当前位置:文档之家› 初中数学二次函数综合题及答案

初中数学二次函数综合题及答案

初中数学二次函数综合题及答案
初中数学二次函数综合题及答案

二次函数题 选择题:

1、y=(m-2)x m2- m 是关于x的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在

2、下列函数关系中,可以看作二次函数y =ax 2

+b x+c (a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系

B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系

4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y=

2

1 x 2-6x+24的顶点坐标是(

)

A (—6,—6)

B (—6,6)

C (6,6)

D (6,—6) 6、已知函数y=a x2

+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2

-bx+c(a ≠0)的图象过点(-1,0),则

c

b a + =

c a b + =b

a c

+ 的值是( )

A -1

B 1

C 21

D -2

1

8、已知一次函数y= ax+c与二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系内的大致图象是图中的( )

A B C D

二填空题:

13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。

16、若抛物线y =a x2+b x+c (a≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2

+bx+c=-2的根为———————————

—。

17、抛物线y=(k +1)x 2+k 2-9开口向下,且经过原点,则k=—————————

解答题:(二次函数与三角形)

1、已知:二次函数y=x 2

+bx+c ,其图象对称轴为直线x =1,且经过点(2,﹣

).

(1)求此二次函数的解析式.

(2)设该图象与x轴交于B、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积.

1 —1 0

x

y

y

x

-1

x

y

y

x

y

x

y

2、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,错误!). (1)求抛物线的函数表达式;

(2)设抛物线的对称轴与轴交于点D,试在对称轴上找出点P ,使△C DP 为等腰三角

形,请直接写出满足条件的所有点P 的坐标.

(3)若点E是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作

EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S,S 是否存在最大值?

若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由.

3、如图,一次函数y =-4x-4的图象与x 轴、y 轴分别交于A 、C两点,抛物线y=4

3

x 2+bx +c

的图象经过A 、C 两点,且与x 轴交于点B. (1)求抛物线的函数表达式;

(2)设抛物线的顶点为D ,求四边形A BD C的面积;

(3)作直线MN 平行于x 轴,分别交线段AC 、B C于点M 、N.问在x 轴上是否存在点P ,使得

△PMN 是等腰直角三角形?如果存在,求出所有满足条件的P 点的坐标;如果不存在,请说明理由.

(二次函数与四边形)4、已知抛物线

217222

y x mx m =

-+-. (1)试说明:无论m为何实数,该抛物线与x 轴总有两个不同的交点;

(2)如图,当该抛物线的对称轴为直线x =3时,抛物线的顶点为点C ,直线y =x-1与抛物线交于A 、B两点,并与它的对称轴交于点D .

①抛物线上是否存在一点P 使得四边形AC PD 是正方形?若存在,求出点P 的坐标;若不存在,说明理由;

②平移直线CD ,交直线AB 于点M,交抛物线于点N,通过怎样的平移能使得C 、D 、M、N 为顶点的四边形是平行四边形.

C

O

A

y

x

D

B C O

A

y

x

D

B M

N

l :x =n

5、如图,抛物线y=mx 2-11mx +24m (m <0) 与x 轴交于B、C 两点(点B 在点C 的左侧),抛物线另有一点A在第一象限内,

且∠BAC =90°.

(1)填空:O B=_ ▲ ,OC =_ ▲ ;

(2)连接OA ,将△OAC 沿x 轴翻折后得△ODC ,当四边形OAC D是菱形时,求此时抛物线的解析式;

(3)如图2,设垂直于x 轴的直线l :x=n与(2)中所求的抛物线交于点M ,与CD交于点N,若直线l 沿x 轴方向左右平移,

且交点M始终位于抛物线上A、C两点之间时,试探究:当n 为何值时,四边形A MCN 的面积取得最大值,并求出这个最大值.

6、如图所示,在平面直角坐标系中,四边形ABCD 是直角梯形,BC ∥AD,∠BA D=90°,BC 与y 轴相交于点M,且M 是BC 的中点,A、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM,并把线段DM 沿DA 方向平移到ON.若抛物线

2y ax bx c =++经过点D 、M 、N .

(1)求抛物线的解析式.

(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P 的坐标;若不存在,请说明理由.

(3)设抛物线与x轴的另一个交点为E,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE-Q C|最大?并求出最大值.

7、已知抛物线

223 (0)y ax ax a a =--<与x 轴交于A 、B 两点(点A 在点B 的左侧),与y轴交于点C ,点D 为抛物线

的顶点.(1)求A 、B 的坐标;

(2)过点D 作DH 丄y 轴于点H,若DH=HC ,求a的值和直线CD 的解析式;

(3)在第(2)小题的条件下,直线CD 与x轴交于点E,过线段OB 的中点N 作N F丄x 轴,并交直线CD 于点F ,则直线N F上是否存在点M,使得点M 到直线CD 的距离等于点M 到原点O的距离?若存在,求出点M 的坐标;若不存在,请说明理由.

(二次函数与圆)

8、如图,在平面直角坐标系中,抛物线y=ax 2

+bx +c (a≠0)的图象经过M (1,0)和N (3,0)两点,且与y轴交于D(0,3),直线l 是抛物线的对称轴.1)求该抛物线的解析式.

2)若过点A(﹣1,0)的直线AB 与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式. 3)点P在抛物线的对称轴上,⊙P与直线AB 和x轴都相切,求点P 的坐标.

9、如图,y 关于x 的二次函数y =﹣(x+m)(x ﹣3m)图象的顶点为M,图象交

x轴于A 、B 两点,交y 轴正半轴于D 点.以AB 为直径作圆,圆心为C.定点E 的坐标

为(﹣3,0),连接ED.(m >0) (1)写出A 、B、D 三点的坐标;

(2)当m 为何值时M 点在直线E D上?判定此时直线与圆的位置关系;

(3)当m 变化时,用m 表示△AED 的面积S ,并在给出的直角坐标系中画出S 关于m 的函数图象的示意图。

10、已知抛物线

2y ax bx c =++的对称轴为直线2x =,且与x 轴交于A 、B两点.与y 轴交于点C.其中AI(1,0),C(0,3-).

(1)(3分)求抛物线的解析式;

(2)若点P在抛物线上运动(点P 异于点A ).

①(4分)如图l .当△PBC 面积与△ABC 面积相等时.求点P的坐标;

②(5分)如图2.当∠PCB=∠BCA 时,求直线CP 的解析式。

答案:

1、解:(1)由已知条件得,(2分)

解得b=﹣,c=﹣,∴此二次函数的解析式为y=x 2

x ﹣;(1分)

(2)∵x 2

x ﹣=0,∴x 1=﹣1,x 2=3,

∴B(﹣1,0),C (3,0),∴BC=4,(1分)

∵E 点在x 轴下方,且△EBC 面积最大,∴E 点是抛物线的顶点,其坐标为(1,﹣3),(1分)

∴△EBC 的面积=×4×3=6.(1分)

2、(1)∵抛物线的顶点为(1,\f(9,2)) ∴设抛物线的函数关系式为y =a ( x -1) 2

+错误!

∵抛物线与y轴交于点C (0,4), ∴a (0-1)

2+\f (9,2)=4 解得a=-\f(1,2)

∴所求抛物线的函数关系式为y =-\f(1,2)( x -1) 2

+错误!

(2)解:P 1 (1,\r(,17)),P 2 (1,-,17), P3 (1,8),P 4 (1,17

8

),

(3)解:令-错误!( x -1) 2

+错误!=0,解得x 1=-2,x 1=4

∴抛物线y =-错误!( x -1) 2+错误!与x 轴的交点为A (-2,0) C (4,0) 过点F作FM ⊥OB于点M,

∵E F∥AC ,∴△BEF ∽△BAC ,∴MF

OC

=\f(EB ,AB ) 又 ∵OC =4,AB =6,∴MF =错误!×OC =错误!EB

设E 点坐标为 (x,0),则EB =4-x ,MF =\f(2,3) (4-x ) ∴S =S△BCE -S △BEF =错误! EB ·OC -错误! EB ·MF =错误! EB(O

C -M F)=\f(1,2) (4-x )[4-2

(4-x )]=-错误!x 2+错误!x +错误!=-错误!( x -1) 2+3

∵a =-\f(1,3)<0,∴S 有最大值 当x =1时,S 最大值=3 此时点E 的坐标为 (1,0) 3、(1)∵一次函数y =-4x -4的图象与x 轴、y 轴分别交于A 、C 两点,

∴A (-1,0) C (0,-4) 把A (-1,0) C (0,-4)代入y=错误!x 2+bx +c 得 ∴错误! 解得错误! ∴y =错误!x2-错误!x -4

(2)∵y=错误!x 2-错误!x-4=错误!( x -1) 2-错误! ∴顶点为D(1,-错误!) 设直线DC 交x 轴于点E 由D (1,-错误!)C (0,-4)

易求直线CD 的解析式为y =-错误!x -4

易求E (-3,0),B (3,0) S△EDB =1

×6×\f(16,3)=16

S △E CA =\f(1,2)×2×4=4 S 四边形ABDC =S △ED B-S △E CA =12 (3)抛物线的对称轴为x =-1

做BC 的垂直平分线交抛物线于E,交对称轴于点D 3 易求AB 的解析式为y =-错误!x +错误!

∵D 3E 是BC 的垂直平分线 ∴D 3E ∥A B

设D3E 的解析式为y =-3x +b

∵D 3E 交x轴于(-1,0)代入解析式得b =-\r(,3), ∴y =-\r(,3)x-错误!

把x=-1代入得y =0 ∴D 3 (-1,0), 过B 做B H∥x 轴,则BH =1错误!

在Rt △D 1HB中,由勾股定理得D 1H=错误! ∴D 1(-1,错误!+错误!)同理可求其它点的坐标。 可求交点坐标D1(-1,错误!+错误!), D 2(-1,2错误!), D 3 (-1,0), D 4 (-1, 错误!-错误!)D 5(-1,-2错误!)

B x

y O (第3题图) C

A D

E B x

y

O (第3题图)

C

A P

M N

4、(1)?=

()

2

174222m m ??--??- ???

=247m m -+=2443m m -++=()2

23m -+,∵不管m为何实数,总有

()

2

2m -≥0,∴?=

()

2

23m -+>0,∴无论m 为何实数,该抛物线与x轴总有两个不同的交点.

(2)∵ 抛物线的对称轴为直线x =3,∴3m =, 抛物线的解析式为

215322y x x =

-+=()2

1322

x --,顶点C 坐标为(3,-2)

, 解方程组21,

15322

y x y x x =-??

?=-+??,解得1110x y =??

=?或2276x y =??=?,所以A 的坐标为(1,0)、B 的坐标为(7,6),∵3x =时

y =x -1=3-1=2,∴D的坐标为(3,2),设抛物线的对称轴与x 轴的交点为E ,则E 的坐标为(3,0),所以A E=BE =3,D E=CE =2,

① 假设抛物线上存在一点P使得四边形A CPD 是正方形,则A P、CD 互相垂直平

分且相等,于是P 与点B 重合,但AP=6,CD=4,AP ≠CD ,故抛物线上不存在一点P 使得四边形AC PD是正方形.

② (Ⅰ)设直线CD 向右平移n 个单位(n >0)可使得C 、D 、M 、N 为顶点的四边形

是平行四边形,则直线C D的解析式为x =3n +,直线C D与直线y =x-1交于点M(3n +,2n +),又∵D的坐标为(3,2),C 坐标为(3,-2),∴D通过向下平移4个单位得到C .

∵C 、D 、M、N为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形或四边形CD NM是平行四边形. (ⅰ)当四边形CD MN 是平行四边形,∴M 向下平移4个单位得N ,∴N 坐标为(3n +,2n -), 又N 在抛物线215322y x x =

-+上,∴()()2

15233322

n n n -=+-++, 解得1

0n =(不合题意,舍去),22n =,

(ⅱ)当四边形C DNM 是平行四边形,∴M 向上平移4个单位得N ,∴N 坐标为(3n +,6n +), 又N 在抛物线215322y x x =

-+上,∴()()2

15633322

n n n +=+-++, 解得1

117n =-(不合题意,舍去),2117n =+,

(Ⅱ) 设直线CD向左平移n 个单位(n >0)可使得C 、D、M 、N 为顶点的四边形是平行四边形,则直线CD 的解析式为

x=3n -,直线C D与直线y=x -1交于点M(3n -,2n -),又∵D 的坐标为(3,2),C 坐标为(3,-2),∴D 通过向下

平移4个单位得到C .

∵C 、D 、M 、N 为顶点的四边形是平行四边形,∴四边形CDM N是平行四边形或四边形CDNM 是平行四边形. (ⅰ)当四边形CD MN 是平行四边形,∴M 向下平移4个单位得N ,∴N坐标为(3n -,2n --), 又N在抛物线215322y x x =

-+上,∴()()2

15233322

n n n --=---+, 解得1

0n =(不合题意,舍去),22n =-(不合题意,舍去),

(ⅱ)当四边形CD NM 是平行四边形,∴M 向上平移4个单位得N ,∴N 坐标为(3n -,6n -), 又N 在抛物线215322y x x =

-+上,∴()()2

15633322

n n n -=---+, 解得1

117n =-+,2117n =--(不合题意,舍去),

C O A

y

x D B E C O A

y x D

B M

N

l :x =n E 综上所述,直线CD 向右平移2或(117+)个单位或向左平移(117-+)个单位,可使得C 、D、M 、N 为顶点的四边

形是平行四边形.

5、解:(1)O B=3,OC =8

(2)连接O D,交OC 于点E

∵四边形OA CD 是菱形 ∴AD ⊥O C,OE =EC =错误! ×8=4 ∴BE =4-3=1 又∵∠B AC =90°, ∴△A CE ∽△BAE ∴AE

BE

=错误!

∴AE2=B E·CE=1×4 ∴A E=2

∴点A 的坐标为 (4,2)

把点A 的坐标 (4,2)代入抛物线y =mx 2

-11mx +24m,

得m =-12

∴抛物线的解析式为y =-错误!x2+错误!x -12 (3)∵直线x=n 与抛物线交于点M ∴点M 的坐标为 (n ,-12

n 2+错误!n -12)

由(2)知,点D 的坐标为(4,-2),

则C、D两点的坐标求直线CD 的解析式为y=\f (1,2)x -4 ∴点N 的坐标为 (n ,错误!n -4) ∴MN =(-错误!n 2+错误!n -12)-(错误!n -4)=-错误!n 2+5n -8

∴S 四边形A MCN =S △AM N+S △CMN =错误!M N·CE =错误!(-错误!n 2+5n -8)×4=-(n-5)2+9 ∴当n =5时,S 四边形AMCN =9

6、解:(1)∵BC ∥AD,B(-1,2),M 是B C与x轴的交点,∴M(0,2),

∵D M∥ON ,D(3,0),∴N(-3,2),则9302930a b c c a b c ++=??=??-+=?,解得19132

a b c ?

=-??

?=-??

=???

,∴211293y x x =--+; (2)连接AC 交y 轴与G,∵M 是B C的中点,∴AO=BM=MC,AB=BC=2,∴AG=GC ,即G (0,1),

∵∠ABC=90°,∴BG ⊥AC ,即BG 是AC 的垂直平分线,要使PA=PC,即点P在AC 的垂直平分线上,故P在直线BG 上,∴点P 为直线BG 与抛物线的交点,

设直线BG的解析式为y kx b =+,则21k b b -+=??=?,解得11k b =-??=?,∴1y x =-+,

∴2111

293y x y x x =-+??

?=--+??

,解得11332232x y ?=+??=--??,22332232x y ?=-??=-+??, ∴点P(332 232+-- ,)或P (3-32 232-+ ,),

(3)∵

22111392()93924y x x x =--+=-++,∴对称轴32

x =-,

令211

2093

x x --+=,解得13x =,26x =,∴E(6-,0),

故E 、D 关于直线3

2

x =-对称,∴QE=QD ,∴|Q E-Q C|=|QD-QC|,

要使|QE-QC|最大,则延长DC 与3

2

x =-相交于点Q,即点Q 为直线DC 与

直线3

2

x

=-

的交点, 由于M 为BC 的中点,∴C(1,2),设直线CD 的解析式为y =kx+b, 则302k b k b +=??

+=?,解得1

3k b =-??=?,∴3y x =-+,

当32x

=-

时,39322y =+=,故当Q 在(39

22

-,)的位置时,|Q E-Q C|最大, 过点C 作C F⊥x 轴,垂足为F,则CD=

22222222CF DF +=+=.

7、解:(1)由y=0得,ax 2-2ax-3a=0,

∵a≠0,∴x 2-2x-3=0, 解得x 1=-1,x 2=3, ∴点A 的坐标(-1,0),点B 的坐标(3,0);

(2)由y=a x2-2ax -3a ,令x =0,得y=-3a , ∴C(0,-3a),

又∵y=ax 2-2ax -3a=a (x -1)2-4a , 得D(1,-4a),

∴DH=1,CH=-4a -(-3a)=-a, ∴-a=1,∴a=-1, ∴C(0,3),D(1,4),

设直线CD 的解析式为y=kx+b ,把C、D两点的坐标代入得, ,解得

∴直线CD 的解析式为y=x+3; (3)存在.

由(2)得,E(-3,0),N (-

,0) ∴F(

, ),EN=

作MQ ⊥CD 于Q ,设存在满足条件的点M ( ,m ),则FM= -m ,

EF= = ,M Q=OM=

由题意得:Rt △FQ M∽R t△FNE ,∴ =

,整理得4m 2+36m -63=0,∴m2+9m = , m 2+9m+

=

+

(m+ )2=

m+

∴m1= ,m 2=-

,

∴点M的坐标为M 1( , ),M2(

,- ).

8、解:(1)∵抛物线y=ax 2

+b x+c (a≠0)的图象经过M (1,0)和N(3,0)两点,且与y轴交于D(0,3),

∴假设二次函数解析式为:y=a(x﹣1)(x ﹣3),

将D(0,3),代入y=a(x ﹣1)(x ﹣3),得:3=3a , ∴a=1, ∴抛物线的解析式为:y=(x ﹣1)(x﹣3)=x2

﹣4x+3;

(2)∵过点A(﹣1,0)的直线AB与抛物线的对称轴和x 轴围成的三角形面积为6,∴AC×BC =6,

∵抛物线y=ax 2+bx+c (a≠0)的图象经过M (1,0)和N(3,0)两点,∴二次函数对称轴为x=2,

∴AC=3,∴BC=4,∴B点坐标为:(2,4),一次函数解析式为;y=kx +b ,

∴,解得:,y=x+;

x

y

O A B

E

P

P 3

(3)∵当点P 在抛物线的对称轴上,⊙P 与直线A B和x 轴都相切,

∴M O⊥AB,AM =A C,P M=PC ,

∵AC=1+2=3,BC=4, ∴A B=5,AM =3, ∴B M=2, ∵∠MBP=∠ABC ,∠BMP=∠ACB ,

∴△AB C∽△CBM,∴,

∴,∴PC=1.5,P 点坐标为:(2,1.5).

9、解:(1)A (﹣m ,0),B(3m,0),D(0,

m ).

(2)设直线ED 的解析式为y=kx +b ,将E(﹣3,0),D(0,

m)代入得:

解得,k=,b=m. ∴直线ED 的解析式为y=mx+m.

将y=﹣(x+m )(x﹣3m)化为顶点式:y=﹣(x+m )2+m .

∴顶点M 的坐标为(m,m).代入y=mx+m 得:m 2=m

∵m>0,∴m=1.所以,当m =1时,M 点在直线D E上.连接CD,C 为AB 中点,C 点坐标为C (m ,0). ∵OD=

,OC=1,∴CD =2,D 点在圆上

又OE =3,D E2=OD2

+OE2=12,EC 2

=16,CD 2

=4,∴CD2

+DE 2=EC 2.∴∠FDC=90°∴直线ED 与⊙C 相切.

(3)当0

当m >3时,S △AED =AE .?OD=m(m ﹣3). 即S=m 2

_

m.

10、解:(1)由题意,得

0322a b c c b a

?

?++=?

=-???-=?,解得

143a b c =-??

=??=-?

∴抛物线的解析式为243y x x =-+-。

(2)①令2

430x

x -+-=,解得1213x x ==, ∴B(3, 0)

当点P 在x 轴上方时,如图1,过点A 作直线BC 的平行线交抛物线于点P, 易求直线BC 的解析式为

3y x =-,∴设直线AP 的解析式为y x n =+,

圆的综合大题

二次函数与圆 1、如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的 速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

2、如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3). (1)求此抛物线的解析式 (2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明; (3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.

3、如图,抛物线2 23y x x =-++与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作 PF DE ∥交抛物线于点F ,设点P 的横坐标为m ; ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设BCF △的面积为S ,求S 与m 的函数关系式.

初三数学二次函数知识点总结

初三数学 二次函数 知识点总结 一、二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数, 0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。

4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,.

初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y =ax 2 +b x+c (a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=a x2 +bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2 -bx+c(a ≠0)的图象过点(-1,0),则 c b a + = c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c与二次函数y=ax 2+bx+c(a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y =a x2+b x+c (a≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2 +bx+c=-2的根为——————————— —。 17、抛物线y=(k +1)x 2+k 2-9开口向下,且经过原点,则k=————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x =1,且经过点(2,﹣ ). (1)求此二次函数的解析式. (2)设该图象与x轴交于B、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

二次函数和圆综合(压轴题+例题+巩固+答案解析)

【例1】.如图,点()40M ,,以点M 为圆心、2为半径的圆与x 轴交于点A B ,.已知抛物 21 6 y x bx c =++过点A 和B ,与y 轴交于点C . ⑴ 求点C 的坐标,并画出抛物线的大致图象. ⑵ 点()8Q m ,在抛物线21 6 y x bx c =++上,点P 为此抛物线对称轴上一个动点,求 PQ PB + 最小值. ⑶ CE 是过点C 的M ⊙的切线,点E 是切点,求OE 所在直线的解析式.

【巩固】已知抛物线2y ax bx c =++与y 轴的交点为C ,顶点为M ,直线CM 的解析式 2y x =-+并且线段CM 的长为(1)求抛物线的解析式。 (2)设抛物线与x 轴有两个交点A (X 1 ,0)、B (X 2 ,0),且点A 在B 的左侧,求线段AB 的长。 (3)若以AB 为直径作⊙N ,请你判断直线CM 与⊙N 的位置关系,并说明理由。 【例2】如图,在平面直角坐标系中,以点(04)C ,为圆心,半径为4的圆交y 轴正半轴于点A , AB 是C ⊙的切线. 动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、 Q 从点A 和点O 同时出发,设运动时间为t (秒). ⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ;

⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标; ⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由. 提示:(1)先求出t=1时,AP 和OQ 的长,即可求得P 1,Q 1的坐标,然后用待定系数法即可得出抛物线的解析式.进而可求出对称轴l 的解析式. (2)当直线PQ 与圆C 相切时,连接CP ,CQ 则有Rt △CMP ∽Rt △QMC (M 为PG 与圆的切点),因此可设当t=a 秒时,PQ 与圆相切,然后用a 表示出AP ,OQ 的长即PM ,QM 的长(切线长定理).由此可求出a 的值. (3)本题的关键是确定N 的位置,先找出与P 点关于直线l 对称的点P ′的坐标,连接P ′Q ,那么P ′Q 与直线l 的交点即为所求的N 点,可先求出直线P ′Q 的解析式,进而可求出N 点的坐标. 【巩固】已知二次函数图象的顶点在原点O ,对称轴为y 轴.一次函数1y kx =+的图象与 二次函数的图象交于A B ,两点(A 在B 的左侧),且A 点坐标为()44-,.平行于x 轴的直线 l 过()01-,点. ⑴ 求一次函数与二次函数的解析式; ⑵ 判断以线段AB 为直径的圆与直线l 的位置关系,并给出证明; ⑶ 把二次函数的图象向右平移2个单位,再向下平移t 个单位()0t >,二次函数的图象与x

(完整版)初中数学二次函数综合题及答案

二次函数题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( ) A -1 B 1 C 21 D -2 1 8、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) A B C D 二填空题: 13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣). (1)求此二次函数的解析式. (2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积. 1 —1 0 x y y x -1 x y y x y x y

人教版初中数学二次函数-教案-习题总汇-含答案

一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?

由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标? 将在上面练习中三条抛物线的性质填入所列的有中,如下表:

-圆与二次函数综合题精练(带答案)教学文案

圆与二次函数综合题 1、已知:二次函数y=x2-kx+k+4的图象与y轴交于点c,且与x轴的正半轴交于A、B两点(点A 在点B左侧)。若A、B两点的横坐标为整数。 (1)确定这个二次函数的解析式并求它的顶点坐标;(2)若点D的坐标是(0,6),点P(t,0)是线段AB上的一个动点,它可与点A重合,但不与点B重合。设四边形PBCD的面积为S,求S与t的函数关系式; (3)若点P与点A重合,得到四边形ABCD,以四边形ABCD的一边为边,画一个三角形,使它的面积等于四边形ABCD的面积,并注明三角形高线的长。再利用“等底等高的三角形面积相等”的知识,画一个三角形,使它的面积等于四边形ABCD的面积(画示意图,不写计算和证明过程)。 2、(1)已知:关于x、y的方程组有两个实数解,求m的取值范围; (2)在(1)的条件下,若抛物线y=-(m-1)x2+(m-5)x+6与x轴交于A、B两点,与y轴交于点C,且△ABC的面积等于12,确定此抛物线及直线y=(m+1)x-2的解析式; (3)你能将(2)中所得的抛物线平移,使其顶点在(2)中所得的直线上吗?请写出一种平移方法。 3、已知:二次函数y=x2-2(m-1)x+m2-2m-3,其中m为实数。 (1)求证:不论m取何实数,这个二次函数的图像与x轴必有两个交点;(2)设这个二次函数的图像与x轴交于点A(x1,0)、B(x2,0),且x1、x2的倒数和为,求这个二次函数的解析式。 4、已知二次函数y1=x2-2x-3. (1)结合函数y1的图像,确定当x取什么值时,y1>0,y1=0,y1<0; (2)根据(1)的结论,确定函数y2= (|y1|-y1)关于x的解析式; (3)若一次函数y=kx+b(k 0)的图像与函数y2的图像交于三个不同的点,试确定实数k与b应满足的条件。 5、已知:如图,直线y= x+ 与x轴、y轴分别交于A、B两点,⊙M经过原点O及A、B两点。 (1)求以OA、OB两线段长为根的一元二次方程; (2)C是⊙M上一点,连结BC交OA于点D,若∠COD=∠CBO, 写出经过O、C、A三点的二次函数的解析式; (3)若延长BC到E,使DE=2,连结EA,试判断直线EA与 ⊙M的位置关系,并说明理由。(河南省) 6、如图,已知点A(tan ,0)B(tan ,0)在x轴正半轴上,点A在点B的左 边,、是以线段AB为斜边、顶点C在x轴上方的Rt△ABC的两个锐角。 (1)若二次函数y=-x2- 5/2kx+(2+2k-k2)的图像经过A、B两点,求它的解析式; (2)点C在(1)中求出的二次函数的图像上吗?请说明理由。(陕西省)

2020年初三数学二次函数经典练习全集

1.一跳水运动员从米高台上跳下,他的高度h(单位:米)与所用的时间t(单位:秒)的关系为h=-5(t-2)(t+1),你能帮助该运动员计算一下他跳起来后多长时间达到最大高度?最大高度是多 少米? 2.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2 )与长x 之间的函数关系式,并指出自变量的取值范围. 3.已知二次函数y=ax 2 +bx +c ,当 x=0时,y=0;x=1时,y=2;x=-1时,y=1.求a 、b 、c ,并写出函数解析式. 4.求经过A(0,-1)、B(-1,2),C(1,-2)三点且对称轴平行于y 轴的抛物线的解析式. 5.已知二次函数为x =4时有最小值-3且它的图象与x 轴交点的横坐标为1,求此二次函数解析式. 6. 已知抛物线经过点(-1,1)和点(2,1)且与x 轴相切. (1)求二次函数的解析式; (2)当x 在什么范围时,y 随x 的增大而增大; (3)当x 在什么范围时,y 随x 的增大而减小. 7.已知122 12 ++-=x x y (1)把它配方成y =a(x-h)2 +k 形式; (2)写出它的开口方向、顶点M 的坐标、对称轴方程和最值; (3)求出图象与y 轴、x 轴的交点坐标; (4)作出函数图象; (5)x 取什么值时y >0,y <0; (6)设图象交x 轴于A ,B 两点,求△AMB 面积. 8.在长20cm ,宽15cm 的矩形木板的四角上各锯掉一个边长为xcm 的正方形,写出余下木 板的面积y(cm 2 )与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围. 9.已知二次函数y=4x 2 +5x +1,求当y=0时的x 的值. 10.已知二次函数y=x 2 -kx-15,当x=5时,y=0,求k . 12.已知二次函数y=ax 2+bx +c 中,当x=0时,y=2;当x=1时,y=1;当x=2时,y=-4,试求a 、b 、c 的值. 13.有一个半径为R 的圆的内接等腰梯形,其下底是圆的直径. (1)写出周长y 与腰长x 的函数关系及自变量x 的范围; (2)腰长为何值时周长最大,最大值是多少? 14.二次函数的图象经过()()()4,2,4,0,0,4--C B A 三点: ① 求这个函数的解析式 ② 求函数图顶点的坐标 ③ 求抛物线与坐标轴的交点围成的三角形的面积。 15.如图,抛物线y=x 2 +bx+c 与x 轴的负半轴相交于A 、B 两点,与y 轴的正半轴相交于C 点,与双曲线y= x 6 的一个交点是(1,m),且OA=OC.求抛物线的解析式. 16.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以l 厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以l 厘米,秒的速度移动.如果P 、Q 同时出发,用t(秒)表示移动的时间(0≤t≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式; (2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ,试判断点C 是否落在直线AB 上,并说明理由; (3)当t 为何值时,△POQ 与△AOB 相似. 17、水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

初中数学二次函数综合应用

学 科 中考数学 课题名称 二次函数综合应用 教学目标 二次函数属于中考压轴题,知识点不仅多,考点灵活多变,而且难度较高,这就要求学生在复习二次函数时,须得把相关性质及相关解题技巧掌握扎实,理解透彻。本专题通过梳理二次函数的知识点(拓展知识点),并结合近几年上海市中考数学最后2道题二次函数的考点,把握中考二次函数命题方向,提高学生利用二次函数和结合相似等综合知识点解决问题的能力。 教学重难点 重点:二次函数解析式的确定,二次函数与x 轴交点问题,二次函数最值问题,二次函数图像上点的 存在问题,二次函数与相似等其它知识点的结合。 难点:二次函数与相似等其它知识点的结合。 知识精解 二次函数性质及相关扩展 1、一般式:y=ax 2+bx+c(a≠0), 函数图像是抛物线; 2、开口方向:(1)a>0, 开口向上, (2)a<0, 开口向下; 3、顶点坐标:(-b/2a, (4ac-b 2)/4a ), 对称轴:x= -b/2a 4、 顶点式:y=a(x+h)2+k(a≠0) h= -b/2a, k=(4ac-b 2)/4a 5、平移问题: ①将一般式化为顶点式; ②遵循原则:“左+ 右-,上+ 下-”(左右是指沿x 轴平移,上下是指沿y 轴平移) 例:将y=x 2+4x+3先向右平移2个单位,再向上平移1个单位,得到的新抛物线解析式是多少? 6、交点式:y=a(x-x 1)(x-x 2)(a≠0) ①一元二次方程根与系数的关系:x 1+x 2= -b/a, x 1.x 2=c/a ②求根公式:x =2 42b b ac a -±-,其中△=b 2-4ac 叫做根的判别式。 当△>0时,抛物线与x 轴有两个交点; 当△=0时,抛物线与x 轴有一个交点; 当△<0时,抛物线与x 轴没有交点。 ③运用抛物线的对称性: 若已知抛物线上两点12(,)(,)、x y x y , 则对称轴方程可以表示为:12 2 x x x += 7、增减性: ①a>0时,在对称轴的左侧,y 随x 的增大而减小; 在对称轴的右侧,y 随x 的增大而增大。 ②a<0时,在对称轴的左侧,y 随x 的增大而增大;

人教版初中数学二次函数解析

人教版初中数学二次函数解析 一、选择题 1.若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y =mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2 【答案】B 【解析】 【分析】 画出图象,利用图象可得m 的取值范围 【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0, ∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意. ①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2. 由y =0得x 2﹣4x +2=0.解得12120.622 3.42 x x ==- ≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】 答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12 .

初中中招二次函数和圆的综合体包含答案

二次函数和圆 【例题1】 (芜湖市) 已知圆P 的圆心在反比例函数k y x = (1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二 次函数图象的解析式; (2) 若二次函数图象的顶点为D , 问当k 为何值时,四边形ADBP 为菱形. 【例题2】(湖南省韶关市) 25.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线32 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的面积.

【例题3】(甘肃省白银等7市新课程)28. 在直角坐标系中,⊙A的半径为4,圆心A的坐标为(2,0),⊙A与x轴交于E、F两点,与y轴交于C、D两点,过点C作⊙A的切线BC,交x轴于点B. (1)求直线CB的解析式; (2)若抛物线y=ax2+b x+c的顶点在直线BC上,与x 轴的交点恰为点E、F,求该抛物线的解析式; (3)试判断点C是否在抛物线上? (4)在抛物线上是否存在三个点,由它构成的三角形与 △AOC相似?直接写出两组这样的点. 【例题4】(绵阳市)25.如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为5.设⊙M与y轴交于D,抛物线的顶点为E. (1)求m的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin(α-β)的值; (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 【例题5】(南充市)25.如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交于点A、B.已

初中数学二次函数课件及练习题

第二课时 一、教学目标 1. 使学生会用描点法画出二次函数k h x a y +-=2 )(的图像; 2. 使学生知道抛物线k h x a y +-=2 )(的对称轴与顶点坐标; 3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力; 4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想; 5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。 二、教学重点 会画形如k h x a y +-=2 )(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。 三、教学难点:确定形如 k h x a y +-=2 )(的二次函数的顶点坐标和对称轴。 4.解决办法: 四、教具准备 三角板或投影片 1.教师出示投影片,复习2 2 2 )(,,h x a y k ax y ax y -=+==。 2.请学生动手画1)1(2 1 2-+- =x y 的图像,正好复习图像的画法,完成表格。 3.小结k h x a y +-=2 )(的性质??? ?? ??平移顶点坐标对称轴开口方向 4.练习 五、教学过程 提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如2 2 2 )(,h x a y k ax y ax y -=+==和。(板书) 2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下

我们将学习形如什么样的二次函数的问题吗? 由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2 )(的二次函数的有关问题.(板书) 一、复习引入 首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(2 1 ,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(2 1 +- =x y 的图像, 是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、 更具体. 画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(2 1 2-+- =x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用. (l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点. 在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确. (2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.) (3)关于连线:特别要注意顶点附近的大致走向。最后画的抛物线应平滑,对称,并符合抛物线的特点. 由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演. 学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问: (1)你能否指出抛物线1)1(2 1 2-+- =x y 的开口方向,对称轴,顶点坐标?

初中数学二次函数综合题及答案(经典题型)

二次函数试题 选择题: 1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在 2、下列函数关系中,可以看作二次函数y=ax 2 +bx+c(a ≠0)模型的是( ) A 在一定距离,汽车行驶的速度与行驶的时间的关系 B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系 C 矩形周长一定时,矩形面积和矩形边长之间的关系 D 圆的周长与半径之间的关系 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2 ,则抛物线的解析式是( ) A y=—( x-2)2 +2 B y=—( x+2)2 +2 C y=— ( x+2)2 +2 D y=—( x-2)2 —2 5、抛物线y= 2 1 x 2 -6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2 +bx+c,图象如图所示,则下列结论中正确的有( )个 ①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2c 〈3b A 1 B 2 C 3 D 4 7、函数y=ax 2 -bx+c (a ≠0)的图象过点(-1,0),则 c b a + =c a b + =b a c + 的值是( )A -1 B 1 C 21 8、已知一次函数y= ax+c 与二次函数y=ax 2 +bx+c (a ≠0 ),它们在同一坐标系的大致图象是图中的( ) 二填空题: 13、无论 m 为任何实数,总在抛物线y=x 2 +2mx +m 上的点的坐标是————————————。 16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线 x =2,最小值为-2,则关于方程ax 2 +bx+c =-2的根为————————————。 17、抛物线y=(k+1)x 2 +k 2 -9开口向下,且经过原点,则k =————————— 解答题:(二次函数与三角形) 1、已知:二次函数y=错误!未找到引用源。x 2 +bx+c ,其图象对称轴为直线x=1,且经过点(2,﹣错误!未找到引用源。).(1)求此二次函数的解析式.(2)设该图象与x 轴交于B 、C 两点(B 点在C 点的左侧),请在此二次函数x 轴下方的图象上确定一点E ,使△EBC 的面积最大,并求出最大面积 2、如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,92).(1)求抛物线的函数表达式;(2)设抛物线的对称 轴与轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标. (3)若点E 是线段AB 上的一个动点(与A 、B 不重合),分别连接AC 、BC ,过点E 作EF ∥AC 交线段BC 于点F ,连接CE ,记△CEF 的面积为S ,S 是否存在最大值?若存在,求出S 的最大值及此时E 点的坐标;若不存在,请说明理由. x

专题63 构造圆与隐形圆在二次函数中的综合问题(解析版)

专题63 构造圆与隐形圆在二次函数中的综合问题 1、如图,在直角坐标系中,直线y=﹣1 3x ﹣1与x 轴,y 轴的交点分别为A 、B ,以x=﹣1为对称轴的抛物线 y=x 2+bx+c 与x 轴分别交于点A 、C ,直线x=﹣1与x 轴交于点D . (1)求抛物线的解析式; (2)在线段AB 上是否存在一点P ,使以A ,D ,P 为顶点的三角形与△AOB 相似?若存在,求出点P 的坐标;如果不存在,请说明理由; (3)若点Q 在第三象限内,且tan△AQD=2,线段CQ 是否存在最小值,如果存在直接写出最小值;如果不存在,请说明理由. 【答案】(1)y=x 2+2x ﹣3;(2)存在;点P 坐标为(﹣1,?23 )或(-65 ,-3 5 ); (3)存在,CQ 最小值为 √37?√5 2 . 【解析】(1)△直线y=﹣1 3x ﹣1与x 轴交于A 点, △点A 坐标为(﹣3,0), 又△直线x=﹣1为对称轴, △点C 坐标为(1,0), △抛物线解析式为:y=(x+3)(x ﹣1)=x 2+2x ﹣3; (2)存在;

由已知,点D 坐标为(﹣1,0),点B 坐标为(0,﹣1), 设点P 的坐标为(a ,﹣13 a ﹣1), △当△AOB△△ADP 时, AD AO = DP OB ,即23 = 1 3 a+11 , 解得:a=﹣1; 点P 坐标为(﹣1,?2 3); △当△AOB△△APD 时, 过点P 作PE△x 轴于点E , 则△APE△△PED , △PE 2=AE?ED , △(﹣1 3a ﹣1)2=(a+3)(﹣a ﹣1), 解得a 1=﹣3(舍去),a 2=﹣6 5, △点P 坐标为(﹣6 5 ,﹣3 5 ); (3)存在,CQ 最小值为 √37?√5 2 ; 如图,取点F (﹣1,﹣1),过点ADF 作圆,则点E (﹣2,﹣1 2)为圆心,

圆与二次函数综合练习

圆与二次函数综合题 1.已知圆P 的圆心在反比例函数k y x =(1)k >图象上,并与x 轴相交于A 、B 两点. 且始终与y 轴相切于定点C (0,1). (1) 求经过A 、B 、C 三点的二次 函数图象的解析式; (2) 若二次函数图象的顶点为 D ,问当k 为何值时,四边形ADBP 为菱形. 2.如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线32 y x =-+ 与坐标轴交于D 、E 。设M 是AB 的中点,P 是线段DE 上的动点. (1)求M 、D 两点的坐标; (2)当P 在什么位置时,PA=PB ?求出此时P 点的坐标; (3)过P 作PH ⊥BC ,垂足为H ,当以PM 为直径的⊙F 与BC 相切于点N 时,求梯形PMBH 的 面积. (3) (2) 3.如图,已知抛物线y = ax 2 + bx -3与x 轴交于A 、B 两点,与y 轴交于C 点,经过A 、B 、 C 三点的圆的圆心M (1,m )恰好在此抛物线的对称轴上,⊙M 的半径为5.设⊙M 与y 轴 交于D ,抛物线的顶点为E . (1)求m 的值及抛物线的解析式; (2)设∠DBC = α,∠CBE = β,求sin (α-β)的值;

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCE相似?若存在,请指出点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 4.如图,点P在y轴上,半径为3的⊙P分别交x轴于A、B两点,AB=4,交y轴负半轴于点C,连接AP并延长交⊙P于点D,过D作⊙P的切线分别交x轴、y轴于点F、G; (1)求直线FG的解析式; (2)连接CD交AB于点E,求PCD ∠ tan的值; (3)设M是劣弧BC上的一个动点,连接DM交x轴于点N,问:是否存在这样的一个常数k,始终满足AN·AB+DN·DM=K,如果存在,请求出K的值,如果不存在,请说明理由; (图1) (图2) 5.已知:如图, 抛物线2 33 y x x =--x轴分别交于A B ,两点,与y轴交于C点,M经过原点O及点A C ,,点D是劣弧OA上一动点(D点与A O ,不重合).(1)求抛物线的顶点E的坐标;(2)求M的面积; (3)连CD交AO于点F,延长CD至G,使2 FG=,试探究当点D运动到何处时,直线GA与M相切,并请说明理由. 6.(0) A m,(0) m<,以AB为边在x轴下方作正方形ABCD,点E是线段OD与正方形ABCD的外接圆除点D以外的另一个交点,连结BE与AD相交于点F. (1)求证:BF DO =; (2)设直线l是BDO △的边BO的垂直平分线,且与BE相交于点G.若G是BDO △的

人教版初中数学二次函数图文解析

人教版初中数学二次函数图文解析 一、选择题 1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0 B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2 C .当函数在x <110 时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n < 2a 【答案】C 【解析】 【分析】 根据二次函数的图象和性质对各项进行判断即可. 【详解】 解:∵函数经过点M (﹣1,2)和点N (1,﹣2), ∴a ﹣b +c =2,a +b +c =﹣2, ∴a +c =0,b =﹣2, ∴A 正确; ∵c =﹣a ,b =﹣2, ∴y =ax 2﹣2x ﹣a , ∴△=4+4a 2>0, ∴无论a 为何值,函数图象与x 轴必有两个交点, ∵x 1+x 2=2a ,x 1x 2=﹣1, ∴|x 1﹣x 2|=>2, ∴B 正确; 二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣ 2b a =1a , 当a >0时,不能判定x < 110时,y 随x 的增大而减小; ∴C 错误; ∵﹣1<m <n <0,a >0, ∴m +n <0, 2a >0, ∴m +n <2a ;

∴D正确, 故选:C. 【点睛】 本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键. 2.二次函数y=x2+bx的对称轴为直线x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是() A.0<t<5 B.﹣4≤t<5 C.﹣4≤t<0 D.t≥﹣4 【答案】B 【解析】 【分析】 先求出b,确定二次函数解析式,关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,﹣1<x<4时﹣4≤y<5,进而求解; 【详解】 解:∵对称轴为直线x=2, ∴b=﹣4, ∴y=x2﹣4x, 关于x的一元二次方程x2+bx﹣t=0的解可以看成二次函数y=x2﹣4x与直线y=t的交点,∵﹣1<x<4, ∴二次函数y的取值为﹣4≤y<5, ∴﹣4≤t<5; 故选:B. 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是() A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3 【答案】C 【解析】 【分析】 根据给出的对称轴求出函数解析式为y=-x2?2x+3,将一元二次方程-x2+bx+3?t=0的实数根看做是y=-x2?2x+3与函数y=t的交点,再由﹣2<x<3确定y的取值范围即可求解. 【详解】 解:∵y=-x2+bx+3的对称轴为直线x=-1, ∴b=?2, ∴y=-x2?2x+3,

相关主题
文本预览
相关文档 最新文档