当前位置:文档之家› 高中物理第1章碰撞与动量守恒16习题课:动量和能量的综合应用沪科版3-5!

高中物理第1章碰撞与动量守恒16习题课:动量和能量的综合应用沪科版3-5!

高中物理第1章碰撞与动量守恒16习题课:动量和能量的综合应用沪科版3-5!
高中物理第1章碰撞与动量守恒16习题课:动量和能量的综合应用沪科版3-5!

学案6 习题课:动量和能量的综合应用

[学习目标定位] 1.进一步掌握碰撞问题的特点.2.进一步熟练动量和能量的综合问题的分析思路.

一、子弹打木块模型及拓展应用

动量守恒定律应用中有一类典型的物理模型——子弹打木块模型.此类模型的特点: 1.由于子弹和木块组成的系统所受合外力为零(水平面光滑),或者内力远大于外力,故系统动量守恒.

2.由于打击过程中,子弹与木块间有摩擦力的作用,故通常伴随着机械能与内能之间的相互转化,故系统机械能不守恒.系统损失的机械能等于阻力乘以相对位移,即:ΔE =fs 相对. 例1 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f . (1)子弹、木块相对静止时的速度v ?

(2)系统损失的机械能、系统增加的内能分别为多少? (3)子弹打进木块的深度l 深为多少?

解析 (1)由动量守恒得:mv 0=(M +m )v ,子弹与木块的共同速度为:v =m

M +m

v 0.

(2)系统损失的机械能,由能量守恒定律

ΔE k =12mv 20-12

(M +m )v 2

得:ΔE k =Mmv 20

2 M +m

系统增加的内能Q =ΔE k =Mmv 20

2 M +m

(3)方法一:对子弹利用动能定理得

-fs 1=12mv 2-12

mv 2

所以s 1=Mm M +2m v 20

2f M +m

2

同理对木块有:fs 2=12

Mv 2

故木块发生的位移为s 2=Mm 2v 202f M +m 2.子弹打进木块的深度为:l 深=s 1-s 2=

Mmv 20

2f M +m

方法二:对系统根据能量守恒定律,得:

f ·l 深=12mv 20-12

(M +m )v 2

得:l 深=Mmv 20

2f M +m

l 深即是子弹打进木块的深度.

答案 (1)m M +m v 0 (2)Mmv 202 M +m Mmv 202 M +m (3)Mmv 20

2f M +m

图1

例2 如图1所示,有一质量为M 的长木板(足够长)静止在光滑的水平面上,一质量为m 的小铁块以初速度v 0水平滑上木板的左端,小铁块与木板之间的动摩擦因数为μ,试求小铁块在木板上相对木板滑动的过程中,若小铁块恰好没有滑离长木板,则木板的长度至少为多少?

解析 此题为另类的“子弹打木块”的模型,即把铁块类似于有初动量的“子弹”,以小铁块和木板为一个系统,系统动量守恒.在达到共同速度的过程中,m 给M 一个向右的滑动摩擦力f =μmg ,M 向右做匀加速直线运动;M 给m 一个向左的滑动摩擦力f ′=μmg ,m 向右做匀减速直线运动,m 相对M 向右运动,最后两者达到共同速度. 由动量守恒得:mv 0=(M +m )v ,得v =mv 0

M +m

. 设板长至少为l ,则

Q =μmgl =ΔE k =12mv 20-12

(M +m )v 2

所以l =Mv 2

2μg M +m

.

答案 Mv 20

2μg M +m

二、动量和能量的综合问题分析

动量和能量的综合问题往往涉及的物体多、过程多、题目综合性强,解题时要认真分析物体间相互作用的过程,将过程合理分段,明确在每一个子过程中哪些物体组成的系统动量守恒,哪些物体组成的系统机械能守恒,然后针对不同的过程和系统选择动量守恒定律或机械能守恒定律或能量守恒定律列方程求解.

图2

例3 如图2所示,A 为一具有光滑曲面的固定轨道,轨道底端是水平的,质量M =40 kg 的小车B 静止于轨道右侧,其板与轨道底端靠近且在同一水平面上,一个质量m =20 kg 的物体C 以2.0 m/s 的初速度从轨道顶端滑下,冲上小车B 后经一段时间与小车相对静止并继续一起运动.若轨道顶端与底端水平面的高度差h 为0.8 m ,物体与小车板面间的动摩擦因数μ为0.40,小车与水平面间的摩擦忽略不计,(取g =10 m/s 2

)求: (1)物体与小车保持相对静止时的速度; (2)物体冲上小车后相对于小车板面滑动的距离.

解析 (1)下滑过程机械能守恒,但动量不守恒,即有:mgh =12mv 22-12mv 2

1,

得v 2=v 2

1+2gh =2 5 m/s

在物体C 冲上小车B 到与小车相对静止的过程中,两者组成的系统动量守恒, 即有:mv 2=(m +M )v ,

得:v =mv 2m +M =20×2520+40 m/s =2

3

5 m/s

(2)由功能关系有:μmgl =12mv 22-12

(m +M )v 2

代入数据解得:l =5

3

m

答案 (1)23 5 m/s (2)5

3 m

图3

例4 如图3所示,光滑水平面上放置质量均为M =2 kg 的甲、乙两辆小车,两车之间通过一感应开关相连(当滑块滑过感应开关时,两车自动分离).其中甲车上表面光滑,乙车上表面与滑块P 之间的动摩擦因数μ=0.5.一根通过细线(未画出)拴着而被压缩的轻质弹簧固定在甲车的左端,质量为m =1 kg 的滑块P (可视为质点)与弹簧的右端接触但不相连,此时弹簧储存的弹性势能E 0=10 J ,弹簧原长小于甲车长度,整个系统处于静止.现剪断细线,求:

(1)滑块P 滑上乙车前瞬间速度的大小.

(2)要使滑块P 恰好不滑离小车乙,则小车乙的长度至少为多少?

解析 (1)设滑块P 滑上乙车前的速度为v 0,两车的速度为v ,选甲、乙和P 为系统,对从滑块P 开始运动(初状态)到滑上乙车前(末状态)的过程,应用动量守恒有:

mv 0-2Mv =0①

在这个过程中系统的机械能守恒,有

E 0=12mv 20+12×2Mv 2

由①②两式得:v 0=4 m/s 同时可得v =1 m/s

(2)设滑块P 到达乙车一端时与乙车共同速度为v ′,选滑块的初速度方向为正方向,根据动量守恒定律

mv 0-Mv =(m +M )v ′③

由③得:v ′=4-2×12+1 m/s =23

m/s

对滑块P 和乙车组成的系统,由能量守恒定律得:

12mv 20+12Mv 2-1

2

(m +M )v ′2=μmgL ④ 将各量v 0、v 、v ′、μ等代入④求得:L =5

3

m.

答案 (1)4 m/s (2)5

3

m

图4

1.如图4所示,质量为m 1=16 kg 的平板车B 原来静止在光滑的水平面上,另一质量m 2=4 kg 的小物体A 以5 m/s 的水平速度滑向平板车的另一端,假设平板车与物体间的动摩擦因数为0.5,g 取10 m/s 2

,求:

(1)如果A 不会从B 的另一端滑下,则A 、B 的最终速度为多大; (2)要保证A 不滑下平板车,平板车至少要有多长. 答案 (1)1 m/s (2)2 m

解析 (1)设A 、B 共同运动的速度为v ,A 的初速度为v 0,则对A 、B 组成的系统,由动量守恒定律可得m 2v 0=(m 1+m 2)v

解得:v =4×5

16+4

m/s =1 m/s

(2)设A 在B 上滑行的距离为l ,取A 、B 系统为研究对象,由于内能的增加等于系统动能的减少,根据能的转化和守恒定律有

μm 2gl =12m 2v 20-12(m 1+m 2)v 2

解得l =2 m

图5

2.如图5所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(未穿出),若木块与地面间的动摩擦因数为μ,求: (1)子弹射入后,木块在地面上前进的距离; (2)射入的过程中,系统损失的机械能.

答案 (1)m 2v 22 M +m 2

μg (2)Mmv 2

2 M +m

解析 因子弹未射出 ,故碰撞后子弹与木块的速度相同,而系统损失的机械能为初、末状态系统的动能之差.

(1)设子弹射入木块时,二者的共同速度为v ′,取子弹的初速度方向为正方向,则有:mv =(M +m )v ′①

二者一起沿地面滑动,前进的距离为s ,由动能定理得:

-μ(M +m )gs =0-12

(M +m )v ′2

由①②两式解得:s =m 2v 2

2 M +m 2

μg

(2)射入过程中损失的机械能

ΔE =12mv 2-12

(M +m )v ′2

解得:ΔE =Mmv 2

2 M +m

[基础题]

图1

1.如图1所示,带有半径为R 的1/4光滑圆弧的小车其质量为M ,置于光滑水平面上,一质量为m 的小球从圆弧的最顶端由静止释放,则球离开小车时,球和车的速度分别为多少?(重力加速度为g )

答案 2MgR

M +m

2m 2

gR

M M +m

解析 由题目知:水平面光滑,系统在水平方向不受外力;圆弧轨道光滑,小球滚下时系统的机械能无损失.所以可由水平方向动量守恒结合机械能守恒求解.

球和车组成的系统在水平方向动量守恒,且全过程满足机械能守恒.设球、车分离时,球的速度为v 1,方向向左,车的速度为v 2,方向向右,则:

mv 1-Mv 2=0①

mgR =1

2mv 21+12

Mv 2

2②

由①②解得v 1=

2MgR

M +m ,v 2=2m 2

gR

M M +m

2.以初速度v 0与水平方向成60°角斜向上抛出的手榴弹,到达最高点时炸成质量分别是m 和2m 的两块.其中质量大的一块沿着原来的方向以2v 0的速度飞行.求: (1)质量较小的另一块弹片速度的大小和方向; (2)爆炸过程中有多少化学能转化为弹片的动能.

答案 (1)2.5v 0 与爆炸前速度方向相反 (2)274

mv 2

解析 手榴弹爆炸过程中,爆炸力是内力,远大于重力,因此爆炸过程中各弹片组成的系统动量守恒.因为爆炸过程中火药的化学能转化为内能,进而有一部分转化为弹片的动能,所以此过程系统的机械能(动能)增加.

(1)斜抛的手榴弹在水平方向上做匀速直线运动,在最高点处爆炸前的速度v 1=v 0cos 60°=1

2

v 0.设v 1的方向为正方向,如图所示,由动量守恒定律得3mv 1=2mv 1′+mv 2.

其中爆炸后大块弹片的速度v 1′=2v 0,小块弹片的速度v 2为待求量, 解得v 2=-2.5v 0,“-”号表示v 2的速度方向与爆炸前速度方向相反. (2)爆炸过程中转化为动能的化学能等于系统动能的增量,即

ΔE k =12×2mv 1′2+12mv 22-12(3m )v 2

1=274

mv 20.

图2

3.如图2所示,光滑水平面上并排放着A 、B 两个物块,质量分别为m A =1 kg ,m B =3 kg ,中间夹有少量的塑胶炸药,爆炸后A 以速度v 1=6 m/s 向左运动,物块B 向右运动,则: (1)假设塑胶炸药在爆炸时释放的能量全部转化为A 、B 的动能,则在爆炸时释放多少能量? (2)爆炸后B 向右运动并与固定在右侧的弹簧碰撞,求弹簧的最大弹性势能. 答案 (1)24 J (2)6 J

解析 (1)爆炸过程中动量守恒,则m A v 1-m B v 2=0

得v 2=m A v 1m B =1×63 m/s =2 m/s

爆炸过程中释放的能量等于A 、B 获得的动能, 所以E =12m A v 21+12

m B v 2

2=24 J

(2)物块B 在挤压弹簧的过程中将其获得的动能转化为弹簧的弹性势能,故弹簧的最大弹性势能为: E p =12m B v 22

=12×3×22

J =6 J [能力题]

图3

4.如图3所示,水平放置的轻弹簧左端固定,小物块P 置于水平桌面上的A 点并与弹簧的右端接触,此时弹簧处于原长.现用水平向左的推力将P 缓缓推至B 点(弹簧仍在弹性限度内)时,推力做的功为W F =6 J ,撤去推力后,小物块P 沿桌面滑动到停在光滑水平地面上的平板小车Q 上,小车的上表面与桌面在同一水平面上,已知P 、Q 质量分别为m =1 kg 、M =4 kg ,

A 、

B 间距离为L 1=5 cm ,A 离桌子边缘

C 点的距离为L 2=90 cm ,P 与桌面及P 与Q 的动摩

擦因数均为μ=0.4,g =10 m/s 2

,则要使物块P 在小车Q 上不滑出去,小车至少多长? 答案 0.4 m

解析 对P 由A 到B 点再滑至桌边C 点的全过程应用动能定理,有:

W F -μmg (2L 1+L 2)=1

2mv 2C ,

解得:v C =2 m/s

P 在小车Q 上不滑出的临界条件对应P 滑至Q 右端时两者恰好具有共同速度,由动量守恒定

律得:

mv C =(M +m )v ,得:v =0.4 m/s

由能量守恒定律得

μmgL =12mv 2C -12(M +m )v 2

解得:L =0.4 m

图4

5.如图4所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点

M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点

距N 为2R .重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 答案 (1)2

R

g

(2)22gR 解析 (1)粘合后的两球飞出轨道后做平抛运动,竖直方向的分运动为自由落体运动,有2R =12gt 2

① 解得t =2

R g

② (2)设球A 的质量为m ,与B 球碰撞前瞬间的速度大小为v 1,把球A 冲进轨道最低点时的重

力势能定为0,由机械能守恒定律得12mv 2=12mv 2

1+2mgR ③

设碰撞后粘合在一起运动的两球速度大小为v 2,由动量守恒定律得

mv 1=2mv 2④

粘合后的两球飞出轨道后做平抛运动,水平方向的分运动为匀速直线运动,有2R =v 2t ⑤ 综合②③④⑤式得v =22gR

功能关系能量守恒定律

一.几种常见的功能关系及其表达式 二、两种摩擦力做功特点的比较 [深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗?

答案 不能,因做功代数和为零. 三、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( ) (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( ) (3)能量正在消失.( ) (4)只有动能和重力势能的相互转化.( ) 2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功1 2 mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( ) A .两个阶段拉力做的功相等

动量守恒和能量守恒定律习题

第三章 动量守恒定律和能量守恒定律 (一)教材外习题 1 功与能习题 一、选择题: 1.一质点受力i x F 23 (SI )作用,沿X 轴正方向运动。从x = 0到x = 2m 过程中,力F 作功为 (A )8J. (B )12J. (C )16J. (D )24J. ( ) 2.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,下列说法正确的是 (A )重力和绳子的张力对小球都不作功. (B )重力和绳子的张力对小球都作功. (C )重力对小球作功,绳子张力对小球不作功. (D )重力对小球不作功,绳子张力对小球作功. ( ) 3.已知两个物体A 和B 的质量以及它们的速率都不相同, B 的大,则A 的动能E KA 与B 的动能E KB 之间的关系为 (A )E KB 一定大于E KA . (B )E KB 一定小于E KA (C )E KB =E KA (D )不能判定谁大谁小 ( ) 4.如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面 l 2下滑,则小球滑到两面的底端Q 时的 (A )动量相同,动能也相同 (B )动量相同,动能不同 (C )动量不同,动能也不同 (D )动量不同,动能相同 ( ) 5.一质点在外力作用下运动时,下述哪种说法正确? (A )质点的动量改变时,质点的动能一定改变 (B )质点的动能不变时,质点的动量也一定不变 (C )外力的冲量是零,外力的功一定为零 (D )外力的功为零,外力的冲量一定为零 ( ) 二、填空题: 1.某质点在力F =(4+5x )i (SI )的作用下沿x 轴作直线运动,在从x =0移动到x =10m 的过程中,力F 所作功为___________________。 Q P l 2 l 1

初中物理功和能的知识点总结(精练版)

第十一章功和机械能 1、如果一个力作用在物体上,物体在这个力的方向上移动了一段距离,就说这个力对物体做了功。包含两个必要因素:一个是作用在物体上的力;另一个是物体在这个力的方向上移动的距离。 功等于力与物体在力的方向上移动的距离的乘积。 W=FS F表示力,单位:牛( N )。S表示距离,单位:米(m) W表示功,单位是牛米,叫作焦耳,简称焦,符号是J。 1J=1N·m 2、功与做功所用的时间之比叫做功率,功率是表示做功快慢的物理量。 功率等于功与做功所用的时间之比。 P=W/t W表示功,单位是焦(J)。t表示时间,单位是秒(s) P表示功率,单位是焦耳每秒,叫做瓦特,简称瓦,符号是W。 1W=1J/s。 功率的单位还有千瓦,符号kW 1kW=103W 3、物体由于运动而具有的能叫动能。质量相同的物体,运动的速度越大,它的动能越大;运动速度相同的物体,质量越大,它的动能也越大。 能量(能)的单位与功的单位相同。 E表示能量,单位是焦耳,简称焦,符号是J 4、物体由于受到重力并处在一定高度时所具有的能叫做重力势能。物体的质量越大,位置越高,它具有的重力势能就越大。 5、物体由于发生弹性形变而具有的能叫做弹性势能。物体的弹性形变越大,它具有的弹性势能就越大。 6、动能和势能统称为机械能。 7、机械能是守恒的(能量守恒):物体的动能和势能是可以相互转化的,在只有动能和势能相互转化的过程中,机械能的总和保持不变。

8、势能是属于物体系共有的能量,通常说一个物体的势能,实际上是一种简略的说法。势能是一个相对量,选择不同的势能零点,势能的数值一般是不同的。重力势能和弹性势能是常见的两种势能。 第十二章简单机械 1、一根硬棒,在力的作用下能绕着固定点O转动,这根硬棒就是杠杆。 动力臂:从支点O到动力F 1作用线的距离L 1 阻力臂:从支点O到阻力F 2作用线的距离L 2 杠杆平衡:当杠杆在动力和阻力的作用下静止(或匀速转动)时,称为杠杆平衡。 杠杆平衡的条件(阿基米德发现的杠杆原理) 动力×动力臂 = 阻力×阻力臂 F1L1=F2L2 可变形为:F1/F2=L2/L1 2、定滑轮:滑轮在使用时,它的轴固定不动。 动滑轮:滑轮在使用时,它的轴可以随物体一起移动。 3、总功是有用功与额外功的总和,用W 总 表示。 W总=W有+W额 有用功:在使用机械时,机械对物体所作的功是有用的,是必须做的,这部 分功叫有用功。用W 有 用表示。 额外功:在使用机械时,不可避免地要对机械本身做功和克服摩擦力做功, 这部分功叫额外功。用W 额 表示。 4、机械效率是有用功跟总功的比值,用η表示。 η= W有/W总 机械效率一般用百分数表示。 有用功是总功的一部分,且额外功总是客观存在的,则有W 有< W 总 ,因此η 总是小于1,这也表明:使用任何机械都不能省功。 5、定滑轮和动滑轮的工作特点: (1)使用定滑轮不省力,但可以改变力的方向,也不多移动距离也不少移动距

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

功能关系、能量守恒定律

学案正标题 一、考纲要求 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 二、知识梳理 1.功和能 (1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现. (2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化. 3.能量守恒定律 (1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. (2)表达式:ΔE减=ΔE增. 三、要点精析 1.几种常见的功能关系及其表达式

2.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能. 3.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;

②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能. (3)摩擦生热的计算:Q=F f·x相对.其中x相对为相互摩擦的两个物体间的相对位移. 4.解决能量守恒问题的方法 (1)两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点: ①能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒. ②如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同. ③当弹簧为自然状态时系统内某一端的物体具有最大速度. (2)不涉及弹簧时,弄清各种力做功的情况,并分析有多少种形式的能量在转化. 5.列能量守恒定律方程的两条基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等. 6.运用能量守恒定律解题的基本思路

高中物理能量守恒定律公式_能量守恒定律公式

高中物理能量守恒定律公式_能量守恒定律 公式 高中物理能量守恒定律公式 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)温度是分子平均动能的标志; (3)分子间的引力和斥力同时存在,随分子间距离的增大而减小, 但斥力减小得比引力快; (4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; (5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 (6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)r0为分子处于平衡状态时,分子间的距离; (8)其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。 高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

专题 功能关系 能量守恒定律

专题 功能关系 能量守恒定律 功能关系的理解和应用 1.对功能关系的理解 (1)做功的过程就是能量转化的过程,不同形式的能量发生相互转化是通过做功来实现的。 (2)功是能量转化的量度,功和能的关系,一是体现在不同的力做功,对应不同形式的能转化,具有一一对应关系,二是做功的多少与能量转化的多少在数值上相等。 2.几种常见的功能关系及其表达式 各种力做功 对应能的变化 定量关系 合力做功 动能变化 合力对物体做功等于物体动能的变化量W 合=E k2-E k1 重力做功 重力势能 变化 重力做正功,重力势能减少,重力做负功,重力势能增加,且W G =-ΔE p =E p1-E p2 弹簧弹力 做功 弹性势能 变化 弹力做正功,弹性势能减少,弹力做负功,弹性势能增加,且W 弹=-ΔE p =E p1-E p2 只有重力、弹 簧弹力做功 系统机械能 不变化 系统机械能守恒,即ΔE =0 非重力和 弹力做功 机械能 变化 除重力和弹力之外的其他力做正功,物体的机械能增加,做负功,机械能减少,且W 其 他=ΔE 【例1】 (2017·全国Ⅲ卷,16)如图1,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂。用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l 。重力加速度大小为g 。在此过程中,外力做的功为( )

图1 A.19mgl B.16mgl C.13mgl D.12mgl 解析 由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l 6,则重 力势能增加ΔE p =23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、 D 错误。 答案 A 【例2】 (多选) (2019·全国Ⅱ卷,18)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和。取地面为重力势能零点,该物体的E 总和E p 随它离开地面的高度h 的变化如图2所示。重力加速度取10 m/s 2。由图中数据可得 ( ) 图2 A.物体的质量为2 kg B.h =0时,物体的速率为20 m/s C.h =2 m 时,物体的动能E k =40 J D.从地面至h =4 m ,物体的动能减少100 J 解析 由于E p =mgh ,所以E p 与h 成正比,斜率是k =mg ,由图象得k =20 N , 因此m =2 kg ,A 正确;当h =0时,E p =0,E 总=E k =12m v 20,因此v 0=10 m/s , B 错误;由图象知h =2 m 时,E 总=90 J ,E p =40 J ,由E 总=E k +E p 得E k =50 J ,

2021届高三物理一轮复习力学功和能能量守恒定律专题练习

2021届高三物理一轮复习力学功和能能量守恒定律专题练习 一、填空题 1.能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量_________。 2.针对日益恶化的人类生存环境和能源危机,行之有效的能源利用方法是________和________. 3.如图所示,斜面的倾角为θ,质量为m 的滑块距挡板P 的距离为s 0,滑块以初速度v 0沿斜面上滑,滑块所受摩擦力小于使滑块沿斜面下滑的重力分力.若滑块每次与挡板相碰均无机械能损失(即碰撞前后速度反向,大小不变),则从滑块开始运动到最后停止全程所产生的热量为_____________. 4.人类社会自从进入电气化时代以来,就一直在不断地探寻电能的来源.如今常见的发电方式有:①火力发电、②水力发电、③核发电,其中将自然界的机械能转化为电能的方式是________(写序号即可).如果把直接来自于自然界的煤炭称为一次能源,那么由煤炭转化而来的电能则属于_________能源. 5.某海湾共占面积721.010m ?,涨潮时水深20m ,此时关上水坝闸门,可使水位保持20m 不变.退潮时,坝外水位降至18m.假如利用此水坝建水力发电站,重力势能转变为电能的效率是10%,每天有两次涨潮,则该电站一天能发电________J. 6.如图所示,在没有空气阻力和摩擦力时(实际很小),从斜面A 上由静止释放小球,会发现无论θ角怎样变化,小球最后总能达______________的位置,在物理学中,把这一事实说成是有某个量是守恒的,并且把这个量叫________. 7.能的最基本性质是:不同形式的能量之间可以相互____________,而且在转化的过程中能的总量总保持____________. 8.有报道说:某厂商发明了一种“手机自生能”技术,装上特制的电池,上下左右摇晃,即可产生电能,每摇1min 可通话2min.如果将手机上下摇动一次,相当于将200g m =的重物举高10cm h =,每秒平均摇一次,则根据报道可知手机使用时的功率约为_______W.(g 取210m/s ) 9.如图所示,一质量为m 的小球沿光滑的水平面以速度v 冲上一个静止在水平地面上的质量为2m 的曲面体,曲面体的曲面部分为半径为R 的14 光滑面圆弧并且和水平面相切。则小球能上升的最大高度为_________。

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

专题复习二:功和能 动能定理 能量守恒定律(无答案)

高考二轮复习专题二:功和能 动能定理 能量守恒定律 【考情分析】 【考点预测】 功和功率、动能和动能定理、机械能守恒定律、能量守恒定律是力学的重点,也是高考考查的重点,常以选择题、计算题的形式出现,考题常与生产生活实际联系紧密,题目的综合性较强.预计在今年高考中,仍将对该部分知识进行考查,复习中要特别注意功和功率的计算,动能定理、机械能守恒定律的应用以及与平抛运动、圆周运动知识的综合应用. 考题1 对功和功率的计算的考查 例1 一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1 s 内受到2 N 的水平外力作用,第2 s 内受到同方向的1 N 的外力作用.下列判断正确的是 ( ) A .0~2 s 内外力的平均功率是94 W B .第2 s 内外力所做的功是5 4 J C .第2 s 末外力的瞬时功率最大 D .第1 s 内与第2 s 内质点动能增加量的比值是4 5 审题 ①分析质点运动情况,分别求第1 s 、第2 s 内的位移.②计算平均功率用公式P =W t ,计算瞬时功率用公式P =Fv . 解析 第1 s 内,质点的加速度为a 1=F 1m =2 m/s 2 ,位移x 1=12 a 1t 2=1 m,1 s 末的速度v 1=a 1t =2 m/s ,第1 s 内质点动能的增加量为ΔE k1=12mv 2 1-0=2 J. 第2 s 内,质点的加速度为a 2=F 2m =1 m/s 2 ,位移x 2=v 1t +12 a 2t 2=2.5 m,2 s 末的速度为v 2=v 1+a 2t =3 m/s , 第2 s 内质点动能的增加量为ΔE k2=12mv 22-12mv 21=2.5 J ;第1 s 内与第2 s 内质点动能的增加量的比值为ΔE k1 ΔE k2 = 4 5 ,D 选项正确.第2 s 末外力的瞬时功率P 2=F 2v 2=3 W ,第1 s 末外力的瞬时功率P 1=F 1v 1=4 W>P 2,C 选项错误.第1 s 内外力做的功W 1=F 1x 1=2 m ,第2 s 内外力做的功为W 2=F 2x 2=2.5 J ,B 选项错误.0~2 s 内外力的 平均功率为P =W 1+W 22t =9 4 W ,所以A 选项正确.答案 AD 易错辨析 1. 计算力所做的功时,一定要注意是恒力做功还是变力做功.若是恒力做功,可用公式W =Fl cos α进行计算.若 是变力做功,可用以下几种方法进行求解:(1)微元法:把物体的运动分成无数个小段,计算每一小段力F 的功.(2)将变力做功转化为恒力做功.(3)用动能定理或功能关系进行求解. 2. 对于功率的计算要区分是瞬时功率还是平均功率.P =W t 只能用来计算平均功率,P =Fv cos α中的v 是瞬时速度时,计算出的功率是瞬时功率;v 是平均速度时,计算出的功率是平均功率. 突破练习 1. 图中甲、乙是一质量m =6×103 kg 的公共汽车在t =0和t =4 s 末两个时刻的两张照片.当t =0时,汽车刚启动(汽车的运动可看成是匀加速直线运动).图丙是车内横杆上悬挂的手拉环的图象,测得θ=30°.根据题中提供的信息,无法估算出的物理量是 ( ) A .汽车的长度 B .4 s 内汽车牵引力所做的功 C .4 s 末汽车的速度 D .4 s 末汽车合外力的瞬时功率 2. 一质量m =0.5 kg 的滑块以某一初速度冲上倾角θ=37°的足够长的斜面,利用传感器测出滑块冲上斜面

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

《功能关系与能量守恒定律》练习题

系统能量守恒 1.距地面H 高处,以初速度v 0沿水平方向抛出一个物体,在忽略空气阻力情况下, 由于运动物体只受重力作用,所以该物体落地过程中的运动轨迹是一条抛物线.如图所示.则 A .物体在c 点比在a 点具有的机械能大 B .物体在a 点比在c 点具有的动能大 C .物体在a 、b 、c 三点具有的动能一样大 D .物体在a 、b 、c 三点具有的机械能相等 2.质量为m 的小球,从离桌面H 高处由静止下落,桌面离地面高度为h ,如图 所示,若以桌面为参考平面,那么小球落地时的重力势能及整个下落过程 中重力势能的变化分别是 A.mgh ,减少mg (H -h ) B.mgh ,增加mg (H +h ) C.-mgh ,增加mg (H -h ) D.-mgh ,减少mg (H +h ) 3.一个人站在距地面高为h 的阳台上,以相同的速率v 0分别把三个球竖直向下,竖直向上,水平抛出,不计空气阻力,则三球落地时的速率 A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大 4.质量为m 的石子从距地面高为H 的塔顶以初速v 0竖直向下运动,若只考虑重力作用,则石子下落到距地面高为h 处时的动能为(g 表示重力加速度) ( ) +mgh mv mgH+mgh mv mgH+mgh mgH mv mgH+20202021D 21C B 2 1A . .. .-- 5.图所示,已知物体与路面之间的动摩擦因数处处相同.DO 是水平面,初速度为 0v 的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零.如果斜面改为AC, 让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速 度( ) A.大于0v B.等于0v C.小于0v D.取决于斜面的倾角 6.图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,B 、C 为水平的,其距离d=0.50m,盆边缘的高度为h=0.30m, 在A 处放一个质量为m 的小物块并让其从静止开始下滑,已知喷内侧壁是 光滑的,而盆底BC 面与小物块间的动摩擦因数为μ= 0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( ) A.0.50 m B.0.25 m C.0.10 m D.0 7滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且21v v <, 若 滑块向上运动的位移中点为A,取斜面底端重力势能为零,则( ) A.上升时机械能减小,下降时机械能增大 B.上升时机械能增大,下降时机械能减小 C.上升过程中动能和势能相等的位置在A 点上方

高中物理功和能复习-习题-中等难度-附答案详细解析

高中物理功能专题练习 中等难度 一、单选题(本大题共1小题,共4.0分) 1.“飞流直下三千尺,疑是银河落九天”是唐代诗人李白描写庐山瀑布的佳句.瀑布中的 水从高处落下的过程中( ) A. 重力势能增加 B. 重力势能减少 C. 重力对水做的功大于水重力势能的改变量 D. 重力对水做的功小于水重力势能的改变量 二、多选题(本大题共3小题,共12.0分) 2.关于功的正负,下列叙述中正确的是( ) A. 正功表示功的方向与物体运动方向相同,负功为相反 B. 正功大于负功 C. 正功表示力和位移两者之间夹角小于90°,负功表示力和位移两者之间夹角大于 90° D. 正功表示做功的力为动力,负功表示做功的力为阻力 3.物体从某一高度处自由下落,落到直立于地面的轻弹簧上,在A点物 体开始与弹簧接触,到B点物体的速度为零,然后被弹回,下列说法 中正确的是( ) A. 物体从A下落到B的过程中,弹性势能不断增大 B. 物体从A下落到B的过程中,重力势能不断减小 C. 物体从A下落到B以及从B上升到A的过程中,动能都是先变小 后变大 D. 物体在B点的速度为零,处于平衡状态 4.如图所示,竖直光滑杆固定不动,套在杆上的弹簧下端固定,将套在杆上的滑块向 下压缩弹簧至离地高度?=0.1m处,滑块与弹簧不拴接.现由静止释放滑块,通过传感器测量到滑块的速度和离地高度h并作出滑块的E k??图象,其中高度从0.2m上升到0.35m范围内图象为直线,其余为曲线,以地面为零势能面,取g=10m/s2,由图象可知( ) A. 小滑块的质量为0.2kg B. 轻弹簧原长为0.1m C. 弹簧最大弹性势能为0.32J D. 小滑块的重力势能与弹簧的弹性势能总和最小为0.38J 三、填空题(本大题共2小题,共8.0分) 5.如图,倾角为θ的斜面上一物体,竖直向上的恒力F通过滑轮 把物体拉着沿斜面向上移动了S的位移,则此过程拉了F做 功W=______ .

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

功能关系能量守恒定律

第4课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 3、如图2所示,ABCD是一个盆式容器,盆侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、

C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆来回滑动,最后停下来,则停下的位置到B的距离为 A.0.5 m B.0.25 m C.0.1 m D.0 【课堂合作探究】 考点一功能关系的应用 【例1】如右上图所示,在升降机固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中 A.物块A的重力势能增加量一定等于mgh B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和 【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量 B.物块重力势能的减少量 C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D.物块动能的增加量与物块克服摩擦力做的功之和 考点二摩擦力做功的特点及应用 1.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

高中物理动量守恒定律试题经典

高中物理动量守恒定律试题经典 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:

功能关系能量守恒定律

第 4 课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量B.重力所做的功等于物体重力势能的增量C.力F做的功和阻力做的功之和等于物体机械能的增量D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量2、如图 1 所示,美国空军X-37B无人航天飞机于2010 年 4 月首飞,在X-37B 由较低轨道飞到较高轨道的过程中 A.X-37B 中燃料的化学能转化为X-37B 的机械能 B.X-37B 的机械能要减少C.自然界中的总能量要变大 D.如果X-37B 在较高轨道绕地球做圆周运动,则在此轨道上其机械能 不变 3、如图2 所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,

B 、 C 在水平线上,其距离 d =0.5 m .盆边缘的高度为 h =0.3 m .在 A 处放一个质量为 m 的小物块并 让其由静止下滑.已知盆内侧壁是光滑的,而盆底 BC 面与小物块间的动摩擦因数为 μ=0.1.小物块在 盆内来回滑动,最后停下来,则停下的位置到 B 的距离为 课堂合作探究】 考点一 功能关系的应用 【例 1】 如右上图所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的 固定木板B 上,另一端与质量为m 的物块A 相连,弹簧与斜面平行.整个系统由静止开始加速上升 高度 h 的过程中 A .物块A 的重力势能增加量一定等于 mgh B .物块A 的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C .物块A 的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D .物块 A 和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和 B 对弹簧的拉力做功的代数 和 【突破训练 1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于 A .物块动能的增加量 B .物块重力势能的减少量 C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D .物块动能的增加量与物块克服摩擦力做的功之和 考点二 摩擦力做功的特点及应用 A .0.5 m B .0.25 m C . 0.1 m

相关主题
文本预览
相关文档 最新文档