当前位置:文档之家› 5 有机光致变色材料

5 有机光致变色材料

5 有机光致变色材料
5 有机光致变色材料

一、绪论
应用有机化学
在外界激发源的作用下,一种物质或一个体系 发生颜色明显变化的现象称为变色性。
有机光致变色 光致变色材料 第五章 有机光致变色材料
光致变色(photochromism): 光致变色
分子能够可逆地在两种不同吸收光谱的状态之间的转化, 光致变色是指一种化合物A受到一定波长的光照射时,可 光致变色 发生光化学反应得到产物B,A和B的颜色(即对光的吸收)明 显不同。B在另外一束光的照射下或经加热又可恢复到原来的 形式A。光致变色是一种可逆的化学反应,这是一个重要的判 断标准。 至少有一个反应是光激发的。当然,两种不同的形态不仅是它 们的吸收光谱不同,也可以是其它参数如氧化还原电位、电介 质常数等的不同。 在光作用下发生的不可逆反应,也可导致颜色的变化,只 属于一般的光化学范畴,而不属于光致变色范畴。
将光致变色色素加入透明树脂中,制成光变色材料,可以 用于太阳眼镜片,国内在变色眼镜方面已开始应用。将光致变 光致变色的材料早在1867年就有所报道,但直至1956年 Hirshberg提出光致变色材料应用于光记录存储的可能性之 后,才引起了广泛的注意。研究光致变色材料最多的国家是 美 国 、 日 本 、 法 国 等 , 日 本在 民用 行 业 上开 发比 较 早。 色色素与高聚物连接在一起,可以制成具有光变色性能的材 料,在光电技术和光控装置中很有应用前景。用光致变色材料 可以做成透明塑料薄膜,贴到或嵌入汽车玻璃或窗玻璃上,日 光照射马上变色,使日光不刺眼,保护视力,保证安全,并可 起到调节室内和汽车内温度的作用;还可以溶人或混入塑料薄 膜中,用作农业大棚农膜,增加农产品、蔬菜、水果等的产 量。另一个重要的用途是用作军事上的隐蔽材料,例如军事人 员的服装和战斗武器的外罩等。
1

近年来,将光致变色材料用于光信息存储、光调控、光 开关、光学器件材料、光信息基因材料、修饰基因芯片材料 等领域受到全球范围内的广泛关注。我国研究者利用新型热 稳定螺噁嗪类材料进行可擦除高密度光学信息存储研究方面 取得新进展。他们设计合成了一种具有良好开环体热稳定性 的新型螺噁嗪分子SOFC。这类新型光致变色材料用于信息存 储表现出良好的稳定性,而且可以进行信息的反复写入和擦 除,并可应用于基于双光子技术的多层三维高密度光学信息 存储,表现出很强的应用前景。
分子器件
有光、电、离子、磁、热、力学和化学反应性能的单个 分子或少量分子组装排列而成的有序结构,是在分子层次上 完成信息和能量的监测、转换、传输、存储与处理等功能的 化学及物理系统。简单地说,分子器件就是在分子水平上具 有特定功能的超微型器件。
微电子器件的极限:电子学的发展对人类社会起到了极大的推动作用,特别 是计算机出现以后,微电子器件被应用于人类社会各个领域。研制体积小、 信息容量大、反应迅速的电子器件是发展计算机及信息处理技术的关键,然 而传统硅基器件由于原理性的物理极限、技术性的工艺极限使电子器件的尺 寸不能无限制地减小。
分子器件的特点: 分子电子学
采用“自下而上”(bottom up)的思路,即直接从分子角度出 发,利用化学方法合成具有一定功能的分子,再通过自组装的 方法使其与周围环境相耦合,从而得到分子尺度的器件。寻找 和发展新型微电子器件、促使逻辑运算单元和存储单元的进一 步微型化、开发能够快速地处理大量信息的纳米器件: 分子开关、分子计算机、细胞自动化元件和生物计算机
到 2000 年为止,凡是无机半导体所具有的功能都能在分子水平上找到 相应的器件,如分子整流器(molecular rectifiers)、分子晶体管(molecular transistors)、分子开关(molecular switches)、分子二极管(molecular diodes) 等。 2001 年,分子电子学的研究取得了重大突破,科学家们将单个分子器件 连接起来,构成了具有逻辑功能和运算功能的“分子电路”。 与普通的计算机系统相比较,由分子器件构成的系统除了上述的尺寸优势之 外,它还可以减少电子在不同部件之间的传导时间,从而大大地提高机器的 运算速度。
分子器件的优点是尺寸极小、材料来源丰富、容易制备。 ①比 Si 芯片小 1000 倍的分子芯片,元件数量将增加 100 倍; ②运算和信息处理速度将明显增加,而成本几乎没有增加; ③分子尺度电路的高密度可以实现计算机的极高速度的数据处 理和运算能力,制造出超级计算机。 ① 应含有光、电或离子活性功能基; ② 必须能按特定需要组装成组件,大量的组件有序排列能形 成信息处理的超分子体系; ③ 输出信号必须易于检测。
分子器件应具备的条件:
2

二、分子开关
分子开关的触发条件有:
能量和电子转移、质子转移、构象变化、酸碱反应、氧
所谓分子开关就是具有双稳态的量子化体系。当外界 光、电、热、磁、酸碱度等条件发生变化时,分子的形状、 化学键的生成或断裂、振动以及旋转等性质会随之变化。通 过这些几何和化学的变化,能实现信息传输的开关功能。
化还原反应、光致变色和超分子自组装等。
根据检测手段和触发条件不同,可以把分子开关分为以 下几类:激光超快开关、光致变色开关、荧光开关、电化学 开关、磁性开关、手性开关和超分子开关等。
对分子开关的基本要求:
开关是双稳定的,一种分子的两种构型能在外加能量 下发生改变。任何有两种稳定状态的材料或者器件,如果 能从一种状态变成另外一种状态,并且这种状态是保持不 变且是可分离独自存在的,在原则上都能称之为分子开 关。
对光反应变色的化合物作为分子开关的要求如下:
(1) 在两种构型之间的光化学开关变化是可行的。 (2) 在一个大的温度范围内(例如:-20 oC-80 oC)没有热的相 互转变导致的异构化。 (3) 异构体应该有抗疲劳性,应能够反复循环多次,两种构型 的热和光化学降解都是不允许的。 (4) 两种状态都能被快速的检测到(对于光存储部件来说)。
三、光致变色体系
(5) 无损的读出过程。读出过程不应该与写入过程发生冲突或 改变写入的数据(对于光存储部件来说)。 (6) 高的量子产率,提供有效的开关过程并且避免长的照射时 间。 (7) 如果开关化合物引入到一个大分子结构,它还能保持本身 的性质。 光激发导致从一个稳定的异构体 A 到一个高能量的异构体 B 的开关过程,B 只要克服或低或高的能垒就转变为 A。 光致变色系统中相互转化的物质是其异构体,光反应只是 简单的导致分子中电子和核结构的简单重排,
3

根据光致异构体的热稳定性,光致变色化合物可分为两类: 光致变色是动力学控制的: ① T 类型(热可逆类型)即热可使光致异构体变回原来的状
光化学过程完成后(用激光,千万分之一秒),将会发生 自发的反向反应。然而,不同的系统这种反应可快可慢。有 时,这种光致变色化合物是动力学惰性的,需要用第二束的 光照引发可逆反应。
态; ② P类型(光化学可逆类型)即光致异构体不会在升温的状态 下变回原来的状态。
对于后一类化合物,两个异构体的吸收带不能重叠。
四、光致变色分子开关的类型
(a)二噻吩乙烯;
T 型化合物 为已知的大多数光致变色化合物,二芳烯、俘精酸酐、螺 吡喃、偶氮苯、双氢噁唑啉和 2-苯基苯并(喃) 化合物。
(b)俘精酸酐; (c)螺吡喃; (d)偶单苯; (e)双氢噁唑啉; (f)2-苯基苯并(喃)化合物
P 型化合物
只有两种化合物:俘精酸酐衍生物和二芳烯衍生物。
按光化学反应机制分为:
1 顺反异构机制 (1) 偶氮苯衍生物
1983年提出:利用偶氮聚合物在光异构时产生的双折射 或双色性能用作光存贮材料,随后化学研究人员合成了大量 不同新型分子结构的偶氮聚合物,提出了在偶氮基两侧采用 吸电子-供电子分子结构以提供材料本身的偶极性,从而达到 提高偶氮聚合物的光响应速度;或是提高聚合物的玻璃化温 度(如聚酰亚胺材料) 以提高材料的热稳定性能。
1937 年发现光对偶氮苯中N=N 键的构型产生影响:在300nm 波长光照射下,偶氮苯发生反式向顺式转变,发生异构化时最大 吸收光波长随苯环上的取代基的不同而不同。 偶氮苯衍生物的顺式结构的热稳定性不如反式结构,在受热或 >380 nm 的光照射时会发生顺式向反式转化。
形式:将偶氮苯衍生物溶解于聚合物形成主体/客体体系,或通过键合作用 直接将其接在高分子链上。因偶氮苯衍生物在聚合物中的溶解度有限,故 对后一种方法研究相当多。根据偶氮苯衍生物在聚合物中的位置不同,又 可将这种键合体系分为侧链、主链及链端偶氮聚合。
4

(2) 1, 2-二苯乙烯衍生物 二苯乙烯衍生物
顺式异构体(1Z) 在光照下会发生光环化反应生成二氢菲 (1H),二氢菲(1H)不稳定,容易氧化脱氢生成稳定的菲(1F)。
因1,2-二苯乙烯衍生物在发生顺反异构的同时存在不必要的副反应,从而限制了它 在可逆的光分子开中关的应用。若用其它基团取代容易脱去的二个氢,利用光环 化反应这一性质也可作为分子光开关材料。
2 光环化机制
(1) 螺吡喃
螺吡喃的光致变色行为是基于无色闭环的螺吡喃结构(a)与有 色开环的部花青结构(b)之间可逆的转化。在紫外光照射下,螺吡 喃发生C-O 键断裂生成部花青形态;在可见光照射下或受热时,部 花青发生闭环反应生成螺环结构,C-O键的断裂处在皮秒时域,因 此对光的响应速度快。
a
b
螺吡喃的光致变色行为
开环后的部花青的结构存在N+与O-两性离子结构,为了 提高这种结构的稳定程度,在N+引入供电子的烷基及在O-的 对位或邻位引入吸电子的硝基或氰基等。研究结果表明,这 些改型的分子结构有利于提高部花青结构的热稳定性,同时 还可增加光色反应的量子效率。
(2) 俘精酸酐
俘精酸酐的光致变色现象是由其分子内化学键重排所引起。 俘精酸酐衍生物具有良好的热稳定性能和抗疲劳性能,室温下的 循环寿命高达104次数以上。俘精酸酐的双稳态是基于1, 3, 5-己三 烯的顺旋环化而形成。在紫外光照射时,一般为无色的俘精酸酐 转化为有色的二氢嗪烯结构;在可见光照射下又可逆地生成俘精 酸酐开环结构。
改型的螺吡喃衍生物
(3) 二芳基烯
含杂环的二芳基烯是一类新型的热稳定性及抗疲劳性好 的光分子开关材料。这类物质即使在 300 oC 也不发生热致变 色现象,有色态在 80 oC 存放三个月也不褪色,而且生色与 褪色循环次数达 104次以上。
引入烷基代替氢可避免副产品1F的生成; 引入杂环如呋 喃、噻吩或吡咯代替苯环可以使二芳基烯衍生物的热稳定性 能很大地得到提高;引入环酸酐可以阻止二芳基烯的顺反异 构反应的发生。
5

五、偶氮苯的应用
偶氮苯作为染料有着非常重要的作用,近由于偶氮苯光 驱动可逆顺反异构变化的性质引起了广泛的兴趣。作为连接 桥的偶氮基团的光致异构在生物或者物理化学系统,例如分 子开关、光响应凝胶、离子穿梭机、冠醚或者杯芳烃和各种 不同的分子器件中得到了重要的应用。
1 偶氮苯的合成方法
(1) 重氮盐与活泼芳香族化合物的偶联反应
反应从芳香伯胺出发,经亚硝酸作用生成重氮盐, 遇活泼芳香化合 物偶联生成偶氮类衍生物。 反应优点:简单、方便、快速;缺点是:重氮化是放热反应,重 氮盐对热不稳定,因此要在冷却的情况下进行,维持温度在 0°C 附 近。由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氯 盐,遇热或振动、摩擦,都将发生爆炸,必须极其小心。
(3)芳香胺与芳香亚硝基化合物反应生成偶氮苯衍生物 (2)重氮盐在 Cu+催化氧化生成偶氮苯衍生物
一般用来合成不对称的偶氮化合物
(4)部分还原硝基来制备偶氮苯
2 偶氮苯在分子开关模型方面应用
通过外界刺激控制单个分子的机械运动引起了人们广泛 的兴趣。偶氮苯的光致异构现象能引起偶氮苯分子形状的改 变,从而能导致整个分子的形状发生改变,由此合成了分子 镊子、分子剪刀等分子开关的模型化合物。 反应中 Zn 为还原剂,乙醇为供质子剂,硝基苯被部分还 原,生成偶氮苯,一般用来合成对称型偶氮苯。
6

分子剪刀:
偶氮苯部分为整个“剪刀”的驱动部分;二茂铁为“剪刀”的轴; 苯环为“剪刀“的刀片。
分子镊子
当用紫外光对其进行照射,偶氮苯部分发生顺反异构;用可见光对其进 行照射,能回复到开的状态,从而实现了光驱动“分子剪刀”的运动。
3. 在液晶高分子方面的应用
A 掺杂 5% 4-丁基-4’-甲氧基-偶氮苯B作为光开关分子。用 366nm 的紫 外光对其进行照射时,给主体液晶聚合物带来了相转变,液晶聚合物由向 列相转变为各向同性,当用 525nm 的可见光对其进行照射时,主体液晶聚 合物恢复到初始状态。
4.在可逆的主客体化学方面的应用
主客体化学中主体化合物对特定类型的客体有明显的选择 性。可逆的改变主体化合物的构象可达到控制络合的行为的目 的,为冠醚作为化学开关提供了机遇。
A
B
当纯的反式异构体用 330-380 nm 的紫外光进行照射后, 紫外光谱监测显示 70-80%转变为顺式异构体。顺式异构体能 够通过波长>460 nm 的可见光照射或者加热来回复到反式异 构体。反式异构体中聚乙烯乙二醇单元的伸展排列引起对碱 金属阳离子没有络合能力。当发生异构化反应转变为顺式异
1979 年,Shinkai 报道了通过 N=N 双键的异构化来控制冠醚的构象,通 过改变偶氮冠醚 的络合行为,开创了光控开关主-客体系统。
构体后,形成了一个大的空穴,冠醚能够很好的络合 Na+, K+和 Rb+。
7

5. 改变导电率方面的应用
含偶氮苯基团功能化的电荷传输络合物的膜,膜的导电率可以 由偶氮苯部分的光化学诱导改变。
纯的反式异构体经过波长为 365 nm 的紫外光照射, 有 25%转变为顺式异构体,室温条件下由顺式热回复到反 式异构体的半衰期为 3h,也可以用波长为 436 nm 的可见 光对其进行照射来重新生成反式异构体。 顺、反异构体比例为 25:75 时,测量的 LB 膜的导 电率比纯的反式异构体的导电率增加了大约30%,对这种 行为的初步解释是由于偶氮苯部分发生的反式到顺式的异 构化,增加了 TCNQ 柱状物区域的有序性从而增加了 LB 膜的导电性。当循环改变紫外/可见光的照射。循环 10次 后吸收值降低了 1%,可能是由于有副反应的发生。
开关部分(switching unit,偶氮苯)、传输部分(transmission unit,烷基链)、工 作部分(working unit,由四氰苯醌和吡啶阳离子组成的电荷传输络合物)。
6. 光存储材料
光盘存储技术是数字化存储和读出,能与计算机直接连 接,与磁存储相比较,具有存储容量大、寿命长、不易损坏等 优点。因此光存储材料的研制开发是近年来倍受关注的前沿课 题偶氮苯聚合物侧基上的偶氮苯基团在一定波长的紫外光照射 下,可发生光诱导异构化反应,产生光致变色现象,可用于光 信息存储材料。存储信息的密度与波长的平方成反比 (D∝1/λ2)。因而使用短波长光源,可以减小记录畴的尺寸,
Conductivity signal changed by alternate irradiation with UV/Vis light.
达到提高光存储密度的目的。而偶氮苯基团的吸收波长较短, 因此特别适合作为高密度光存储材料。
六、二芳基乙烯的应用
8

1 二芳基乙烯的合成
( )



9

( )
( )
2、二芳基乙烯的性质






10



量子效率
?=
发生反应的分子数 发生反应的物质的量 = 被吸收的光子数 被吸收光子的物质的量
量子产率 ? =
生成产物 B的分子数 生成产物 B的物质的量 = 被吸收的光子数 被吸收光子的物质的量
3、二芳基乙烯聚合物

1 什么是光致变色?

2 什么是分子器件?有什么优点?应具有的条件?触 发条件? 3 偶氮苯的合成方法?在光致变色领域有什么应用?
11

5 有机光致变色材料

一、绪论
应用有机化学
在外界激发源的作用下,一种物质或一个体系 发生颜色明显变化的现象称为变色性。
有机光致变色 光致变色材料 第五章 有机光致变色材料
光致变色(photochromism): 光致变色
分子能够可逆地在两种不同吸收光谱的状态之间的转化, 光致变色是指一种化合物A受到一定波长的光照射时,可 光致变色 发生光化学反应得到产物B,A和B的颜色(即对光的吸收)明 显不同。B在另外一束光的照射下或经加热又可恢复到原来的 形式A。光致变色是一种可逆的化学反应,这是一个重要的判 断标准。 至少有一个反应是光激发的。当然,两种不同的形态不仅是它 们的吸收光谱不同,也可以是其它参数如氧化还原电位、电介 质常数等的不同。 在光作用下发生的不可逆反应,也可导致颜色的变化,只 属于一般的光化学范畴,而不属于光致变色范畴。
将光致变色色素加入透明树脂中,制成光变色材料,可以 用于太阳眼镜片,国内在变色眼镜方面已开始应用。将光致变 光致变色的材料早在1867年就有所报道,但直至1956年 Hirshberg提出光致变色材料应用于光记录存储的可能性之 后,才引起了广泛的注意。研究光致变色材料最多的国家是 美 国 、 日 本 、 法 国 等 , 日 本在 民用 行 业 上开 发比 较 早。 色色素与高聚物连接在一起,可以制成具有光变色性能的材 料,在光电技术和光控装置中很有应用前景。用光致变色材料 可以做成透明塑料薄膜,贴到或嵌入汽车玻璃或窗玻璃上,日 光照射马上变色,使日光不刺眼,保护视力,保证安全,并可 起到调节室内和汽车内温度的作用;还可以溶人或混入塑料薄 膜中,用作农业大棚农膜,增加农产品、蔬菜、水果等的产 量。另一个重要的用途是用作军事上的隐蔽材料,例如军事人 员的服装和战斗武器的外罩等。
1

有机光致变色存储材料进展

有机光致变色存储材料进展Ξ 李 瑛 谢明贵 (四川大学化学系,成都,610064) 摘 要 本文综述了最近二十年来在有机光致变色存储材料方面的进展。 关键词 光盘 有机光存储材料 光致变色化合物 1 引 言 光致变色现象最早是在生物体内发现,距今已有一百多年的历史。随后,本世纪40年代又发现了无机化合物和有机化合物的光致变色现象。光致变色材料的特异性能给这类化合物带来了广阔的、重要的应用前景。尤其是有机光致变色材料与半导体激光信号相匹配,成为新的一代光信息存储材料[1]。1993年9月在法国召开的首届有机光致变色化学和材料国际学术讨论会,宣告了一个在化学、物理和材料科学基础上互相渗透、互相交叉的新学科“光致变色化学和材料科学”的诞生。 光盘是继缩微技术(始于40年代)和磁性存储介质(始于60年代)之后所发展起来的一种崭新的信息存储系统[2]。它是通过激光束照射到旋转的圆盘(由保护层、记录介质层、反射层及基片组成)上,利用记录介质层所发生的物理和(或)化学变化,从而改变光的反射和透过强度而进行二进制讯息的记录。它的特点是:存储密度高、信息容量大(比磁盘高100倍以上);保存时间长(可达100年以上);防污染性能好;读出速度快。光盘的光学记录层分为:形成坑或孔的记录层、形成热泡的记录层、磁光记录层、染料/聚合物记录层、相变记录层和合金记录层。依功能的不同,光盘可分为三大类型:只读型光盘(Read only memory,ROM);一次写多次读型光盘(Write once read many,WORM)和可擦除型光盘(Erasable direct read after write,EDRAW)。根据当前光盘的发展趋势,本文将主要讨论EDRAW类型光盘用有机光致变色存储材料。 2 EDRAW光盘的结构及主要类型EDRAW光盘不同于CD(Compact disc)和WORW光盘,其存储是可逆的,即可写、读、擦。目前的EDRAW光盘存储信息密度达108bit/cm2,光道密度达8000~9000tracks/cm(磁盘1000~1500track/cm)。研制的类型主要有基于磁光效应(Mag2 neto-optical,m/o),可逆相变(Reversible phase change),光致变色(Photochromic)等。目前已经商品化的是磁光盘及相变光盘,但均系无机存储材料。 EDRAW光盘有两种规格,一是直径为3.25″(约130M Byte)主要用于个人电脑;另一种直径为5.25″(约300M Byte)用于档案数据存储。EDRAW 光盘的结构见图1 。 图1 EDRAW光盘结构示意图 Fig1Schematic structure of EDRAW disk 3 光致变色存储的工作原理 3.1 光致变色 一些无机和有机化合物,在某些波长的光作用下,其颜色发生可逆的变化,这就是光致变色现象。它具有三个主要特点:(a)有色和无色亚稳态间的可控可逆变化;(b)分子规模的变化过程;(c)亚稳态间的变化程度与作用光强度呈线性关系。 A λ 1 λ 2 B 大多数有机光致变色物质对紫外线敏感易变色,受热,可见光和红外线又会使其消色。光致变色物质可分为两大类:正光致变色性(Normal pho2 tochromism)和逆光致变色性(Reverse pho2 tochromism)。若λ2>λ1,此称为(正)光致变色。其中A B为光发色反应,B A为光退色或热退 Ξ四川省科学基金资助项目初稿收到日期:1997203215终稿收到日期:1997205230

有机光致变色材料汇总

有机光致变色材料 有机光致变色现象发现至今已有100 多年的历史。1867年Fritzsche 观察到黄色的并四苯在空气和光作用下的褪色现象,所生成的物质受热时重新生成并四苯,变回原来的颜色。1876 年Meer 首先报道了二硝基甲烷的钾盐经光照发生颜色变化。Markward 于1899 年研究了1 ,42二氢22 ,3 ,4 ,42四氯萘212酮在光作用下生的可逆的颜色变化行为,并把这种现象称为光色互变。 20 世纪50年代Hirshberg 陆续报道了关于螺吡蝻类化合物受光照变色,在另波长的光照射下或热的作用下又能恢复到原来颜色的现象,并把上述现象称为光致变色现象(photochromism) 。 20 世纪80 年代螺噁嗪类、苯并吡喃类抗疲劳性较好的化合物的发现使得光致变色化合物研究真正兴起。目前,对光致变色化合物的研究主要集中在俘精酸酐、二芳基乙烯、螺吡喃、螺噁嗪以及相关的杂环化合物上,同时也在探索和发现新的光致变色体系。 光致变色现象 光致变色现象[6 ] 是指一个化合物(A) 在受到一定波长的光照

射时,可进行特定的光化学反应,获得产物(B) ,由于结构或电子组态的改变而导致其吸收光谱发生明显的变化;而在另一波长光的照射下或热的作用下,又能恢复到原来的形式。其典型的紫外- 可见吸收光谱和光致变色反应可 以用图1 - 1 定性描述 1 有机光致变色化合物的分类 1.1 有机光致变色化合物 有机光致变色材料种类繁多,反应机理也不尽相同,主要包括:①键的异裂,如螺吡喃、螺嗯嗪等;②键的均裂,如六苯基双咪唑等;③电子转移互变异构,如水杨醛缩苯胺类化合物等;④顺反异构,如周萘靛兰类染料、偶氮化合物等;⑤氧化还原反应,如稠环芳香化合物、噻嗪类等;⑥周环化反应,如俘精酸酐类、

光敏高分子材料的研究进展

光敏高分子材料的研究进展 骆海强,重庆大学化学化工学院应用化学2班 摘要:由于当今材料科学技术的快速更迭,高分子材料逐渐成为材料科学领域中极具发展潜力的一类材料。在可利用能源不断缩减的今天,光敏高分子材料的研究力度大大提升,逐渐成为现代生活中不可或缺的部分。本文分别对光敏高分子材料的四大类——感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料本身的特性及应用进行了综述性概括,以便快捷了解光敏高分子材料的特点。 0前言 随着材料科学技术相关研究人员在该领域的不断探索,高分子材料无论是在科研领域还是社会生活中,都扮演着极为重要的角色。在光电材料研究风气盛行的当下,太阳能电池、太阳能汽车等光能利用、转化设备普及的大环境下,光敏高分子材料的研究力度渐渐增加,也得到了许多理想的科研成果, 1光敏高分子材料概述 在光照下能表现出特别性能的高分子聚合物即为光敏高分子材料,是材料科学里一类主要的功能高分子材料,所触及范畴也较为普遍,如光致抗蚀剂、光导电高分子、高分子光敏剂等功能材料。 光敏高分子材料根据其自身在光照条件下所产生的反应类型及其展现出的特征性能,可以分成如下四类:感光性高分子材料、光能转化高分子材料、光功能高分子材料及高分子非线性光学材料。 现基于以上分类,对各种材料进行阐述。 2 感光性高分子材料 在光照下可以进行光化学反应的高分子材料常被称为感光性高分子材料。

根据其用途可分为光敏涂料和光刻胶。 2.1光敏涂料 2.1.1光敏涂料的作用机理 光敏涂料具有光敏固化功能,可以利用光交联反应或光聚合反应,使其中的低聚物聚合成膜或网状。经过恰当波长照射后,光敏涂料会快速固化,获得膜状物。因为固化过程较为稳定不易挥发溶剂,从而降低了排放,提高了材料利用,保障了安全性。而且由于是在覆盖之后才发生的交联,使图层交联度更好,机械强度也更稳固。 2.1.2光敏涂料的中常见低聚物的类型 以铁酸锌环氧酯错误!未找到引用源。错误!未找到引用源。涂料为一类的环氧树脂型低聚物,在紫外光的处理下,给电冰箱表面上漆,能够是冰箱表面具有很好的柔顺性且不宜脱落。以含氟丙烯酸酯预聚物错误!未找到引用源。为一类的不饱和聚酯型低聚物,与光引发剂等结合后形成的混合型涂料,其硬度、耐挂擦力、附着力等性能大大提高。此外还有聚氨酯型低聚物错误!未找到引用源。及聚醚型低聚物。 2.2光刻胶(光致抗蚀剂) 2.2.1光刻胶的作用机理 生产集成电路的现有工艺中,通常会用这类感光性树脂覆盖在氧化层从而避免其被活性物质腐蚀。将设计好的图案曝光、显影,改变了其溶解性,其中树脂发生化学反应后去除了易溶解的物质,氧化层表面留下不溶部分,从而避免氧化层被活性物质腐蚀。 2.2.2光刻胶的分类 正性光刻胶和负性光刻胶错误!未找到引用源。是根据曝光前后涂膜的溶解性来分类的。其中正性光刻胶受光后会降解,被显影液所消融;而与之相反,在光照后,负性光刻胶获得的图形恰好与掩膜板图形互补,即曝光处会发生交链反应形成不溶物残余在表面形成图像,而非曝光处则如正性光刻胶同样被消融,。 根据光刻胶所吸收的光的紫外波长,还可将其分为深紫外(i-线,g-线)光刻胶,远紫外(193 nm)光刻胶和极紫外(13. 5nm)光刻胶错误!未找到引用源。。Lawrie等错误!未找到引用源。经过多次实践合成了一种感光灵敏度为4~6 mJ/cm2、分辨率为22.5 nm的

有机光致变色材料最新研究综述

有机光致变色材料最新研究综述 刘辉 (武汉理工大学理学院) 摘要:本文介绍了有机光致变色材料体系的国内国外研究发展过程,介绍了不同体系光致变色机理,光致变色材料在信息、染料等方面的应用。 关键词:有机光致变色材料机理应用 The Recect Advance in Organic Photochromic System Hui Liu (Wuhan University of Technology) Abstract:This article have introduced the recent advance in organic photochromic system .The application of photochromic system in the area of IT、dyestuff and so on.The chromic mechanism of photochromic. Key words: Organic photochromic system mechanism application 前言 光致变色(Photochromism)是指化合物A在一定波长λ1光照射下,通过特定的化学反应生成结构和光学性能不同的化合物B,在另外一定波长λ2或者热的条件下,B又会可逆地生成化合物A的现象,其变化化学式如下:

这一过程的基本特征是:A、B在一定条件下都能稳定存在,且颜色区别明显,;A和B之间的变化是可逆的。其中温度导致的褪色材料称为T(Thermal)型,这类材料受到激发后反应速度和褪色速度都比较快;光辐射作用导致的变色材料称为P(Photoactive)型,这类材料的消色过程是光化学过程,有较好的稳定性和变色选择性。【1】 本文着重介绍有机光致变色的国内外发展状况和各变色体系的变色机理。 1光致变色材料的分类 1.1有机光致变色化合物 有机光致变色材料种类很多,反应机理也不尽相同,主要包括:①键的异裂,如螺吡喃、螺噁嗪等;②键的均裂,如六苯基双咪唑等;③电子转移互变异构,如水杨醛苯胺类化合物等;④顺反异构,如偶氮化合物等;⑤周环化反应,如俘精酸酐类,二芳基乙烯等。下面介绍几类主要的有机光致变色材料。 (1)螺吡喃类 螺吡喃是有机光致变色材料中研究和应用最早、最广泛的材料之一,其变色机理:

光致变色材料制备用途以及进展

光致变色材料制备用途以及进展 (青岛科技大学化学与分子工程学院应用化学084班李) 摘要: 本文针对光致变色材料这一新型材料,综述了光致变色材料的变色原理及分类,并着重对含氧、氮、硫杂螺环结构的光致变色化合物研究进展,有机光致变色高分子材料的加工方法、性能优劣及研究进展进行了论述,最后对光致变色材料的应用前景进行了总结和展望。 关键词:光致变色有机光致变色材料含氧、氮、硫杂螺环结构的光致变色 化合物 1 光致变色原理 光致变色现象[1](对光反应变色)指一个化合物(A)受一定波长( 1)光的照射,进行特定化学反应生成产物(B),其吸收光谱发生明显的变化;在另一波长( 2)的光照射下或热的作用下,又恢复到原来的形式: 严格意义上的光致变色化合物的主要结构形式有两种:1)光致变色材料分子作为侧链基团直接或通过间隔基与主链大分子相联;2)光致变色材料分子作为主链结构单元或共聚单元而形成聚合物但随着研究的不断深入,变色材料种类和结构形式也不断扩大,也有人认为将光致变色化合物添加到聚合物中形成聚合物的类型添加进来,但此种形式仍存在广泛争议 光致变色材料发展至今,按照不同判别标准其分类方式多种多样如果按照材料光反应前后颜色不同分类,可分为正光色性类和逆光色性类两种;而按照变色机理进行分类时,则可分为T类型和P类型;P类型材料的消色过程是光化学过程,有较好的稳定性和变色选择性[2]。 但应用最广泛的分类方法则是按照材料物质的化学成分进行分类,即分为无机化合物和有机化合物两大类 它主要有三个特点[3]:①有色和无色亚稳态问的可控可逆变化;②分子规模的变化过程;③亚稳态间的变化过程与作用光强度呈线性关系。光致变色反应中的成色和消色过程的速度和循环次数(即抗疲劳性)是其实际应用的决定性因素。 光致变色材料要想真正达到实用化,还必须满足以下条件: ○1A和B有足够高的稳定性; ○2A和B有足够长的循环寿命; ○3吸收带在可见光区;响应速度快,灵敏度高。 2 含氧、氮、硫杂螺环结构的光致变色化合物 2.1 螺吡喃化合物 1952 年Fisdher 和Hirshberg[4]首次发现了螺吡喃的光致变色性质, 1956年

有机光致变色与存储材料的研究现状

有机光致变色与存储材料的研究现状 材料化学 摘要本文综述了最近十年来在有机光致变色存储材料方面的进展。重点介绍了二芳基乙烯化合物光致变色性能的相关内容。 引言 21 世纪是信息时代, 海量信息存储与高速传输成为进一步发展信息高技术产业的要求, 光信息存储已成为当今公认的重大科学技术领域的前沿课题之一. 而且随着现代科学技术的迅猛发展, 许多领域的研究开发水平都达到了前所未有的高度, 人类对计算机、电子、生物技术、材料等诸多学科提出了更高的发展要求, 需要更加快速、大容量的信息存储材料, 响应时间上甚至希望能够达到纳秒、皮秒级, 最终的目标是在分子水平甚至原子水平上存储信息. 高性能的有机光致变色材料正是能够满足这种要求的极具潜力的存储材料之一, 因为光致变色材料是以光子方式记录信息, 一旦实用化, 将实现人们所期待的光存储高速度、大容量的特性. 基本概念与原理介绍 在外界激发源的作用下,一种物质或一个体系发生颜色明显变化的现象称为变色性。 一、光致变色现象(photochromism): 光致变色是指一种化合物A受到一定波长(λ1)的光照射时,可发生光化学反应得到产物B,A 和B的颜色(即对光的吸收)明显不同。B在另外一束光(λ2 )的照射下或经加热又可恢复到原来的形式A。 光致变色是一种可逆的化学反应,这是一个重要的判断标 准。这种在光的作用下能够发生可逆颜色变化的化合物,称为 光致变色化合物。分子能够可逆地在两种不同吸收光谱的状态 之间的转化,至少有一个反应是光激发的。当然,两种不同的 形态不仅是它们的吸收光谱不同,也可以是其它参数如氧化还 原电位、电介质常数等的不同。 在光作用下发生的不可逆反应,也可导致颜色的变化,只 属于一般的光化学范畴,而不属于光致变色范畴。 二、光致变色存储的工作原理 光盘记录的基本原理都是基于记录介质受激光辐射后所发生的物理或化学变化为基础的。光致变色材料作记录介质时,其具体记录过程是:首先用波长λ 1 的光(擦除光) 照射,将存储介质由状 态A 转变到状态B。记录时,通过波长λ 2的光(写入光) 作二进制编码的信息写入,使被λ 2 的光照 射到那一部分由状态B 转变到状态A 而记录了二进制编码的“1”;未被λ 2 的光照射的另一部分仍为状态B ,它对应于二进制编码的“0”。 信息的读出可以用读出透射率变化的方法,也可以用读出折射率变化的方法。 读出透射率变化是利用波长λ 2 的光的照射,测量其透射率变化而读出信息的。当λ 2 的光照 射到编码为“0”处(状态B) 时,因吸收大而透射率很小。当λ 2 的光照射到编码为“1”处(状态A) 时,因无吸收而透射率大。从而根据透射率的大小能够测得已记录的信息。 读出折射率变化是利用波长不在两个吸收谱中的光的照射、测量其折射率的变化而读出信息的。这是由于吸收谱的变化必然会产生折射率的变化。但要测出状态A 和状态B 的折射率的不同,就要加厚记录介质的厚度。这样,写入光的能量密度和功率就要提高数倍。 三、主要有机光致变色体系简介

光致变色材料的研究及应用进展

Journal of Advances in Physical Chemistry 物理化学进展, 2018, 7(3), 139-146 Published Online August 2018 in Hans. https://www.doczj.com/doc/0b8869770.html,/journal/japc https://https://www.doczj.com/doc/0b8869770.html,/10.12677/japc.2018.73017 Research and Application Progress of Photochromic Materials Yue Sun College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu Sichuan Received: Aug. 5th, 2018; accepted: Aug. 18th, 2018; published: Aug. 27th, 2018 Abstract Photochromic materials, as an important subject in the field of high technology, have wide appli-cation value and development prospect. According to different types, this paper summarizes the research progress and related applications of organic photochromic materials, inorganic pho-tochromic materials and inorganic-organic hybrid photochromic materials, and briefly discusses the future development trend. Keywords Photochromatism, Research Progress, Application, Development Trend 光致变色材料的研究及应用进展 孙悦 西南石油大学化学化工学院,四川成都 收稿日期:2018年8月5日;录用日期:2018年8月18日;发布日期:2018年8月27日 摘要 光致变色材料作为当前高科技领域研究的重要课题,具有广阔的应用价值和发展前景。根据类型不同,本文分别综述了有机光致变色材料、无机光致变色材料以及无机–有机杂化光致变色材料的研究进展及相关应用,并对光致变色材料未来的发展趋势作了简要探讨。 关键词 光致变色,研究进展,应用,发展趋势

光致变色材料

光致变色材料 世界正因为有了颜色而五光十色,生活正因为有了颜色而变得多姿多彩,这一切都来自于大自然的馈赠和人类的聪明才智。随着科技一日千里,人类已经能用多种方式来表现颜色、应用颜色,其中变色材料的研制和应用给我们带来耳目一新的“多彩”生活。 在外界激发源的作用下,一种物质或一个体系发生颜色明显变化的现象称为变色性。光致变色是指一种化合物A受到一定波长的光照射时,可发生光化学反应得到产物B,A和B的颜色(即对光的吸收)明显不同。B在另外一束光的照射下或经加热又可恢复到原来的形式A。光致变色是一种可逆的化学反应,这是一个重要的判断标准。在光作用下发生的不可逆反应,也可导致颜色的变化,只属于一般的光化学范畴,而不属于光致变色范畴。 光致变色的材料早在1867年就有所报道,但直至1956年Hirshberg提出光致变色材料应用于光记录存储的可能性之后,才引起了广泛的注意。光致变色现象指的是化合物在受光照射后,其吸收光谱发生改变的可逆过程,具有这种性质的物质称为光致变色材料或光致变色色素。人们最熟知的就是通常感光照相使用的卤化银体系,分散在玻璃或胶片中的银微晶在紫外光照下成黑色,但在黑暗下加热又逆转,变成无色状态。目前,对光致变色的研究大都集中在二芳基乙烯、俘精酸酐、螺吡喃、螺嗪、偶氮类以及相关的杂环化合物上,同时也在继续探索和发现新的光致变色体系。研究光致变色材料最多的国家是美国、日本、法国等,日本在民用行业上开发比较早。 将光致变色色素加入透明树脂中,制成光变色材料,可以用于太阳眼镜片,国内在变色眼镜方面已开始应用。将光致变色色素与高聚物连接在一起,可以制成具有光变色性能的材料,在光电技术和光控装置中很有应用前景。用光致变色材料的涂料可以制作成各种日用品、服装、玩具、装饰品、童车或涂布到内外墙上、公路标牌和建筑物等的各种标示、图案,在光照下会呈现出色彩丰富、艳丽的图案或花纹,美化人们的生活及环境;可以做成透明塑料薄膜,贴到或嵌入汽车玻璃或窗玻璃上,日光照射马上变色,使日光不刺眼,保护视力,保证安全,并可起到调节室内和汽车内温度的作用;还可以溶人或混入塑料薄膜中,用作农业大棚农膜,增加农产品、蔬菜、水果等的产量。另一个重要的用途是用作军事上的隐蔽材料,例如军事人员的服装和战斗武器的外罩等。 近年来,将光致变色材料用于光信息存储、光调控、光开关、光学器件材料、光信息基因材料、修饰基因芯片材料等领域受到全球范围内的广泛关注。我国研究者利用新型热稳定螺噁嗪类材料进行可擦除高密度光学信息存储研究方面取得新进展。他们设计合成了一种具有良好开环体热稳定性的新型螺噁嗪分子SOFC。这类新型光致变色材料用于信息存储表现出良好的稳定性,而且可以进行信息的反复写入和擦除,并可应用于基于双光子技术的多层三维高密度光学信息存储,表现出很强的应用前景。

有机光致变色自由基化合物研究进展

有机光致变色自由基化合物研究进展 摘要:本文对近年来有机光致变色自由基化合物的研究进展进行综述,着重介绍了联茚满烯二酮类自由基衍生物的发展,对自由基的生成和变色机理做了较为细致的介绍。 关键词:光致变色,光致磁性,(联茚满)二羟基烯二酮,机自由基 前言 作为人类社会生活的物质基础,材料、能源、与信息并列为现代科学技术的三大支柱。高新技术的发展与应用给人们的生产生活带来极大的方便,同时也激励着人们向更高的目标奋进。然而,所有这些高新技术的发展与应用无一不依赖于新的特殊材料的发展与应用,它们不断引起生产力的巨大变革,推动社会向前发展。在当今社会,随着人类社会的不断进步及科学技术水平的不断提高,对材料的要求也越来越高,迫使人们不断研制开发各种新型材料,使之向着信息化、功能化、多元化和智能化的方向发展[1]。 在材料科学领域.无机材料是被广泛应用于生产生活各个部门的一类传统型材料。但是,由于其受到种类、密度和加工条件的限制,新产品的研制开发相对缓慢,已渐渐不能满足高新技术领域快速发展的需要。在这种情况下,20世纪80年代,有机固体功能材料应运而生,并很快获得了迅猛的发展,取得了丰硕的研究成果。各国政府和企业纷纷投资,激烈竞争;各种国际学术会议接踵而来[2],若干学术刊物也相继出现[3]。 有机固体功能材料[4]是一门多学科交叉的边缘学科,涉及到有

机化学、无机化学、高分子化学、固体物理和材料科学等,研究成果遍及有机半导体、有机光导体、有机导体和超导体、导电聚合物、有机非线性光学材料、有机铁磁体等各个新型的功能材料研究领域。而且,有机分子的多样性使设计、合成具有光、电、磁等多种物理性质的化合物成为可能;同一化合物所表现出来的物理或化学性质可以相互关联或具有协同效应。因此,由多功能的有机化合物制备多功能有机固体材料具有更重大的理论意义和更广阔的应用前景,并逐渐成为有机固体功能材料领域中最热门的话题。 光致变色磁性有机材料是一个全新的研究领域,目前仅有很少的几例报道。它是把有机化合物的特殊功能性质——光致变色和特殊电子性质——磁性结合起来,形成一个新的交叉边缘研究领域。本文介绍了一类全新的,既具有最重要的特殊电子性能一磁性,同时又具有晶体状态下光致变色性能的双功能有机化合物一(联茚满)二羟基烯二酮类光致变色磁性化合物及其光致变色机理。此类化合物的研制成功不仅实现了多功能有机固体材料在高科技领域中的应用,而且为新型多功能有机固体材料的研制与开发提供了很好的理论模型,具有重要的理论意义。 一、主要的有机光致变色体系 有机光致变色物质按其反应机理可分为以下几种[5]:键的异裂,如螺吡喃、螺噻喃、螺嗯嗪等化合物;键的均裂,如三芳基咪唑二聚体等化合物;周环反应体系,如俘精酸酐等化合物;顺反异构,如偶氮化合物等;氢转移互变异构,如水杨醛缩苯胺类化合物;氧化一还

光致变色材料制备汇编

光致变色材料制备与合成 摘要:本文针对光致变色材料这一新型材料,综述了光致变色材料的变色原理及分类,并着重对含氧、氮、硫杂螺环结构的光致变色化合物研究进展,有机光致变色高分子材料的加工方法、性能优劣及研究进展进行了论述,最后对光致变色材料的应用前景进行了总结和展望。 关键词:光致变色有机光致变色材料含氧、氮、硫杂螺环结构的光致变色化合物 1 光致变色原理 光致变色现象[1](对光反应变色)指一个化合物(A)受一定波长( 1)光的照射,进行特定化学反应生成产物(B),其吸收光谱发生明显的变化;在另一波长( 2)的光照射下或热的作用下,又恢复到原来的形式: 严格意义上的光致变色化合物的主要结构形式有两种:1)光致变色材料分子作为侧链基团直接或通过间隔基与主链大分子相联;2)光致变色材料分子作为主链结构单元或共聚单元而形成聚合物但随着研究的不断深入,变色材料种类和结构形式也不断扩大,也有人认为将光致变色化合物添加到聚合物中形成聚合物的类型添加进来,但此种形式仍存在广泛争议 光致变色材料发展至今,按照不同判别标准其分类方式多种多样如果按照材料光反应前后颜色不同分类,可分为正光色性类和逆光色性类两种;而按照变色机理进行分类时,则可分为T类型和P类型;P类型材料的消色过程是光化学过程,有较好的稳定性和变色选择性[2]。 但应用最广泛的分类方法则是按照材料物质的化学成分进行分类,即分为无机化合物和有机化合物两大类 它主要有三个特点[3]:①有色和无色亚稳态问的可控可逆变化;②分子规模的变化过程;③亚稳态间的变化过程与作用光强度呈线性关系。光致变色反应中的成色和消色过程的速度和循环次数(即抗疲劳性)是其实际应用的决定性因素。 光致变色材料要想真正达到实用化,还必须满足以下条件: ①A和B有足够高的稳定性; ②A和B有足够长的循环寿命;

光致变色高分子材料

光致变色高分子材料 摘要光致变色高分子是一类新型的功能高分子材料这类材料经光照后, 其化学性能, 与物理性能特别是在颜色方面会发生可逆的变化本文对光致变色高分子的研究状况进行了较全面的综述, 文中对主要的光致变色高分子, 诸如聚甲亚胺型、硫卡巴踪型、偶氮苯型、苟二酮型、邃漆型和含螺结构型等进行了讨论。关键词:光致变色高分子原理种类合成应用 引言 高分子材料的研究与应用己给人类带来了巨大的益处, 迄今科学家们仍不遗余力开拓多种新型的高分子材料, 光致变色高分子材料就是近年来受到人们瞩目的新型功能高分子材料之一光致变色材料的研究始于本世纪初叶, 人们在对功能性染料的研究中发现多种物质在不同波长的光照射时呈现不同的颜色, 有的在可见光照射下产生颜色变化, 停止光照后又能回复原来的颜色这些现象引起高分子研究者的注意, 于是, 许多研究者们把光致变色的功能性染料引入到高分子的侧链或主链中, 或与高分子化合物共混, 从而开发出一系列具有光致变色特性的新型高分子材料功能性光致变色染料是小分子, 不便于制造成器件, 光致变色高分子恰恰在这方面有很大的优势, 因而更加促进了光致变色高分子的研究与开发。【1】 1 光致变色的基本原理 由于有机物质在结构上千差万异, 因而光致变色机理也多有不同宏观上可分为光化学过程变色和光物理过程变色两种。 光化学过程变色较为复杂, 可分为顺反异构反应、氧化还原反应、离解反应、环化反应以及氢转移互变异构化反应等等。 兹以侧链带偶氮苯的光致变色高分子为例, 这是典型的顺反异构变色机理在光作用下, 偶氮苯从稳定的反式转变为不稳定的顺式, 并伴随着颜色的转变, 后面我们将进一步说明。 关于光物理过程的变色行为, 通常是有机物质吸光而激发生成分子激发态, 主要是形成激发三线态, 而某些处于激发三线态的物质允许进行三线态一三线态的跃迁, 此时伴随有特征的吸收光谱变化而导致光致变色。

光敏高分子材料

光敏高分子材料 叶青 080712120 长春理工大学 130022 摘要:光敏高分子材料是光化学和光物理科学的重要组成部分,在光或射线作用下能迅速发生化学变化或物理变化的高分子材料。近年来发展迅速,并在各个领域中获得广泛应用,本文简述了光敏高分子材料的概述、分类及光致变色材料等。 关键词:光敏;材料;分类;光致变色 Abstract: photosensitive polymer materials is an important part of photochemical and photo physical science, under the action of light or rays can quickly polymer materials experiencing chemical or physical change. In recent years has developed rapidly, and used in various fields, this article tries to sketch an overview of the photosensitive polymer materials, classification and photochromic materials. Keywords: photosensitive; material; classification of photochromic 1 光敏高分子材料概述 敏高分子材料也称为光功能高分子材料,是指在光参量的作用下能够表现出某些特殊物理或化学性能的高分子材料。如,吸收光能后发生化学变化的光敏高分子材料有:光致刻蚀剂和光敏涂料(发生光聚合、光交联、光降解反应等),光致变色高分子材料(发生互变异构反应,引起材料吸收波长的变化);吸收光能后发生物理变化的光敏高分子材料有:光力学变化高分子材料(引起材料外观尺寸变化),光导电高分子材料(可增加载流子而导),非线性光学材料(发生超极化而显示非线性光学性质),荧光发射材料(将光能转换为另外一种光辐射形式发出)等。光敏高分子材料是光化学和光物理科学的重要组成部分,近年来发展迅速,并在各个领域中获得广泛应用。 1.1高分子光物理和光化学原理 许多物质吸收光子以后,可以从基态跃迁到激发态,处在激发态的分子容易发生各种变化。如果这种变化是化学的,如光聚合反应或者光降解反应,则研究这种现象的科学称为光化学;如果这种变化是物理的,如光致发光或者光导电现象,则研究这种 现象的科学称为光物理。研究在高分子中发生的这些过程的科学我们分别称其为高分 子光化学和高分子光物理。高分子光物理和光化学是研究光敏高分子材料的理论基础。激发能的耗散激发态分子的激发能,有三种可能转化方式。即:发生光化学反应;以发射光的形式耗散能量;通过其他方式转化成热能,后两种方式称为激发能的耗散。激发能耗散的方式有许多种。光引发剂和光敏剂光引发剂和光敏剂,均能促进光化学反应的进行。但是,光引发剂是吸收光能后跃迁到激发态,当激发态能量高于分子键断裂能量时,断键产生自由基,光引发剂则被消耗;而光敏剂是吸收光能后跃迁到激发态,然后发生分子内或

常见有机光致变色体系的研究现状

常见有机光致变色体系的研究现状 任 伟,王立艳 (吉林建筑工程学院材料科学与工程学院,吉林 长春 130021) 摘 要:介绍了常见的有机光致变色材料体系,光致变色材料在染料、民用品等方面的应用,开发有机光致变色材料作为记录 介质的光盘,已成为高技术领域的一项重大课题。综述了光致变色材料在国际和国内的研究现状。光致变色材料是当前高科技领域重要的研究课题,光致变色材料在光信息存储的高科技领域、在防伪材料、装饰材料、具有广阔的应用价值和发展前景。 关键词:有机光致变色;变色材料;光致变色化合物 The R ecent Advance i n the Organic Photochro m ic Syste m RE N W ei ,WANG L i -yan (Co llege ofM ateri a l Science and Eng ineeri n g ,Jili n A rch itectural and C i v ilEng i n eeri n g I nstitute , Jilin Changchun 130021,China) Abst ract :The co mm on or gan ic photochro m ic m ateria l syste m,the application of photochro m ic m ateria l i n dyestuff and civilian use w ere introduced .O r ganic pho tochr o m i c m ateria l as the recording m edi u m beca m e m ajor issue in h i g h-tech fie l d s .And the pho tochr o m ic m aterials in the do m estic and i n ternati o na l research sit u ation w ere rev ie w ed .Pho tochr o m ic m ateria l as reco r d i n g m ed i u m had broad app lication value and prospect i n Anti-Counterfeiti n g Pri n ting M ateri a ls and decorati v e m ateria.l K ey w ords :organic pho tochr o m ic ;disco loration m ateria;l pho tochr o m ic co m pounds 作者简介:任伟(1973-),男,哈尔滨工业大学,硕士,讲师,主要从事光致变色材料的研究。E -m ai:l R W 730131@163.co m 1 常见有机光致变色体系简介 20世纪50年代,H irshberg 提出了光致变色现象(pho tochro m i s m )。光致变色现象是指一个化合物(A )在受到一定波长的光照射时,可进行特定的化学反应,获得产物(B ),由于结构改变导致其吸收光谱发生明显的变化。而在另一波长的光照下或热的作用下,又能恢复到原来的形式,其光致变色反应可用下式表示[1]。 (1) 光致变色是一种可逆的化学变化,这是一个重要的判断标准。通常情况下,A 是无色体,从A 到B 的转化要用近似于物种A 的最大吸收波长处(一般在紫外区)的光激发;B 一般为呈色体,其最大吸收波长在可见光区。目前,对光致变色材料的进一步研究发现,有些化合物在某溶剂中存在逆光致变色现象。有机光致变色物质按其光致变色反应类型可大致分为以下几类。 1.1 键的异裂 螺吡喃和螺噁嗪的光致变色都属于这种类型,当用紫外光激发无色的螺吡喃或螺噁嗪时,即可导致螺碳-氧键的异裂,生成吸收在长波区域的开环的部花菁类化合物。螺噁嗪是在螺吡喃基础上研究而成的,但抗疲劳性能较螺吡喃大大提高。螺噁嗪的光致变色反应机理如图1所示。 图1 螺噁嗪的光致变色过程 1.2 顺反异构 偶氮苯类、苄叉苯胺类等都属于顺反异构变色机理,偶氮苯的光致变色反应过程如图2所示。 图2 偶氮苯的光致变色反应过程 1.3 周环反应 俘精酸酐和二芳基乙烯的光致变色反应机理均属于周环反应,如图3和图4所示。俘精酸酐因具有耐疲劳度高、热稳定性好等特点,成为一类性能优良的可擦重写光子型存储材料。 62 广州化工2010年38卷第12期

光致变色材料的应用发展历史

光致变色材料的应用发展历史 姓名:孙相龙学号:115050910092 近年来光致变色材料因其极高的潜在应用价值得到越来越多的关注,已经成为目前国际上重要的研究课题。光致变色材料不仅在光敏装饰、变色眼镜、数字显示等领域已经投入实用,而且其在光信息存储、光开关、全息超细显影、生物探针等高新科技领域有着非常诱人的诱人前景。 一、光致变色原理 光致变色是指化合物A在受到特定波长的光hv1的照射时,发生特定化学反应生成产物B,其吸收光谱或折射率发生明显的变化;在另一波长的光hv2照射下或者在热的作用下,B又回复到原来的形式A,其光致变色反应可用下式表示: 光致变色是一种可逆的化学变化,这是一个重要的判断标准。在光作用下发生的不可逆反应,也可导致颜色的变化,只属于一般的光化学范畴,而不属于光致变色范畴。光致变色材料的可逆变色过程可以由光物理效应机理或者光化学反应机理所引起。在光物理效应机理中,在吸收光子后物质内部的电子发生能级跃迁,或者固体中的离子发生迁移并改变价态,呈现不同的光谱吸收,因而导致光致变色。在光化学反应机理中,化合物吸收光子后电子跃迁到激发态,这可能并不引起光谱吸收变化,但随后发生的光化学反应则会导致吸收光谱的变化,从而呈现光致变色。光致变色反应中生色过程和褪色过程的速度、热稳定性以及抗疲劳性(可循环次数)是决定光致变色材料实际应用的重要因素。光致变色材料主要分为三大类,即有机光致变色材料、无机光致变色材料和无机-有机光致变色材料。 二、光致变色材料的应用发展 光致变色现象最早是在生物体内发现的,距今已经有一百多年的历史。1867年,Fritsche观察到黄色的并四苯在空气和光作用下的褪色现象,所生成的物质受热时重新生成并四苯。1876年,Meer报道了类似的现象,二硝基甲烷的钾盐在光照下发生颜色变化。1889年,Phipson将类似于锌屑白的油漆漆在大门上,白天变成黑色,晚间却变成白色,引起了制造商们的极大兴趣。1889年,Marekwald观察到有机化合物苯并叉(Benzo-l-Naphthrlidine)以及四氯代一蔡酮在日光或其它强光源照射下能从无色变成紫色,放回暗处后又恢复成原来的颜色,认为这是一种新现象并称之为光致变色(Photoropy)。今天,Photoropy己经被理解为光引发的生物体系中的变化现象,Photoropism则是指植物的向阳性。

光致变色材料及其应用前景

光致变色材料及其应用前景 一、光致变色材料 光致变色指的是某些化合物在一定的波长和强度的光作用下分子结构会发生变化,从而导致其对光的吸收峰值 即颜色的相应改变,且这种改变一般是可逆的。人类发现 光致变色现象已有一百多年的历史。第一个成功的商业应 用始于20世纪60年代,美国的Corning工作室的两位材 料学家Amistead和Stooky首先发现了含卤化银(AgX)玻璃的可逆光致变色性能[4],随后人们对其机理和应用作了大量研究并开发出变色眼镜。但由于其较高的成本及复杂的 加工技术,不适于制作大面积光色玻璃,限制了其在建筑 领域的商业应用。此后AgX光致变色的应用重心转向了价 格便宜且质量较轻的聚合物基材料,而各种新型光致变色 材料的性能及其应用也开始了系统研究。 二、原理 不同类型的光致变色材料具有不同的变色机理,尤其是无机光致变色材料的变色机理与有机材料有明显的区 别。光致变色材料典型无机体系的光致变色效应伴随着可 逆的氧化-还原反应,如WO3为半导体材料,其变色机理可用1975年由Faughnan提出的双电荷注入/抽出模型解释,

即在紫外光照射下,价带中电子被激发到导带中,产生电子空穴对,随后光生电子被W(VI)捕获,生成W(V),同时光生空穴氧化薄膜内部或表面的还原物种,生成质子H+,注入薄膜内部,与被还原的氧化物结合生成蓝色的钨青铜HxWO3,该蓝色是由于W(V)价带中电子向W(VI)导带跃迁的结果。另一种变色机理是Schirmer等在1980年所提出的小极化子模型,他们认为,光谱吸收是由于不等价的2个钨原子之间的极化子跃迁所产生,即注入电子被局域在W(V)位置上,并对周围的晶格产生极化作用,形成小极化子。入射光子被这些极化子吸收,从一种状态变到另一种状态,可简略表示如下:WA(V)-O-WB(VI)→WA(VI)-O-WB(V) 由于上述变化不会引起材料晶体结构的破坏,因此典型无机材料的光致变色效应具有良好的可逆性和耐疲劳性能。有机体系的光致变色也往往伴随着许多与光化学反应有关的过程同时发生,从而导致分子结构的某种改变,其反应方式主要包括:价键异构、顺反异构、键断裂、聚合作用、氧化-还原、周环反应等。以偶氮化合物为例,其光致变色效应基于分子中偶氮基-N=N-的顺-反异构反应,通常偶氮化合物顺-反异构体有不同的吸收峰,虽两者一般差值不大,但摩尔消光系数往往相差很大,另外,偶氮化合物还有明显的光偏振效应,即光致变色效果与光的偏振态有关。生物光致变色材料如细菌视紫红质等的感光效应也属于这

相关主题
文本预览
相关文档 最新文档