当前位置:文档之家› 何曼君第三版高分子物理答案(新版答案)

何曼君第三版高分子物理答案(新版答案)

课后作业答案: 第一章

2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W 2=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917

111

3910.07990.08950.09580.11180.12780.14380.15970.19170.002556

250280300350400450500600n i i

M w M

=

===+++++++∑424w i i M w M ==∑; 2

2

(1)12903w

n n

n

M M M σ=-=; 22

(1)15173w w V M d =-=

4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。

渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。

5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M .

01

()()n M N m MdM W N dM

M ∞

∞=

=

?

?

()w M W m MdM ∞

=

?

6、 2i

i

i

i

i

i

w

i

i

i

i i

i

i

i

n M W M M W M n M

W =

==∑∑∑∑∑

1

i i

i

i

i

n

i

i i i

i

i i

i

n M

W

M W W n

M

M =

=

=

∑∑∑∑∑ 1/(

)i i i

M W M αα

η=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤

7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分

子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的

数均分子量M n ,重均分子量M W 和多分散指数d 。

解:W1=1/(1+2)=1/3 W2=2/(1+2)=1/3 522

5511

1.5*1012331*102*10n M W M

=

==+∑

555

12*1*10*2*10 1.67*1033

w i i M W M ==+=∑

55

1.67*10

1.111.5*10

w n M d M === 8、高分子溶液的热力学性质与理想溶液的偏差很大,只有在无限稀释的情况下才符合理想溶液的规律。因此必须求取浓度为零时的外推值作为计算的依据。当高聚物的分子量很大,测定用的溶液浓度又很稀时不需外推。

11、 21()RT A C C M π=+ 以C π

对C 作图得一直线。

3*10C

π

- 0.097 0.109 0.113 0.124 0.143 0.174 0.184)

则直线截距 3

10.0774*10RT M = ; 453

8.48*10*298 3.26*100.0774*10n M == 直线斜率 4

21.23*10R T A =;4

4224

1.23*10 4.87*10(.)/8.48*10*298

A ml mol g -==

9、解:6

25

1.00510210n mol mol -==??; 332 1.00 1.100.911

V cm cm == 33

31100 1.1098.9V c m c m c m =-=; 198.9 1.189.0

n mol mol ==;

3231/110/100c g cm g cm -==?; 66

226

12510 4.5101.1510

n x n n ---?===?++? 222 1.10

1.110100

V V -Φ===? 10、

稀溶液的依数性法:

(1)对小分子:原理:在溶液中加入不挥发性溶质后,稀溶液沸点升高、冰点下降、蒸汽压下降、渗透压的数值仅与溶液中的溶质数有关,而与溶液本性无关。这些性质被称为稀溶液的依数性。

b b

c T k M ?=; f f c

T k M ?=

(2)对高分子: 021(

)()c n

n

T k

k A c c M M →?=++≈

,2A 为第二维利系数。

b b k c

M T =

? f f

k c M T =? 当存在缔合作用时,所测表现分子量大于真实分子量,f T ?、b T

?与溶液浓度成

正比,缔合作用使浓度减小,

f

T ?、

b

T ?减小。当存在电离作用时,所测表现分

子量小于真实分子量,电离作用使浓度增大,

f

T ?、

b

T ?增大。

12、 []ln ln ln k M ηα=+

以[]ln η对ln M 作图得一直线。

([]ln η 4.99 4.76 4.62 4.52 4.25 4.08 3.37 ln M 12.98 12.67 12.48 12.35 11.98 11.75 10.79) 则直线斜率α=0.74 截距k=0.99×10-2

13、解:①通常高聚物平均分子量:纤维﹤塑料﹤橡胶

纤维:室温下分子的轴向强度很大,受力后形变较小(一般为百分之几到百分之二十),在较广的温度范围内(-50℃--+150℃)机械性能变化较大,模量大;

塑料:常温下有一定形状,强度较大,受力后能发生一定形变(一般为百分之几),按聚合物受热行为可分为热塑性和热固性聚合物;

橡胶:在室温下具有高弹性,即使受到很小的外力,形变也高达十倍以上,去除外力后可恢复形状,是具有可逆形变的高弹性聚合物。

同是高分子材料,但其分子量大小、分子量分布以及自身的结构、性质决定了其用途。

②不同的塑料薄膜结晶性不同,结晶的高聚物通常不透明,非结晶高聚物通常透明,部分结晶的高聚物是半透明的。

第二章

1、假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?说明理由。 不能。全同立构和间同立构是两种不同的立体构型。构型是分子中由化学键解:所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现。

2、 末端距是高分子链的一端到另一端达到的直线距离,

解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i 个链单元的距离是矢量。它们是矢量,其平均值趋近于零。因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能体现其蜷曲的特点。

5、 解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。要确切知道高分子的具体形态尺寸,从原则上来说,只知道一个均值往往是不够的。最好的办法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。所以需要推导高斯链的构象统计理论。

6、(1)根据C-C 链化学键的键角109.5o ,求自由旋转链的Kuhn 链段长度和等效链段数。

解:键角为φ=109.5o ,则键角的补角θ=180o -109.5o =70.5o ,cos θ=cos70.5o =0.33, 设化学键的数目为n ,键长为l ,则自由旋转链的均方末端距为:

222

2

99.133

.0133

.01cos 1cos 1nl nl nl h =-+=-+=θθ

链的伸直长度L 为:nl nl nl nl o

82.02

5.109sin

2sin )2/90cos(===-?

?

Kuhn 链段长度b 为:22

1.99

2.430.82h nl b l L

nl

=== 等效连段数()

222

20

0.820.341.99nl L Z n nl

h

=

=

=

Flory 特征比20

2

2h c nl ??== (2)实验测得聚乙烯在溶剂十氢萘中的无扰尺寸为A=0.107 nm ,键长0.154 nm ,求聚乙烯链的Kuhn 链段长度和等效链段数。

解:聚乙烯的聚合度为x ,化学键数为n ,则M =28x = 14n ,

无扰尺寸21

02???

?

?

?=M h A ,则n n M A h 16.014107.0220

2=?=?=

又因为θ

θ

cos 1cos 12

2

-+=nl h ,所以cos θ=0.744,

由于12cos 2cos 2

-=θ

θ,则933.02

cos =θ

, Kuhn 链段长度b 为:11.1933

.0154.016.02

cos

16.00

2=??=

=

=

n n

nl n L

h b θ

nm

等效连段数n n

n n nl h

L Z 13.016.0)933.0154.0(16.02cos 22

2

2

=??=?

?? ??

==θ

Flory 特征比20

2

6.75h c nl

??==

(3)题(1)和题(2)可以说明什么问题?

解:种情况下计算出的等效链段数和等效链长均不同,说明实际情况偏离假设的理想条件,化学键旋转是不自由的。

(4)解释某些高分子材料在外力作用下可以产生很大形变的原因。 解:以题(1)为例,高分子链最大伸直长度nl L 82.0max =, 均方根末端距()

2

/12

2/10

299.1nl h =,

则二者的比值

n nl

l h

L 6.099.182.02

2/10

2max ==

对于高分子而言,分子量≥104,假设聚乙烯的聚合度为1000,分子量为28000,

则化学键数目n = 20,0,则

8.266.02/10

2max ==n h

L

高分子链在一般情况下是卷曲的,在外力作用下,链段运动的结果是使分子趋于伸展。因此,在外力作用下,某些高分子材料可以发生很大的形变。理论上,聚合度为1000的聚乙烯完全伸展可以产生26.8倍形变。 7、

(1)末端距nl l l l l h n =++++=...321,均方末端距2220

2

)(l n nl h ==

(2)由于高分子链为完全刚性链,则其质心为化学键数的二分之一处,即n/2。设m i 为第i 个质点的质量,r i 为由质心到第i 个质点的矢量。根据定义,

∑∑>

<=i

i

i

g

m

r m R

2

2

,由于每一个链段的质量相等,

则∑∑∑=><=>

<=N

i i i

i

i

g

r N m

r m R

1

22

21,其中N 为等效链段数

由上图可知,∑∑∑∑====++=++=N

i i N

i i N

i i i N

i i h h r Nr h r h r r 1

21

11

21

111

2

)(2))(( ①

质心应该满足的条件是:01

=∑=N

i i i r m ,由于每个链段是等同的,质点的质量

也相同,则0)(1

1

111

∑∑∑====+=+=N

i i N i i N i i h Nr h r r ,由此可推出

∑∑∑∑∑∑======-==-=N i N

j j

i N

i j i N i N

j j i N

i i

h h N h r h h N r h N r 111

11

221

1

12)(2)

(11

将上述关系式代入①中,得∑∑∑∑====-=N i j N

j i N

i i N

i i h h N h r 111

2

11 ②

h i h j 、h i 、h j 为矢量,三者之间的关系可以用余弦定理表示:j i j i ij h h h h h 2222

-+=

代入②式可得∑∑

∑====N i N

j ij N

i i

h N

r 11

21

2

21

,因为2ij h 是链段数为i j -的均方末端距,

且高斯链的均方末端距可表示为:i j b h ij -=22

,其中b 为等效链段长度

所以,∑∑∑===-=N i N

j N

i i

i j N b r 11

21

2

2 ③ 当j <i 时,)(j i i j -=-;当j >i 时,)(i j i j -=- 所以,)()(1

1

1

∑∑∑=+==-+

-=-N

j N

i j N

j i j j i i j ④

自然数列前n 项的求和公式为:)1(2

1

+=n n S n ,将其代入④中,得

i N N iN i i N i i N i N i i i i j N

j -++-=--++-++-=-∑

=2

1

21)()1)((21)1(212221

将上述公式按i 进行加和,并利用公式6

)

12)(1(...3212222++=++++N N N N ,

得3)2121(31

22

11N

N i N N iN i i j N

i N i N

j -=

-++-=-∑∑∑

===,将其代入③中, 得6

)

1(3222321

2

-=

-?=∑=N b N N N b r N

i i

,则 6

)11(6)1(6112222

2122

Nb N Nb N b N r N R

N i i g

≈-=-?==∑= 由于高分子链为完全刚性链,则质心处于链段的n/2处,N=1/2,等效链段

长度b=nl ,22212

16nl Nb R

g

== 完全刚性分子:

222

222

222

1121212g g h n l n l R h h R ??=??=??=

??

=??

柔性高分子:

22

2

2

222

1666g g h nl n l R h h R ??=??=??=

??

=??

可见完全刚性分子比柔性高分子的尺寸大n 倍。

8、见书第39-40页。

实际上高分子主链中每个键都不是自由结合的,有键角的限制,内旋转也不是自由的,一个键转动时要带动附近一段链一起运动,也就是说相继的键他们的取向是彼此相关的。我们把相关的那些键组成一个“链段”作为独立运动单元,高分子链相当于由许多自由结合的链段组成,成Kuhn 链段,称它为等效自由结合链。实际情况中有两种效应造成偏离。效应Ⅰ:链与溶剂分子、链与链之间有相互作用;效应Ⅱ:化学键旋转不自由。在稀溶液中,克服效应Ⅰ可以在θ状态的溶液中,此时实验测到的均方末端距是无扰均方末端距。我们可把若干个键组成一段链作一个独立“链段”,令链段与链段自由结合,形成等效自由结合链,也就相当于克服了效应Ⅱ,但必须解决好了效应Ⅰ的基础之上才能再解决效应Ⅱ的问题。

第三章

1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差别很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。

(1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。

(2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。

(3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。晶态聚合物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入聚合物内部非常困难,因此晶态化合物的溶解比非晶态聚合物要困难得多。

(4)对于非极性聚合物与溶剂的相互混合,溶解过程一般是吸热的,故只有在升高温度或减小混合热才能使体系自发溶解。恒温恒压时,混合热可表示为

21212()M M H V φφδδ?=-,

可见二者的溶度参数1δ,2δ越接近,M H ?越小,越能相互溶解。

对于极性聚合物与溶剂的相互混合,由于高分子与溶剂分子的强烈相互作用,溶解时放热,使体系的自由能降低,溶解过程能自发进行。而溶解时,不但要求聚合物与溶剂的溶度参数中非极性部分相近,还要求极性部分也相近,才能溶解。 (5)结晶性非极性聚合物的溶解分为两个过程:其一是结晶部分的熔融,其二是高分子与溶剂的混合。结晶性极性聚合物,若能与溶剂形成氢键,即使温度很低也能溶解。

2、理想溶液是指溶液中溶质分子间、溶剂分子间和溶质溶剂分子间的相互作用都能相等,溶解过程没有体积的变化,也没有焓的变化。高分子的理想溶液是指满足θ状态的高分子溶液,即选择合适的溶剂和温度使Δμ1E =0

3、第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子

在溶液里的形态有密切关系。在良溶剂中,高分子链由于溶剂化作用而扩张,高分子线团伸展,A2是正值;温度下降或在不良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作用相等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

4、(1)理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

(2)理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链的相互作用等。

5、高分子的回转半径R G:

R G与[η]成正比,与分子量M成正比。R G可通过测量特性粘度得到。

高分子的流体力学半径R H:

R H与温度T成正比,与溶剂粘度η0成反比。R H可通过测量扩散系数D0得到。

6、(1)稀溶液:高分子线团互相分离,高分子链段分布不均一;线团之间的相互作用可以忽略。

(2)亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。(3)浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的的空间密度分布均一

第四章作业

1、两种聚合物共混的先决条件是混合自由能小于等于零,对于给定的共混体系存在相互作用参数临界值Xc。当体系的X大于临界值Xc时,即可出现相分离,而X与温度有关。因此,当体系温度低于分相温度时,体系的混合自由能为负值,不会分相。当体系温度略高于两相共存线温度时,体系处在亚稳区。如果体系有一微小的变化时还是稳定的,只有在体系浓度变化较大时会分相,即体系存在亚稳分相区。

共混聚合物分相的情况:两种聚合物之间没有特殊相互作用;共混聚合物各组分浓度与共溶时的各组分浓度偏离太多;温度不合适,如低于高临界共溶温度或高于低临界共溶温度。

分相时出现亚稳区的原因:这类共混高聚物所呈现的相分离是微观的或亚微观的相分离,在外观上是均匀的,而不再有肉眼看得见的分层现象。当分散程度较高时,甚至连光学显微镜也观察不到两相的存在,但用电镜在高放大倍数时还是观察的到两相结构的存在的。由于高分子混合物的粘度很大,分子或链段的运动实际上处于一种冻结状态,因此,处于一种相对稳定的状态,即亚稳分相区。

2.一般共混物的相分离与嵌段共聚物的微相分离在本质上有何区别?

一般共混物的相分离是微观或亚微观上发生相分离,形成所谓“两相结构”,是动力学上的稳定状态,但只是热力学上的准稳定状态,嵌段共聚物的微相分离是由于嵌段间具有化学键的连接,形成的平均相结构微区的大小只有几十到几百纳米尺度,与单个嵌段的尺寸差不多。一般共混物的相分离是由体系的相互作用参数X决定的,即与体系的浓度和温度有关,而嵌段共聚物的微相分离除与嵌段之间的相互作用参数X有关外,还与嵌段共聚物的总聚合度N,官能度n及嵌段组成f有关。

3、当Tsp>T2>Tbn时,尽管在整个组成范围内△Fm都小于零,但只有当共混物的相互作用参数X低于临界相互作用参数Xc时,任意组成的共混物才是互溶的。当相互作用参数较大时(X>Xc),在两相共存线两翼之间存在一个混溶间隙,在这个组成范围内共混物发生相分离。

聚合物只有在玻璃化温度Tg和分解温度Td之间才具有液体可流动的性质,而这个温度范围并不宽,往往很难在这个温度范围内使X调节到Xc,所以两种聚合物之间,没有特殊相互作用而能完全互溶的体系很少。

第五章答案

1. 聚合物的玻璃化转变与小分子的固液转变在本质上有哪些区别?

答:P22小分子固液转变属于热力学一级转变,伴随物态变化,由热力学趋动,温度变化范围较窄,溶解过程温度几乎不变,有熔点。

聚合物的玻璃化转变属于热力学二级转变,不伴随有物态变化,玻璃化转变温度Tg以下,聚合物处于玻璃态,由于温度低导致分子运动的能量低,不足以克服主链内旋转的位垒,链段处于被冻结状态,松弛时间几乎为无穷大,聚合物具有普弹性。自由体积理论认为,聚合物体积由被分子占据的体积和未被占据的自由体积组成,玻璃态下,链段运动被冻结,自由体积也被冻结,并保持一恒定值,自由体积“孔穴”的大小及其分布也将基本上维持固定。玻璃态温度就是自由体积达到某一临界值的温度。温度达到Tg时,分子热运动具有足够的能量,而且自由体积也开始解冻而参加到整个膨胀过程中去,因而链段获得了足够的运动能量和必要的自由空间,从冻结进入运动。聚合物进入高弹态,Tg转变过程中,分子的运动方式改变。

2、影响玻璃化温度的因素

P114(1)主链结构

①主链由饱和单键构成的聚合物,因为分子链可以围绕单键进行内旋转,Tg 一般都不太高。

比如:聚乙烯Tg=-68℃,聚甲醛Tg=-83℃,聚二甲基硅氧烷Tg=-123℃

②主链中引入苯基、联苯基、萘基和均苯四酸二酰亚胺基等芳杂环后,链上内旋转的单键比例相对减小,分子链的刚性增大,Tg提高。

比如:聚乙烯Tg=-68℃,聚ɑ-乙烯基萘Tg=162℃

③主链中含有孤立双键的高分子链比较柔顺,Tg较低。

比如:天然橡胶Tg=-73℃

④共轭二烯烃聚合物存在几何异构,分子链较为刚性的反式异构体Tg较高。比如:顺式聚1,4-丁二烯Tg=-108℃,反式聚1,4-丁二烯Tg=-83℃

(2)取代基的空间位阻和侧链的柔性

①单取代烯类聚合物,取代基的体积越大,分子链内旋转位阻变大,Tg升高。比如:聚乙烯Tg=-68℃,聚ɑ-乙烯基萘Tg=162℃

②1,1-双取代烯类聚合物

a.若主链的季碳原子上,不对称取代时,空间位阻增大时,Tg升高

比如:聚丙烯酸甲酯Tg=3℃,聚甲基丙烯酸甲酯Tg=115℃

b.若主链的季碳原子上,对称取代时,主链内旋转位垒比单取代时小,链柔顺性回升,Tg下降。

比如:聚丙烯Tg=-10℃,聚甲基丙烯Tg=-70℃

③侧链的柔顺性越大,Tg越小

比如:聚甲基丙烯酸甲酯Tg=105℃,聚甲基丙烯酸乙酯Tg=65℃

(3)分子间力的影响

①侧基极性越强,Tg越高

比如:聚乙烯Tg=-68℃,聚氯乙烯Tg=87(81)℃

②分子间氢键可使Tg升高

比如:聚辛二酸丁二酯Tg=-57℃,尼龙66 Tg=50(57)℃

③含离子聚合物中的离子键对Tg 影响很大,一般正离子半径越小或电荷量越大,Tg 越高。比如:聚丙烯酸Tg=106℃,聚丙烯酸钠Tg=280℃,聚丙烯酸铜Tg=500℃

3、 松弛是指材料受力后,在保持固定的变形下,其内应力随时间增加而减少的现象。

答:松弛:高弹形态的恢复过程,指一个从非平衡态到平衡态进行的过程,首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。 现象:高弹态下的聚合物受到外力时,分子链可以通过单键的内旋转和链段的改变构象以适应外力的作用,外力除去时,分子链又通过单键的内旋转和链段的运动回复到原来的蜷曲状态,宏观上表现为弹性回缩。

用松弛时间τ来描述松弛过程的快慢,0τ→时,在很短时间内()A t 已达到

0/A e ,意味松弛过程进行得很快。

4、用膨胀计法测得相对分子质量从3.0×103到3.0×105之间的八个级分聚苯乙烯试样的玻璃化温度T g 如下: M n (×103) 3.0 5.0 10 15 25 50 100 300 T g (℃) 43 66 83 89 93 97 98 99 试作T g 对n M 图,并从图上求出方程式()()

n g g T T K M =∞-中聚苯乙烯的常数K 和相对分子质量无限大时的玻璃化温度()g T ∞。 解:以T g 对n M 作图6-13,

计算得

61

10n

M ? 333 200 100 67 40 20 10 0 T g (℃) 43

66

83

89

93

97

98

99

n M ×103

T g (℃

T g (

61

10n

M ?

从直线斜率得K =1.706×105g· ℃/mol 从截距得()g T ∞=99.86℃

5、根据实验得到得聚苯乙烯的比容-温度曲线的斜率:T >T g 时,()45.510r dv dT -=? cm 3/g·

℃;T

的相对分子质量对T g 影响的方程中,聚苯乙烯的常数K 。 解:()()22A A f l g

N N k dv dT dv dT θθ

α??=

=

'- ()3443

535.510 2.510cm mol

k cm g C --=?-??? 51.76710g C m o l

=???

6、假定聚合物的自由体积分数(f )的分子量依赖性为:n

M M f f A

+

=∞,式中A 为常数;下标M 或∞分别指分子量为M 或极大值时的自由体积分数。由上式试

导出玻璃化温度(g T )与分子量的经验关系式M K

T T g g -=∞)(

解:据自由体积理论,温度T 时的自由体积分数为:

)(g f g T T T f f -+=α

设g f (g T 时的自由体积分数)和f α(g T 转变前后体积膨胀系数差)均与分子量无关。同理,对于分子量分别为M 和∞的则有: )()(M g f g M T T f f -+=α

)()(∞∞-+=g f g T T f f α

代回原式:

n

g f g M g f g M T T f T T f A +

-+=-+∞)()()()(αα

经整理后得:

n

f

g M g M T T 1)()(?A -

=∞α 对于确定的聚合物,在一定温度下,f α=常数,并令f α/A =K (常数),则得出:

n

g g M K

T T -

=∞)(

7、 某聚苯乙烯式样在160℃时黏度为8.0×1013 P,预计它在玻璃化温度100℃和120℃下的黏度分别是多少?

解:由于T g < T < T g +100℃,则其黏度-温度关系服从WLF 方程

)

(6.51)(44.17)()

(lg

g g g T T T T T T -+--

=ηη 1160T =℃,131()8.010T P η=?,100g T =℃,2120T =℃

根据WLF 方程17.44()()

lg

()51.6()

g g g T T T T T T ηη-=-

+- 得11117.44()()

lg

()51.6()g g g T T T T T T ηη-=-

+-,得23() 1.910g T P η=? 22217.44()()lg

()51.6()

g g g T T T T T T ηη-=-+-,得182() 2.610T P η=? 8、某聚合物式样在0℃时黏度为1.0×104 P,如果其黏度-温度关系服从WLF 方程,并假定T g 时的黏度为1.0×1013 P ,问25℃时的黏度是多少? 解:

1=0T ℃,41() 1.010T P η=?,13()=1.010g T P η?,2=25T ℃

根据WLF 方程,17.44()()

lg

()51.6()

g g g T T T T T T ηη-=-

+- 得11117.44()()

lg ()51.6()g g g T T T T T T ηη-=-

+-,得g =-55T ℃ 22217.44()()lg ()51.6()

g g g T T T T T T ηη-=-+-,得2()250.1T P η=(对)

9、已知PE 和PMMA 流动活化能ηE ?分别为10 kcal . mol -1和2000 kcal . mol -1,PE 在200℃时的粘度910 P ;而PMMA 在240℃时的粘度2000 P 。试求: (1)PE 在210℃和190℃时的粘度,PMMA 在250℃和230℃时的粘度; (2)说明链结构对聚合物粘度的影响;

(3)说明温度对不同结构聚合物粘度的影响。 解:(1)由文献查得T g(PE)=193K , T g(PMMA)=378K ,现求的粘度均在(T g +373)K 以上,故用Arrhenius 公式:

RT

E Ae

/ηη?= 或)1

1(log 303.22

12

1T T R E T T -?=ηηη

PE : )15

.2732001

15.2732101(314.810184.410910log 303.23)

210(+-+??=η

P 730)210(=∴η

)15

.2732001

15.2731901(314.810184.410910log 303.23)

190(+-+??=η

P 1145)190(=∴η

PMMA :)15

.2732401

15.2732501(314.810184.4462000log

303.23)

250(+-+??=η

P 845)250(=∴η

)15

.2732401

15.2732301(314.810184.4462000log 303.23)

230(+-+??=η

P 4901)230(=∴η

(2)刚性链(PMMA )比柔性链(PE )的粘度大;PMMA 的分子间力和空间位

阻都比PE 大。

(3)刚性链的粘度比柔性链的粘度,受温度的影响大。

第六章 作业

1、高分子形成晶态与非晶态聚合物,主要是高分子链的结构起了主导作用,因为结晶要求高分子链能伸直而平行排列得很紧密,形成结晶学中的“密堆砌”。影响因素:

(1)链的对称性。高分子链的结构对称性越高,越易结晶。

(2)链的规整性:无规构型的聚合物使高分子链的对称性和规整性都被破坏,这样的高分子一般不能结晶。在二烯类聚合物中,由于存在顺反异构,如果主链的结构单元的几何构型是无规排列的,则链的规整性也受到破坏,不能结晶。若是全顺式或全反式结构的聚合物,则能结晶。

共聚、支化和交联。无规共聚通常会破坏链的对称性和规整性,从而使结晶能力降低甚至完全丧失。但是如果两种共聚单元的均聚物有相同类型的结晶结构,那么共聚物也能结晶,而晶胞参数要随共聚物的组成发生变化。如果两种共聚单元的均聚物有不同的结晶结构,那么在一种组分占优势时,共聚物是可以结晶的,含量少的共聚单元作为缺陷存在于另一种均聚物的结晶结构中。但是在某些中间组成时,结晶能力大大减弱,甚至不能结晶,比如乙丙共聚物。

嵌段共聚物的各嵌段基本上保持着相对独立性,能结晶的嵌段将形成自己的晶区。

支化使链的对称性和规整性受到破坏,降低结晶能力,交联限制了链的活动性。轻度交联时,还能结晶,例如轻度交联的聚乙烯和天然橡胶。随着交联度增加,聚合物便迅速失去结晶能力。

分子间力也往往使链柔性降低,影响结晶能力。但是分子间能形成氢键时,则有利于结晶结构的稳定。 2、

3、31.42 2.960.51 2.14V cm cm cm cm =??=

1.94m g =; 331.940.905/

2.14m g g cm V cm

ρ=

== 聚合物比容V=1/ρ=1.1053/cm g

查表,聚丙烯 33

0.95/0.85/0.9050.850.55

0.950.85

1/0.851/0.905

0.5771/0.851/0.95

c a v a c c a c a g

cm g cm f va v f w v vc ρρρρρρ==--===----=

==--

4、查表知,31.46/c g cm ρ=,31.33/a g cm ρ= 1.401.33

0.5381.46 1.33

v a c c a f ρρρρ--=

==--

1

1

() 1.460.07

0.5621

1

() 1.400.13

w a

a c c c a a

c

f ρρ

ρρρρρρρρ--?=

=

==-?-

5、由大量高聚物的a ρ和c ρ数据归纳得到13.1=a c ρρ,如果晶区与非晶区的密

度存在加和性,试证明可用来粗略估计高聚物结晶度的关系式V

c a X 13.01+=ρρ

解:a

c a

V

c

X ρρρρ--=

13

.01

113.1111-=--=--=

a a a c a V c X ρρρρρρρρ

∴V

c a X 13.01+=ρρ

由题晶区和非晶区密度存在加合性,则

(1)110.13v v c c c a v v v

c c c c a a

f f f f f ρρρρρρρ=+-=+-=+

6、根据下表列出的聚乙烯晶片厚度和熔点的实验数据,试求晶片厚度趋于无限大时的熔点0m T 。如果聚乙烯结晶的单位体积熔融热为Δh =280焦耳/厘米3,问表面能是多少? l(nm) 28.2 29.2 30.9 32.3 33.9 34.5 35.1 36.5 39.87 44.3 48.3 T m (℃) 131.5 131.9 132.2 132.7 134.1 133.7 134.4 134.3 135.5 136.5 136.7

解:??

? ???-=h l T T e m m σ210 以T m 对l 1作图,外推到01=l

从截距可得到1450

=m

T ℃ 从斜率可求251028.1cm J e -?=σ

00

0221

(1)e e m m m m T T T T l h h l

σσ=-=+??

由给出数据,以1

l

为横坐标,m T 为纵坐标作图,截距即为0m T 。曲线方程为

523.810144.91,0.9737y x R -=-?+= 0144.91m T C =?

052 3.810e m T h

σ--=-??

所求表面能5520

381.53 3.810280

3.6710/2214

4.91e m h J m T σ--???===??

7、

1/2201161/2m m u

R

n T T H n εεπε??????=--+?? ? ??????????

028301.15m T C K =?=,

u H ?=4.18kJ/mol 假设单体分子量为100g/mol,

n=6000/100=60;伸长率ε=4,

1/2

2

118.3146

414/

60301.154180602

4

m T π????

??=-?-+?? ? ????????

? 试样拉伸4倍时的熔点459.84186.69m T K C ==?

假设单体分子量为68g/mol,(异戊二烯单元)

n=6000/68=88.2;伸长率ε=4, 则Tm = 427.7 K=154.7 o C

8、有两种乙烯和丙烯的共聚物,其组成相同(均为65%乙烯和35%丙烯),但其中一种室温时是橡胶状的,一直到稳定降至约-70℃时才变硬,另一种室温时却是硬而韧又不透明的材料。试解释它们内在结构上的差别。

解:前者是无规共聚物,丙烯上的甲基在分子链上是无规排列的,这样在晶格中难以堆砌整齐,所以得到一个无定形的橡胶状的透明聚合物。

后者是乙烯和有规立构聚丙烯的嵌段共聚物,乙烯的长嵌段堆砌入聚乙烯晶格,而丙烯嵌段堆砌入聚丙烯晶格。由于能结晶从而是硬而韧的塑料,且不透明。

错误分析:“前者是交替共聚物”。交替共聚物的结构规则性也很好,也易结晶。

9、均聚物A 的熔点为200℃,其熔融热为8368J/mol 重复单元,如果在结晶的AB 无规共聚物中,单体B 不能进入晶格,试预计含单体B10%mol 分数的AB 无规共聚物的熔点。如果在均聚物A 中分别引入10.0%体积分数的增塑剂,假定这两种增塑剂的1x 值分别为0.200和-0.200,1V V u =,试计算这两种情况下高聚物的熔点,并与上题结果比较,讨论共聚和增塑对熔点影响的大小,以及不同增塑剂降低聚合物熔点的效应大小。 解:杂质使熔点降低的关系是

B u

m m X H R T T ??=-011 B X ——杂质的mol 分数

单体B 10%,可见为杂质,∴1.0=B X

∵纯单体A 的熔点K T m

?=4730

mol J H u 8368=?重复单元 mol K J R ?=314.8

何曼君第三版高分子物理答案(新版答案)

课后作业答案: 第一章 2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W 2=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917 111 3910.07990.08950.09580.11180.12780.14380.15970.19170.002556 250280300350400450500600n i i M w M = ===+++++++∑424w i i M w M ==∑; 2 2 (1)12903w n n n M M M σ=-=; 22 (1)15173w w V M d =-= 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M . 01 ()()n M N m MdM W N dM M ∞ ∞= = ? ? ()w M W m MdM ∞ = ? 6、 2i i i i i i w i i i i i i i i n M W M M W M n M W = ==∑∑∑∑∑ 1 i i i i i n i i i i i i i i n M W M W W n M M = = = ∑∑∑∑∑ 1/( )i i i M W M αα η=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤ 7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分 子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的

高分子物理课后答案何曼君第三版

高分子物理课后答案,何曼君,第三版 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可

高分子物理和化学-名词解释

高分子物理和化学名词解释(各种转)作者:刘方超CooDee 1. 应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。 2. 氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。 3. 等规聚合物:指全同立构和间同的高聚物。 4. 等规度:高聚物中含有全同立构和间同立构总的百分数。 5. 聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。 1999年 1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。 2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。 3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。 4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。 5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。 6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。 2000年 1. 链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。 2. 构型:构型是对分子中的最近邻原子间的相对位置的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。 3. 构象:由于单键内旋转而产生的分子在空间的不同形态。 4. 熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。 5. 熔点:高聚物结晶部分完全熔化的温度。 6. 剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。 7. 高聚物的屈服:聚合物在外力作用下产生的塑性变形。 2001年 1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。

高分子物理习题及答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动 B.链段运动 C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。 (1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是( ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠 B.剪切变稀 C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶 B.伸直链晶体 C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ 1 ( A )聚合物能溶解在所给定的溶剂中 A. χ 1<1/2 B. χ 1 >1/2 C. χ 1 =1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态;

高分子物理及化学综合实验讲义.

高分子科学实验讲义 (内部教材) 高分子教研室

目录 实验一常见塑料和纤维的简易鉴别 (1) 实验二甲基丙烯酸甲酯的本体聚合 (4) 实验三丙烯酰胺的溶液聚合 (6) 实验四苯乙烯的悬浮聚合 (9) 实验五熔融缩聚反应制备尼龙-66 (12) 实验六聚氨酯泡沫塑料的制备 (16) 实验七热固性脲醛树脂的制备 (19) 实验八膨胀计法测定高聚物的玻璃化转变温度 (22) 实验九用偏光显微镜研究聚合物结晶形态 (25) 实验十粘度法测定聚合物的分子量 (28) 实验十一差示扫描量热法(DSC)测定聚合物热性能 (33) 实验十二、热失重法(TGA)测定聚合物的热稳定性 (41) 实验十三DMA测定高聚物的动态力学性能 (44) 实验十四用扫描电子显微镜观察聚合物形态 (48) 实验十五高聚物熔融指数的测定 (51) 实验十六高聚物熔体流变特性的测定 (54)

综合性、设计性实验 (61) 实验十七改性苯丙乳液的合成与性能分析 (63) 实验十八丙烯酸脂类压敏胶的制备与性能测试 (68)

实验一常见塑料和纤维的简易鉴别 一、实验目的 1.了解聚合物燃烧试验和气味试验的特殊现象,借以初步辨认各种聚合物。 2.利用聚合物溶解的规律及溶剂选择的原则,了解并掌握溶解法对常见聚合物的定性分析。 二、基本原理 聚合物的鉴别,特别对未知聚合物试样的鉴别颇为复杂,即使经纯化处理的聚合物也很难用单一的方法进行鉴别。常见聚合物通常可用红外、质谱、X 光衍射、气相色谱等仪器进行不同程度的定性和定量分析。而基于聚合物的特性简单地通过外观、在水中的浮沉、燃烧、溶解性和元素分析的方法进行实验室的鉴别则方便易行。 1.根据试样的表观鉴别 HDPE、PP、PA 66、PA 6、PA1010质硬,表面光滑。LDPE、PVF、PA11质较软,表面光滑,有蜡状感觉。硬PVC、PMMA表面光滑,无蜡状感觉。PS质硬,敲打会发出清脆的“打铃声”。 2.根据试样的透明程度鉴别 透明的聚合物:聚丙烯酸酯类,聚甲基丙烯酸酯类,再生纤维素,纤维素酯类和醚类,聚甲基戊烯类,PC、PS,PVC及其共聚物。半透明的聚合物:尼龙类,PE,PP,缩醛树脂类。透明性往往与样品的厚薄,结晶性,共聚物某些成分的含量等有关。如:EV A中VC的含量大于15%可以从半透明变为透明。半透明的聚合物在薄时变为透明。加入填料共混后,透明聚合物变为不透明。结晶可使透明聚合物变为半透明。 3.根据聚合物燃烧试验的火焰及气味鉴别

高分子物理试卷 及答案

高分子物理试卷二答案 一、单项选择题(10分) 1.全同聚乙烯醇的分子链所采取的构象是( A )。 (A )平面锯齿链 (B )扭曲的锯齿链 (C )螺旋链 2.下列聚合物找那个,熔点最高的是( C )。 (A )聚乙烯 (B )聚对二甲苯撑 (C )聚苯撑 3.聚合物分子链的刚性增大,则黏流温度( B )。 (A )降低 (B )升高 (C )基本不变 4.增加聚合物分子的极性,则黏流温度将( C )。 (A )降低 (B )基本不变 (C )升高 5.可以用来解释聚合物的零切黏度与相对分子质量之间相互关系的理论是( B )。 (A )分子链取向 (B )分子链缠结 (C )链段协同运动 6.在下列情况下,交联聚合物在溶剂中的平衡溶胀比最大的是( C )。 (A )高度交联 (B )中度交联 (C )轻度交联 7.光散射的散射体积与θsin 成( B )。 (A )正比 (B )反比 (C )相等 (D )没关系 8.高分子的特性黏数随相对分子质量愈大而( A )。 (A )增大 (B )不变 (C )降低 (D )不确定 9.理想橡胶的泊松比为( C )。 (A )21 < (B )21 > (C ) 21 10.交联高聚物蠕变过程中的形变包括( B )。 (A )普弹形变、高弹形变和黏性流动 (B )普弹形变和高弹形变 (C )高弹形变和黏性流动 二、多项选择题(20分) 1.以下化合物,哪些是天然高分子( AC )。 (A )蛋白质 (B )酚醛树脂 (C )淀粉 (D )PS 2.柔顺性可以通过以下哪些参数定量表征( ABCD )。 (A )链段长度 (B )刚性因子 (C )无扰尺寸 (D )极限特征比 3.以下哪些方法可以测量晶体的生长速度( AB )。 (A )偏光显微镜 (B )小脚激光光散射 (C )光学解偏振法 (D )示差扫描量热法 4.有关聚合物的分子运动,下列描述正确的有( ACD )。 (A )运动单元具有多重性 (B )运动速度不受温度影响 (C )热运动是一个松弛过程 (D )整个分子链的运动称为布朗运动 (E )运动但愿的大小不同,但松弛时间一样 5.下列有关聚合物熔体流变性能的叙述,正确的有( ABDE )。 (A )大多数聚合物熔体在通常的剪切速率范围内表现为假塑性非牛顿流体 (B )在极低的剪切速率范围内,表现为牛顿流体 (C )在通常的剪切速率范围内,黏度随剪切速率升高而增大 (D )黏度随温度升高而下降 (E )在无穷大剪切速率下,在恒定温度下的黏度为常数 6.下面有关聚合物黏流活化能的描述,正确的是( AD )。

高分子物理课后习题答案(详解)

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。

6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:

高分子物理和化学

高分子化学 高分子化学高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。(https://www.doczj.com/doc/0b2982902.html,|NO.6315)合成高分子的历史不过八十年,所以高分子化学真正成为一门科学还不足六十年,但它的发展非常迅速。目前它的内容已超出化学范围,因此,现在常用高分子科学这一名词来更合逻辑地称呼这门学科。狭义的高分子化学,则是指高分子合成和高分子化学反应。后来,经过研究知道,人工合成的高分子和那些天然存在的高分子,在结构、性能等方面都具有共同性,因此,就都叫做高分子化合物。 高分子的分子内含有非常多的原子,以化学键相连接,因而分子量都很大。但这还不是充足的条件,高分子的分子结构,还必须是以接合式样相同的原子集团作为基本链节(或称为重复单元)。许多基本链节重复地以化学键连接成为线型结构的巨大分子,称为线型高分子。有时线型结构还可通过分枝、交联、镶嵌、环化,形成多种类型的高分子。其中以若干线型高分子,用若干链段连接在一起,成为巨大的交联分子的称为体型高分子。(https://www.doczj.com/doc/0b2982902.html,|NO.6315) 从高分子的合成方法可以知道,合成高分子的化学反应,可以随机地开始和停止。因此,合成高分子是长短、大小不同的高分子的混合物。与分子形状、大小完全一样的一般小分子化合物不同,高分子的分子量只是平均值,称为平均分子量。 决定高分子性能的,不仅是平均分子量,还有分子量分布,即各种分子量的分子的分布情况。从其分布中可以看出,在这些长长短短的高分子的混合物中,是较长的多还是较短的多,或者中等长短的多。 高分子具有重复链节结构这一概念,是施陶丁格在20世纪20年代初提出的,但没有得到当时化学界一些人的赞同。直到30年代初,通过了多次实践,这一概念才被广泛承认。正确概念一经成立,就使高分子有飞跃的发展。当时链式反应理论已经成熟,有机自由基化学也取得很大的成就。三者的结合,使高分子合成有了比较方便可行的方法实践证明,许多烯类化合物,经过有机自由基的引发,就能进行链式反应,迅速地

高分子物理课后答案(何曼君)

1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O 2 CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头- 尾键接方式。 3 氯乙烯(CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理期末考试试题

高分子物理期终考试试题 姓名________ 学号_________ 得分________ 一、选择题(共15分,每小题1分): 1. 下列三类物质中,具有粘弹性的是 ( ) 1). 硬塑料;2). 硫化橡胶;3) 聚合物熔体;4)三者都有。 2. 大多数聚合物流体属于 ( ) 1). 膨胀型流体(n K γ σ =切,n>1) 2). 牛顿流体(n K γσ =切,n=1) 3). 假塑性流体(n K γ σ =切,n>1) 4). 宾哈流体(γσσ K y +=切) 3. 在注射成型中能最有效改善聚甲醛熔体流动性的方法是 ( ) 1). 增大分子量;2) 提高加工温度;3). 提高注射速率 4. 下列方法中,能提高聚合物模量的是 ( ) 1). 提高支化程度;2). 提高结晶度;3). 加入增塑剂;4). 与橡胶共混 5. 下列方法中,可以降低熔点的是 ( ) 1). 主链上引入芳杂环;2). 降低结晶度;3). 提高分子量;4). 加入增塑剂 6. 下列方法中,不能测定聚合物熔体粘度的是 ( ) 1). 毛细管粘度计;2). 旋转粘度计;3). 乌氏粘度计;4). 落球粘度计 7. 下列通用塑料中,使用温度上限为Tm 的是 ( ) 1)聚苯乙烯;2)聚甲醛;3)聚氯乙烯;4)有机玻璃 8. 下列高聚物中,使用温度下限为Tg 的是 ( ) 1)聚乙烯;2)聚四氟乙烯;3)聚二甲基硅氧烷;4)环氧塑料 9. 当高分子溶液从凝胶渗透色谱柱中被淋洗出来时,溶液中的分子的分离按 ( ) 1)分子量;2)分子流体力学;3)分子链柔性;4)分子间相互作用能的大小 10.下列高聚物-溶剂对中,在室温下可溶解的是 ( ) 1)聚乙烯-甲苯;2)聚丙烯塑料-四氢萘;3)尼龙-甲酰胺;4)丁腈橡胶-汽油 11.分别将下列高聚物熔体在冰水中淬火,所得固体试样中透明度最高的是 ( ) 1)全同立构聚丙烯;2)聚乙烯;3)聚对苯二甲酸丁二醇酯;4)ABS 12.下列高聚物中,在室温下容易发生屈服冷拉的是 ( ) 1)有机玻璃2)酚醛塑料3)聚乙烯4)天然橡胶 13.将有机玻璃板材用高弹真空成型法成型为飞机座舱盖时,成型温度为 ( ) 1)Tb-Tg 之间,2)Tg-Tf 之间3)Tf-Td 之间(Tb 、Tg 、Tf 、Td 分别为脆化温度、玻璃化转 变温度、流动温度和分解温度) 14. 下列高聚物中属无规共聚物的是 ( ) 1)尼龙66;2)聚氨酯热塑弹体;3)丁苯橡胶;4)聚对苯二甲酸乙二醇酯 15. 下列动态力学试验中直接测定储能剪切模量的是 ( ) 1)超声法;2)单悬臂梁弯曲共振法;3)扭摆法 二、写出下列关系式,并注明公式中各字母代表的意义(10分): 1. 以Tg 为参考温度的WLF 方程; 2. 高分子特性粘数与分子量之间的关系; 3. 高聚物结晶度与密度的关系; 4. 硫化橡胶平衡溶胀比与交联点间分子量的关系; 5. 牛顿流体通过毛细管的体积流率与管壁处切变速率之间的关系。 三、解释下列名词(任选5小题,10分): 1. 溶度参数δ; 2. 链段; 3. 极限粘度η∞; 4. 断裂韧性K 1C ; 5. 临界分子量; 6.哈金斯参数1χ; 7.对数减量; 8.第二维利系数A 2。

高分子物理(何曼君版)复旦大学出版社 课后习题答案

第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: C H C H C H C H C H 3 C OO C H 3 n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。 由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH O CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O CH 2 O CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH HIO 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯(CH 2 CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理及化学

北京印刷学院2013 年硕士研究生招生 《材料物理与化学》专业考试大纲 高分子物理及化学 第一部分《高分子化学》大纲 高分子化学是研究高分子化合物合成和反应的一门科学,是高分子科学与工程专业学生必修的一门专业基础课。它以无机化学、有机化学、物理化学和分析化学等四大化学为基础,同时也为后继的专业课程打下必要的理论基础。 第一章绪论 【掌握内容】 1. 基本概念:单体、高分子、聚合物、低聚物、结构单元、重复单元、单体单元、链 节、主链、侧链、端基、侧基、聚合度、相对分子质量等 2. 聚合反应;加成聚合与缩合聚合;连锁聚合与逐步聚合 3. 从不同角度对聚合物进行分类 4. 常用聚合物的命名、来源、结构特征 5. 聚合物相对分子质量及其分布 【熟悉内容】 1. 系统命名法

2. 典型聚合物的名称、符号及重复单元 1. 高分子化学发展历史 2. 聚合物相对分子质量及其分布对聚合物性能的影响 第二章自由基聚合(radical polymerization) 【掌握内容】 1. 自由基聚合的基本概念: 聚合熵,聚合焓,聚合上限温度,引发剂半衰期,残留分率,引发效率,诱导效应,笼蔽效应,自动加速现象,凝胶效应,沉淀效应,动力学链长,链转移现象,阻聚现象,缓聚现象 2. 单体聚合能力:热力学(△E, △S,T,P) ;动力学(空间效应-聚合能力,电子效应-聚合类型) 3. 自由基基元反应每步反应特征,自由基聚合反应特征 4. 常用引发剂的种类和符号,引发剂分解反应式,表征方法(四个参数),引发剂效率,诱导效应,笼蔽 效应,引发剂选择原则 5. 聚合动力学:聚合初期:三个假设,四个条件,反应级数的变化,影响速率的四因素 (M,I,T,P) ;聚合中后期的反应速率的研究:自动加速现象,凝胶效应,沉淀效应;聚合反应类型 6. 相对分子质量:动力学链长,聚合度及影响其的四因素(M,I,T,P) 7. 链转移:类型,聚合度,动力学分析,阻聚与缓聚 1. 热、光、辐射聚合 2. 聚合动力学研究方法

高分子物理课后答案

第9章聚合物的流变性 1.什么是假塑性流体绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现 假塑性流体的性质试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点为什么 3.为什么聚合物的粘流活化能与分子量无关 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温

敏性的;当温度处于一定范围即Tg

东华大学高分子物理07年正考试卷

东华大学20 09 ----20 10 学年第1 学期期末试题踏实学习,弘扬正气;诚信做人,诚实考试;作弊可耻,后果自负。 课程名称高分子物理使用专业07级复合材料、高分子材料 班级___________________姓名_______________学号_____________ (请将答案全部写在答题纸上!) 一、解释下列物理概念(写出必要的表达式):(30分,每题3分) 1. 等同周期; 2. 链段; 3. 半结晶期; 4. 第二位力系数A2; 5. 球晶 6. 力学三态; 7. 取向因子; 8. 冷拉; 9. 贮能模量;10. 特性粘度[η]; 二、单项选择题:(10分,每题1分) 1. 不对称的单烯类单体在聚合时可以头-尾键接和头-头(或尾-尾)键接方式,它们被称为: (a) 旋光异构体(b) 顺序异构体(c) 几何异构体(d) 空间立构体 2. PTFE(聚四氟乙烯)分子链在晶体中采取的构象是: (a) 平面锯齿链(b) 扭曲的锯齿链(c) 螺旋链(d) 无规线团 3. 采用下列哪种测定分子量的方法,可以同时测定均方旋转半径: (a)端基分析法(b)稀溶液粘度法(c)膜渗透压法(d)光散射法 4. 若C-C键长为0.154nm, 则聚合度为1000的聚乙烯自由旋转链的均方末端距为: (a) 47.4nm2(b) 71.1 nm2(c)94.8 nm2 (d ) 142.2 nm2 5. 聚合物在高温高压下可以形成: (a)单晶(b)串晶(c)树枝晶(d)伸直链晶 6. 用硬PVC做成的雨衣长时间悬挂后会变形,这种现象称为: (a)蠕变(b)应力松弛(c)内耗(d)滞后 7. 剪切粘度随剪切速率的增大而减小的流体属于: (a)牛顿流体(b)假塑性流体(c)胀塑性流体(d)宾汉流体 8. 采用以下哪种方法可以测定纤维非晶区取向: (a) 双折射法(b) x-衍射法(c) 染色二色性法(d) 声速法 9. 在良溶剂中Huggins参数:

高分子物理何曼君第3版课后答案

第1章 1请你列举出20种?常?活中经常接触到的?分?材料,并写出其中10种聚合物的名称和化学式。 解答:常?的?分?材料:聚?烯塑料桶、聚丙烯编织袋、涤纶(聚对苯?甲酸? ?醇酯)、EVA热熔胶(聚?烯和聚醋酸?烯酯的共聚物)、顺丁橡胶鞋底、尼?袜、ABS塑料、环氧树脂黏合剂、环氧树 脂泡沫、聚氨酯泡沫、聚氨酯涂料、油改性聚酯清漆、育秧薄膜(聚氯?烯)、电线包?(聚氯?烯)、有机玻璃(聚甲基丙烯酸甲酯)、维尼?(聚?烯醇缩甲醛)、尼?66 、奶瓶(聚碳酸酯)、聚四氟?烯、丁苯橡胶、塑料拖鞋(聚氯?烯)、?机表?的光敏涂料、天然橡胶、复合地板(脲醛树脂)、凉?塔(不饱和树脂玻璃钢)等。 2有8本?说,它们的厚度不同,分别为250?、280?、300?、350?、400?、450?、500?和600?,请算出它们的数均?数和重均?数以及分布宽度指数。请思考为什么重均?数?于数均?数。 解答: 分布宽度指数=重均?数/数均?数=423.61/391.25=1.08; 按书?重量统计平均的?数为重均?数,其值等于每书的?数乘以其重量分数的总和。数 均?数相当于总?数除以书本数。 对于重均?数,重的分?的权重?,数均?数的话,权重都是1。所以重均?数?于数均?数。 3试?较聚苯?烯与苯?烯在性能上有哪些差别。 解答:差别: (1)聚苯?烯是有?定强度的?聚物,在外观上是固体,在分?结构上没有双键;苯?烯是?分?的液体,分?结构上有双键。

(2)苯?烯做出来的产品?聚苯?烯做出来的产品要脆。另外苯?烯暴露在空?中会逐渐被氧化,?聚苯?烯不会。 4为什么说黏度法测得的分?量是相对的分?量,渗透压法测得的是数均分?量,光散射法测得的是重均分?量? 解答:(1)黏度法是由公式得到,?α?是从得到。在测α时所?到的[η]是通过相对黏度和增?黏度计算得到。因此[η]不是溶剂的绝对黏度,那么得到的分?量也是相对的分?量。 (2)渗透法测定分?量依据为时 所以 即渗透压法测得分?量为数均分?量。 (3)在光散射法中常?θ=90°时的瑞利?R90计算溶质的分?量。 因此测得的是重均分?量。 5如果知道聚合物的分?量分布函数或分布曲线,如何求得和? 解答:

高分子物理何曼君版)课后习题答案

第一章高分子链的结构 1写出由取代的二烯(1,3 丁二烯衍生物) CH5-CH=CH-CH=CH-COOCH3 经加聚反应得到的聚合物,若只考虑单体的1, 4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头■?尾相接,可得到下而在一个结构单元中含有三个不对称点的聚合物: ——CH-CH=CH-CH- I I Jn COOCH3 CH3 即含有两种不对称碳原子和一个碳■碳双键,理论上可有8种具有三重有规立构的聚合物。2今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的疑基未反应,若用HIO J氧化, 可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论?解:若单体是头■尾连接.经缩醛化处理后,大分子链中可形成稳疋的六元环,因而只留下少量未反应的疑基: -CH2-CH-CH2-CH-CH2-CH. OH OH OH CHQ CH2-CH—CH.-CH- \ / o——CH2 同时若用HlOd氧化处理时,可得到乙酸和丙酮: —叶旷叶旷叶旷斗吧严+ CH 3C-CH3 o 若单体为头-头或尾■尾连接,则缩醛化时不易形成较不稳左的五元环,因之未反应的0H基数应更多(>14%),而且经HIO。氧化处理时,也得不到丙酮: CH2O —CH.-CH —CH —CH? — CH?-CH—— I I I OH OH OH CH—CH2-CH—— 。 、 昇 UIQ —CH2—CH—CH—CPU—CH9—CH ---------- Z—CH£—OH I I I 3II OH OH OH O + OHC-CH^CH^C-OH O 0 可见聚乙烯醇髙分子链中,单体主要为头■尾键接方式。 3氯乙烯(CH产CH—Cl)和偏氯乙烯(狙=切。的共聚物,经脱除HC1和裂解后,产物有: 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元):

最新高分子物理试卷三答案

高分子物理试卷三答案 一、单项选择题(10分) (下面每个小题只有一个答案是正确的,请将正确答案的编号填在右边的括号里。选对者得1分,不选、选错多选均不得分。) 1.如果不考虑键接顺序,线形聚异戊二烯的异构种类数为(C )。 (A)6 (B)7 (C)8 2. 全同聚乙烯醇的分子链所采取的构象是(A )。 (A)平面锯齿链(B)扭曲的锯齿链(C)螺旋链 3.下列聚合物中,不存在旋光异构体的是(B )。 (A)PP (B)PIB (C)聚异戊二烯 4. 高聚物的黏流温度随相对分子质量的增大而(B )。 (A)保持不变(B)上升(C)下降(D)先上升然后保持不变5.在聚合物的黏流温度以下,描述高聚物的表观黏度与温度之间关系的方程式是(B )。(A)Arrhenius方程(B)WLF方程(C)Avrami方程 6.高聚物的流动模式是(B )。 (A)分子链的整体迁移(B)链段的跃迁 (C)端基的运动 7.同一聚合物的下列三种不同的黏度,最大的是(A )。 (A)零剪切黏度(B)表观黏度(C)无穷剪切黏度 8.两试样的凝胶渗透色谱的淋出体积相等,则它们的下列参数相等的是( D )。 (A)相对分子质量(B)特性黏数(C)Huggins参数(D)流体力学体积 9.下列实验方法,可以测量聚合物损耗模量的是(B )。 (A)DSC (B)DMA (C)拉伸实验 10. Maxwell模型可以用来描述(C )。 (A)蠕变过程(B)交联高聚物的应力松弛过程 (C)线形高聚物的应力松弛 二、多项选择题(20分) (下面每个小题至少有一个答案是正确的,请将所有正确答案的编号填写在括号里。全选对者得2分,每错一个扣1分,每少选一个扣0.5分,但不做选择或所选答案全错者不得分。)1.下面能作为塑料使用的聚二丁烯有(ABD )。 (A)全同1,2-丁二烯(B)间同聚1,2-丁二烯 (C)顺式聚1,4-丁二烯(D)反式聚1,4-丁二烯 2.高分子的二级结构包括(AC )。 (A)构象(B)晶态结构 (C)相对分子质量及其分布(D)键接方式 3.高分子的三级结构包括(ABD )。 (A)晶态结构(B)取向结构(C)多相结构(D)液晶态结构 4.凝聚态结构可以采用哪些方法进行表征(BCD )。 (A)广角X射线衍射(B)红外光谱 (C)电子显微镜(D)小角X射线衍射 5.下列实验方法,可以用来测定玻璃化转变温度的是(ABC )。

高分子物理期中考试题+答案-参考模板

高分子材料学期中考试 1单体单元和结构单元间区别 结构单元:单体在大分子链中形成的 单元。 单体单元:原子种类及个数完全相同 的结构单元 2高分子化合物与聚合物是有区别 聚合物:多种原子以相同的多次重复 的小分子通过共价健连接起 来的分子量在104~107的化 合物。 高分子化合物:大分子(链) 3挂在墙上的雨衣变长(应力与应变)当材料受到外力作用而又不产生惯性移动时,它的几何形状和尺寸会发生变化,这种变化称为应变或形变。4松紧带时间久变松(应力松弛蠕变)在温度、压力恒定的条件下,松紧带的内应力随时间的延长而逐渐较少,形变随时间的延长而增加。 5聚合物材料按照结构完全均匀的理想情况计算得到的理论强度要比聚合的实际强度高出十几倍,甚至上百倍,为什么会这样? 聚合物的实际结构存在着大小不一的缺陷,引起应力的局部集中。 聚合物的拉伸强度与聚合物本身的结构、取向、结晶度、填料等有关,还与载荷速率、温度等外界条件有关。冲击强度在很大程度上取决于试样缺口的特性,此外加工条件、分子量、添加剂等对冲击强度也有影响。 6选择溶剂的原则 一般要根据极性相近,溶剂化,溶解度参数相近的原则来选取溶剂。 7高分子的溶解 高分子溶解是一个比较缓慢的过程,可分为两个阶段:1溶剂化膨胀过程,溶剂分子渗入高分子内部,使高分子胀大;2是高分子均匀分散在溶剂中,形成完全溶解的均相体系。8高密度聚乙烯(HDPE)的力学性能好于低密度聚乙烯(LDPE) HDPE支化度低,结晶度高,且密度大9氯化聚乙烯使聚乙烯变软,玻璃化温度降低 聚乙烯是通过氯化反应后得到的产物。由于Cl的取代,破坏了聚乙烯的结晶性,使聚乙烯变软,玻璃化温度降低。 10聚丙烯的力学性能与聚乙烯相比,其强度、刚度和硬度都比较高 聚丙烯的力学性能与聚乙烯相比,其强度、刚度和硬度都比较高,光泽性也好,但在塑料材料中仍属于偏低的。它的冲击强度较低,但具有优良的抗弯曲疲劳性。 11聚氯乙烯(PVC)的拉伸强度、压缩强度较高,硬度刚度较大 聚氯乙烯分子中含有大量的氯原子,分子极性较大,分子间作用力较强,大分子的堆积程度高,链间距离远较聚乙烯小,所以聚氯乙烯的拉伸强度、压缩强度较高,硬度刚度较大,12聚氯乙烯中加入增塑剂的结果是韧性增加 增塑剂进入大分子之间,使聚氯分子间的距离增大,相互作用力减小,大分子运动能力增加。增塑剂含量越多,拉伸强度、弹性模量较小,而伸长率越大。 13聚苯乙烯(PS)硬而脆,似玻璃状PS结构中存在较大体积的苯基,分子运动受时空间位阻效应的影响,分子链刚性增加,导致PS硬而脆,似玻璃状,断裂伸长率很低,无延展性,在拉伸时无屈服现象。 14聚苯乙烯(PS)具有极好的透明性PS为非晶态聚合物,因此具有极好的透明性,GPPS的透光率达88%-92%,折射率为1.59-1.60,具有良好的光泽性,其透明性仅次于丙烯酸类聚合物。

何曼君 高分子物理课后答案_第三版

第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构 第五章聚合物的非晶态 3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢? 答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√ 例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

相关主题
文本预览
相关文档 最新文档