制技术、研究背景及意义。 第2章首先介绍了无刷直流电机的基本结构和工作原理,然后给出了常见的无刷直流电机的数学模型及其推导过程,在此基础上对无刷直流电机的稳态特性进行了详细分析。 第3章对本控制系统的总体结构和设计进行介绍。主要包括控制系统的整体方案,控制芯片,控制技术以及控制策略的选择。 第4章对控制系统的硬件电路进行设计,包括DSP最小系统、功率驱动电路、采样检测电路、保护电路等的设计,并对各个部分进行了详细的分析。 第5章以TI公司的CCS开发环境为开发工具,对整个控制系统的软件部分进行了设计。 第6章总结与展望,总结了本文的主要工作,展望了以后工作的研究方向。 五、可行性分析 此次研究是在指导老师的指导下搜集,查阅相关资料,确定能够通过应用DSP 芯片进行控制是最优方案,采用TI公司的TMS320F2812作为控制器。根据现在无刷直流电机的控制技术的发展水平和未来的发展趋势及可操作性进行分析,该课题能够顺利进行。 六、设计方案 6.1无刷直流电机的基本结构 无刷直流电机的设计思想来源于利用电子开关电路代替有刷直流电机的机械换向器。普通有刷直流电机由于电刷的换向作用,使得电枢磁场和主磁场的方向在电机运行的过程中始终保持相互垂直,这样能够产生最大的转矩,从而驱动电机不停地运转下去。无刷直流电机取消电刷实现了无机械接触换相,做成“倒装式直流电机"的结构,将电枢绕组和永磁磁钢分别放在定子和转子侧。无刷直流电机必须具有由控制电路、功率逆变桥和转子位置传感器共同组成的换相装置以实现电机速度和方向的控制[5]。因此,可以认为无刷直流电机是典型的机电一体化器件,其基本结构由电动机本体、驱动控制电路及转子位置传感器三部分组成,如图所示。 无刷直流电机的构成 6.2无刷直流电机的工作原理 普通直流电机的电枢在转子上,而定子产生固定不变的磁场。为了使直流电机旋转,需要通过换相器和电刷不断地改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转[6]。 无刷直流电动机为了去掉电刷,将电枢放到定子上,而转子做成永磁体,这样的结构正好与普通直流电动机相反。然而即便是这样的改变仍然不够,因为直流电通入定子上的电枢以后,产生的不变磁场还是不能使电动机转动起来。为了达到使电动机

无刷直流电机控制系统的设计——毕业设计

无刷直流电机控制系统的设计——毕业设计

学号:1008421057 本科毕业论文(设计) (2014届) 直流无刷电机控制系统的设计 院系电子信息工程学院 专业电子信息工程 姓名胡杰 指导教师陆俊峰陈兵兵 高工助教 2014年4月

摘要 无刷直流电机的基础是有刷直流电机,无刷直流电机是在其基础上发展起来的。现在无刷直流电机在各种传动应用中虽然还不是主导地位,但是无刷直流电机已经受到了很大的关注。 自上世纪以来,人们的生活水平在不断地提高,人们在办公、工业、生产、电器等领域设备中越来越趋于小型化、智能化、高效率化,而作为所有领域的执行设备电机也在不断地发展,人们对电机的要求也在不断地改变。现阶段的电机的要求是高效率、高速度、高精度等,由此无刷直流电机的应用也在随着人们的要求的转变而不断地迅速的增长。 本系统的设计主要是通过一个控制系统来驱动无刷直流电机,主要以DSPIC30F2010芯片作为主控芯片,通过控制电路采集电机反馈的霍尔信号和比较电平然后通过编程的方式来控制直流无刷电机的速度和启动停止。 关键词:控制系统;DSPIC30F2010芯片;无刷直流电机

Abstract Brushless dc motor is the basis of brushless dc motor, brushless dc motor is developed on the basis of its. Now in all kinds of brushless dc motor drive applications while it is not the dominant position, but the brushless dc motor has been a great deal of attention. Since the last century, constantly improve the people's standard of living, people in the office, industrial, manufacturing, electrical appliances and other fields increasingly tend to be miniaturization, intelligence, high efficiency, and as all equipment in the field of motor is in constant development, people on the requirements of the motor is in constant change. At this stage of the requirements of the motor is high efficiency, high speed, high precision and so on, so is the application of brushless dc motor as the change of people's requirements and continuously rapid growth. The design of this system mainly through a control system to drive the brushless dc motor, mainly dspic30f2010 chips as the main control chip, through collecting motor feedback control circuit of hall signal and compare and then programmatically to control the speed of brushless motor and started to stop. Keywords: Control system; dspic30f2010 chip; brushless DC motor

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM 驱动信号来控制直流无刷电机转动。

下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。

无刷直流电机控制器的设计

无刷直流电机控制器的设计 3.1 无刷直流电机控制器的概述 无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简 单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。 电机控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:对各种信号进行逻辑综合,以给驱动电路提供各种控制信号;产生PWM调制信号,实现电机的调速;对电机进行速度环和电流环调节,使系统具有较好的动态和静态性能;实现短路、过流、欠压、堵转等故障保护功能。 现代控制技术的发展与微处理器的发展息息相关,可以说,每一次微处理器的进步都推动了控制技术的一次飞跃。在微处理器出现之前,控制器只能由模拟系统构成。由模拟器件构成的控制器只能实现简单的控制,功能单一、升级换代困难,而且由分立器件构成的系统控制精度不高,温度漂移,器件老化严重,使得维护成本增高,限制了它的发展和应用范围。随着微处理器的迅速发展和推广,控制器由模拟式转换成了数模混合式,并进一步发展到全数字式,技术的进步使得许多模拟器件难以实现的功能都可以方便地用软件实现,使系统的可靠性和智能化水平大大提高。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便[9][10]。 控制器是电动自行车的驱动系统,它是电动自行车的大脑。其主要作用是在保证电动自行车正常工作的前提下,提高电机和蓄电池的效率、节省能源、保护

对直流无刷电机的pid控制

PID闭环速度调节器采用比例积分微分控制 闭环速度调节器采用比例积分微分控制(简称PID控制),其输出是输入的比例、积分和微分的函数。PID调节器控制结构简单,参数容易整定,不必求出被控对象的数学模型,因此PID 调节器得到了广泛的应用。 PID调节器虽然易于使用,但在设计、调试无刷直流电机控制器的过程中应注意:PID调节器易受干扰、采样精度的影响,且受数字量上下限的影响易产生上下限积分饱和而失去调节作用。所以,在不影响控制精度的前提下对PID控制算法加以改进,关系到整个无刷直流电机控制器设计的成败。 2速度设定值和电机转速的获取 为在单片机中实现PID调节,需要得到电机速度设定值(通过A/D变换器)和电机的实际转速,这需要通过精心的设计才能完成。 无刷直流电机的实际转速可通过测量转子位置传感器(通常是霍尔传感器)信号得到,在电机转动过程中,通过霍尔传感器可以得到如图2所示的周期信号。 由图2可知,电机每转一圈,每一相霍尔传感器产生2个周期的方波,且其周期与电机转速成反比,因此可以利用霍尔传感器信号得到电机的实际转速。为尽可能缩短一次速度采样的时间,可测得任意一相霍尔传感器的一个正脉冲的宽度,则电机的实际转速为:但由于利用霍尔传感器信号测速,所以测量电机转速时的采样周期是变化的,低速时采样周期要长些,这影响了PID 调节器的输出,导致电机低速时的动态特性变差。解决的办法是将三相霍尔传感器信号相“与”,产生3倍于一相霍尔传感器信号频率的倍频信号,这样可缩短一次速度采样的时间,但得增加额外的硬件开销。直接利用霍尔传感器信号测速虽然方便易行,但这种测速方法对霍尔传感器在电机定子圆周上的定位有较严格的要求,当霍尔传感器在电机定子圆周上定位有误差时,相邻2个正脉冲的宽度不一致,会导致较大的测速误差,影响PID调节器的调节性能。若对测速精度要求较高时,可采用增量式光电码盘,但同样会增加了电路的复杂性和硬件的开销。 电机速度设定值可以通过一定范围内的电压来表示。系统中采用了串行A/D(如ADS7818)来实现速度设定值的采样。但在电机调速的过程中,电机控制器的功率输出部分会对A/D模拟输入电压产生干扰,进行抗干扰处理。 3非线性变速积分的PID算法 (1)PID算法的数字实现 离散形式的PID表达式为: 其中:KP,KI,KD分别为调节器的比例、积分和微分系数;E(k),E(k-1)分别为第k 次和k-1次时的期望偏差值;P(k)为第k次时调节器的输出。 比例环节的作用是对信号的偏差瞬间做出反应,KP越大,控制作用越强,但过大的KP会导致系统振荡,破坏系统的稳定性。积分环节的作用虽然可以消除静态误差,但也会降低系统的响应速度,增加系统的超调量,甚至使系统出现等幅振荡,减小KI可以降低系统的超调量,但会减慢系统的响应过程。微分环节的作用是阻止偏差的变化,有助于减小超调量,克服振荡,使系统趋于稳定,但其对干扰敏感,不利于系统的鲁棒性。 (2)经典PID算法的积分饱和现象 当电机转速的设定值突然改变,或电机的转速发生突变时,会引起偏差的阶跃,使|E(k)|增大,PID的输出P(k)将急剧增加或减小,以至于超过控制量的上下限Pmax,此时的实际控制量只能限制在Pmax,电机的转速M(k)虽然不断上升,但由于控制量受到限制,其增长的速度减慢,偏差E(k)将比正常情况下持续更长的时间保持在较大的偏差值,从而使得PID 算式中的积分项不断地得到累积。当电机转速超过设定值后,开始出现负的偏差,但由于积分项已有相当大的累积值,还要经过相当一段时间后控制量才能脱离饱和区,这就是正向积分饱和,反向积分饱和与此类似。解决的办法:一是缩短PID的采样周期(这一点单片机往往达不到),

相关主题
文本预览
相关文档 最新文档