当前位置:文档之家› 高分子物理课后答案何曼君第三版和第二版汇总 共48页

高分子物理课后答案何曼君第三版和第二版汇总 共48页

高分子物理课后答案何曼君第三版和第二版汇总  共48页
高分子物理课后答案何曼君第三版和第二版汇总  共48页

第三章

高分子的溶解过程与小分子相比有什么不同?

高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。

第二维里系数A2的物理意义?

第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。

高分子的理想链和真实链有哪些区别?

①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。

②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。

高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别?

三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同:

①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团

之间的相互作用可以忽略。

②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。

②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整

个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。

第四章

一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别?

由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构

第五章聚合物的非晶态

3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢?

答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√

例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

其他材料一样也会发生松弛现象。实际上,所有固体材料都会发生松弛现象,差别只在于有的松弛极慢,有的松弛较快。松弛时间是用来描述松弛过程快慢的。√

10.请举两个生活中遇到的取向态聚合物。

答:合成纤维、取向薄膜。√

4.用膨胀计法测得分子量从3.0*103到3.0*105之间的八个级分聚苯乙烯式样的玻璃化温度T g如下:

3.0 5.0 10 15 25 50 100 300

M n(*

103)

T g(℃) 43 66 83 89 93 97 98 99 试作T g对M n图和T g对1/M n图,并从图上求出方程T g=T g(∞)-(K/M n)中聚苯乙烯的常数K 和分子量无穷大时的玻璃化温度T g(∞)。

答:T g——M n图

Tg——1/M n图

得线性方程为y=99.977-170450x,所以Tg(∞)=99.977℃,K=170450√

第六章聚合物的结晶态

2.用差示扫描量热法研究聚对苯二甲酸乙二酯在232.4℃的等温结晶过程,由结晶放热峰原始曲线获得如下数据:

结晶时间t(min) 7.6 11.4 17.4 21.6 25.6 27.6 31.6 35.6 36.6 38.1

3.41 11.5 3

4.7 54.9 72.7 80.0 91.0 97.3 98.2 99.3

其中分别表示t时间的结晶度和平衡结晶度。试以Avrami作图法求出Avrami指数n,

结晶速率常数K

答: Avrami方程:,以lg(-ln)=lg(-ln(1-))对lgt作图则斜率为n,截距为lgk。

得线性方程y=3.0126x-4.1127,则n=3,√

4.用密度梯度管测得某对苯二甲酸乙二酯试样的密度为1.40g*cm-3,

和体积结晶度

-3)-3),则得:

8.有两种乙烯和丙烯的共聚物,其组成相同,但其中一种室温时是皮革状的,一直到室温降至-70摄氏度时才变硬,另一种室温时却是硬而韧又不透明的材料。试推测并解释它们内在结构上的差别。

答:两种乙烯、共烯共聚物的共聚方式不同。前一种是无规共聚,分子链上乙烯单元和丙烯单元无规分布的话,破坏了分子链的规整性,不能结晶。而其玻璃化转变温度很低,所以常温下处于高弹态,为橡胶状。所以室温时是皮革状的,一直到室温降至-70摄氏度时才变硬。后一种是乙烯和丙烯是嵌段共聚,则聚乙烯部分和聚丙烯部分可单独结晶,宏观上材料就是由无数细小晶区组成的不透明材料。所以,室温时是硬而韧不透明的材料√

第七章

1 试比较非晶体态聚合物的强迫高弹性、结晶聚合物的冷拉、硬弹性聚合物的拉伸行为和嵌段共聚物的应变诱发塑料—橡胶转变,从结构观点加以分析,并指出其异同点。

答:Ⅰ:玻璃态聚合物在大外力的作用下发生的大形变其本质与橡胶的高弹形变一样,但表现形式却有差别,此称为非晶体态聚合物的强迫高弹性。强迫高弹性主要是由聚合物的结构决定的。强迫高弹性的必要条件是聚合物要具有可运动的链段,通过链段的运动使链的构象改变。所以分子链不能太柔软,否则在玻璃态是由于分子堆砌的很紧密而很难运动;同时分子链的刚性也不能太大,刚性太大分子链不能运动。

Ⅱ:结晶聚合物的冷拉:第一阶段,应力随应变线性的增加试样被均匀的拉长,到达一点后,截面突然变得不均匀,出现细颈。第二阶段,细颈与非细颈部分的截面积分别维持不变,而细颈部分不断扩展,非细颈部分逐渐缩短,直至整个试样完全变细为止。第三阶段,成颈后的试样重新被均匀的拉伸,应力又随应变的增加而增加直到断裂点。在外力的作用下,分子在拉伸方向上开始取向,结晶聚合为中的微晶也进行重排,甚至在某些晶体可能破裂成较小的单位,然后再去向的情况下再结晶。

Ⅲ:硬弹性聚合物的拉伸行为:易结晶的聚合物熔体,在较高的拉伸应力场中结晶时,可以得到具有很高弹性的纤维或薄膜材料,而其弹性模量比一般橡胶却要高的多。E. S. Clark提出一种片晶的弹性弯曲机理。由于在片晶之间存在由系带分子构成的连接点,是使硬弹材料在收到张力时,内部晶片将发生弯曲和剪切弹性变形,晶片间被拉开,形成网格状的结构,因而可以发生较大的形变,而且变形越大,应力越高,外力消失后,靠晶片的弹性回复,网格重新闭合,形变可大部分回复。

Ⅳ:嵌段共聚物的应变诱发塑料—橡胶转变:材料在室温下像塑料,在外力的作

用下,能够发生很大的形变,移去外力后也能很快的回复。如果接着进行第二次拉伸,则会像橡胶的拉伸过程材料呈现高弹性。经拉伸变为橡胶的试样,在室温下放置较长的时间又能回复拉拉伸前的塑料性质。了解形态变化

异同点:玻璃态聚合物的冷拉温度范围是Tb到Tg,而结晶聚合物是Tg到Tm。玻璃态聚合物的冷拉只发生分子链的取向,不发生相变,而结晶聚合物的拉伸结晶的破坏、取向和在结晶的过程。结晶聚合物在第二阶段应力基本不变。硬弹性材料拉伸时不出现成颈现象,与结晶聚合物不同。应变诱发塑料—橡胶移去外力,便可迅速回复,不需加热至Tg或者Tm。

2 你见过塑料的银纹吗?银纹与裂缝有哪些区别?

答:见过。微裂纹是由沿外力方向高度去想的聚合物微纤及其周围的空洞组成的因而微裂纹体的质量不为零,只是其密度下降,微裂纹体的折光指数比聚合物本体低。而裂缝处密度为零。微裂纹具有可逆性。

4 聚合物的脆性断裂和韧性断裂有什么区别?在什么条件下可以互相转化?答:脆性断裂发生在材料屈服之前,形变量小,断伸率小于5%,断裂面与拉伸方向相垂直,断裂面也很光洁,截面积几乎没有什么改变,在拉伸力的作用下,微裂纹会迅速发展,导致脆性断裂。韧性材料发生在屈服之后,形变量大,断伸率一般大于10%,断口不规则,表面粗糙,截面积缩小,是由于屈服剪切带的发展导致的。

脆性断裂和韧性断裂并没有严格的界限。聚合物材料的韧性随温度的升高而增大,随应变速率的提高而减小,当降低温度,提高应变速率时,材料从韧性断裂变为脆性断裂。

第八章

4. 一理想橡胶试样被从原长6.00cm拉伸到1

5.00cm,发现其应力增加1.50,同时温度升高了5℃(从27℃升到32℃)。如果忽略体积随温度的变化,问在27℃下,伸长1%时的模量是多少?

解:当T=32℃=305.15K时,

σλ-)

当T=27℃=300.15K时,

λ-)

=210*300.15*(1.01-)

=1872.9Pa

E=

=

5.一交联橡胶试片,长2.8cm,宽1.0cm,厚0.2cm,重0.518g,于25℃时将它拉伸一倍,测定张力为1.0Kg,估计试样的网链的平均分子量。

解:由橡胶状态方程σλ-) 得:

λ-)

σ

ρ

λ=2 R=8.314 T=298K

(2-)=8.18 Kg/mol

7.用宽度为1cm、厚度为0.2cm、长度为2.8cm的一交联橡胶试条,在20℃是进行拉伸试验,

·

解:σ=NkT(λ-),

得:σλ-)

λλ-)

因为ρλ

9.某一聚合物可用单一Maxwell模型来描述,当施加外力,使试样的拉伸应力为,10s时,试样长度为原长度的1.15倍,移取外力后,试样的长度为原始长度的1.1倍,问Maxwell单元的松弛时间是多少?

解:由题意可知,在Maxwell,=0.1.

=

所以,т

11.一交联聚合物的力学松弛行为可用三个Maxwell单元并联来描述,其六个参数为

=1.0*Pa,∞。试计算下面三种情况的应力:(1)突然拉伸

到原始长度的两倍;(2)100s后拉伸到原始长度的两倍;(3后拉伸到原始长度的两倍。

解: (1) εσ(t)=+

=+

+1.0*

=3*

σ=E(t)*ε

(2) εσ(t)=+

=+

σ=E(t)*ε

(3) εσ(t)=+

=+

=100000

σ=E(t)*ε=100000√

13.用于模拟某一线形聚合物的蠕变行为的四元件模型的参数为:

。蠕变试验开始时,应力为

经过5s后,应力增加至两倍,求10s时的应变值。

解:聚合物的总形变ε

т

应变可分解为10s、5s叠加的结果

ε

=1.2033

ε

=1.220

所以: 10秒时的应变值为ε=ε(5)+ε(10)=2.4233√

试做其蠕变曲线。如果Boltzmann原理有效,在100min时的负荷加倍,问10000min时蠕变伸长是多少?

解:蠕变曲线如下图所示:

对于第一应力所引起形变,当t=10000min时, l=4.185,ε(10000)=0.04625 对于第二应力所引起形变,当t=9900min时, l=4.183, ε(9900)=0.04575

(t)=ε(10000)+ε(9900)

=0.04625+0.04575=0.092

所以,蠕变伸长为√

高分子物理课后答案何曼君第三版

高分子物理课后答案,何曼君,第三版 第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ① 稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ② 亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可

何曼君第三版高分子物理答案(新版答案)

课后作业答案: 第一章 2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W 2=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917 111 3910.07990.08950.09580.11180.12780.14380.15970.19170.002556 250280300350400450500600n i i M w M = ===+++++++∑424w i i M w M ==∑; 2 2 (1)12903w n n n M M M σ=-=; 22 (1)15173w w V M d =-= 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M . 01 ()()n M N m MdM W N dM M ∞ ∞= = ? ? ()w M W m MdM ∞ = ? 6、 2i i i i i i w i i i i i i i i n M W M M W M n M W = ==∑∑∑∑∑ 1 i i i i i n i i i i i i i i n M W M W W n M M = = = ∑∑∑∑∑ 1/( )i i i M W M αα η=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤ 7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分 子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的

高分子物理课后答案

第9章聚合物的流变性 1.什么是假塑性流体?绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质?试用缠结理论加以解释。 答:(1)流动指数n<1的流体称为假塑性流体; (2)略 2.聚合物的粘性流动有何特点?为什么? 3.为什么聚合物的粘流活化能与分子量无关? 答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,这种流动的类似于蚯蚓的蠕动。因而其流动 活化能与分子的长短无关。,由实验结果可知当碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相对分子质量无关。 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当 时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链 缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

高分子物理(何曼君版)复旦大学出版社 课后习题答案

第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: C H C H C H C H C H 3 C OO C H 3 n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。 由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH OH CH 2 CH OH CH 2 CH OH CH 2 CH O CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH OH CH 2 CH 2 CH OH OH CH O CH O CH 2 O CH CH 2 CH 2 CH OH CH 2 CH CH OH CH 2CH 2 CH OH OH HIO 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头-尾键接方式。 3 氯乙烯(CH 2 CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物 有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量), 由以上事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理学(吴其晔)课后答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。

3.为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶? 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6.从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。(4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链 C 原子中约含15~35 个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。

高分子物理何曼君版课后思考题答案

高分子物理何曼君版课后思考题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 1、假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?说明理由。不能。全同立构和间同立构是两种不同的立体构型。构型是分子中由化学键解:所固定的原子在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现。 2、末端距是高分子链的一端到另一端达到的直线距离, 解:因为柔性的高分子链在不断的热运动,它的形态是瞬息万变的,所以只能用它们的平均值来表示,又因为末端距和高分子链的质心到第i个链单元的距离是矢量。它们是矢量,其平均值趋近于零。因此,要取均方末端距和均方回转半径;轮廓长度是高分子链的伸直长度,高分子链有柔顺性,不是刚性链,因此,用轮廓长度描述高分子尺度不能体现其蜷曲的特点。 5、解:无论是均方末端距还是均方回转半径,都只是平均量,获得的只是高分子链的平均尺寸信息。要确切知道高分子的具体形态尺寸,从原则上来说,只知道一个均值往往是不够的。最好的办法是知道末端距的分布函数,也就是处在不同末端距时所对应的高分子构象实现概率大小或构象数比例,这样任何与链尺寸有关的平均物理量和链的具体形状都可由这个分布函数求出。所以需要推导高斯链的构象统计理论。 第三章 1、高分子与溶剂分子的尺寸相差悬殊,两者的分子运动速度差别很大,溶剂分子能较快渗入聚合物,而高分子向溶剂的扩散缓慢。 (1)聚合物的溶解过程要经过两个阶段,先是溶剂分子渗入聚合物内部,使聚合物体积膨胀,称为溶胀;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的聚合物,在与溶剂接触时也会发生溶胀,但因有交联的化学键束缚,不能再进一步使交联的分子拆散,只能停留在溶胀阶段,不会溶解。 (2)溶解度与聚合物分子量有关,分子量越大,溶解度越大。对交联聚合物来说,交联度大的溶胀度小,交联度小的溶胀度大。 (3)非晶态聚合物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入聚合物内部使之溶胀和溶解。晶态聚合物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入聚合物内部非常困难,因此晶态化合物的溶解比非晶态聚合物要困难得多。

关于高分子物理习题答案

高分子物理习题答案 第一章高分子链的结构 3.高分子科学发展中有二位科学家在高分子物理领域作出了重大贡献并获得诺贝尔奖,他们是谁?请列举他们的主要贡献。 答:(1)H. Staudinger(德国):“论聚合”首次提出高分子长链结构模型,论证高分子由小分子以共价键结合。1953年获诺贝尔化学奖。 贡献:(1)大分子概念:线性链结构 (2)初探[η]=KMα关系 (3)高分子多分散性 (4)创刊《die Makromol.Chemie》1943年 (2)P. J. Flory(美国),1974年获诺贝尔化学奖 贡献:(1)缩聚和加聚反应机理 (2)高分子溶液理论 (3)热力学和流体力学结合 (4)非晶态结构模型 6.何谓高聚物的近程(一级)结构、远程(二级)结构和聚集态结构?试分别举例说明用什么方法表征这些结构和性能,并预计可得到哪些结构参数和性能指标。 答:高聚物的一级结构即高聚物的近程结构,属于化学结构,它主要包括链节、键接方式、构型、支化和交联结构等,其表征方法主要有:NMR, GC, MS, IR, EA, HPLC, UV等。而高聚物的二级结构即高聚物的远程结构,主要包括高分子链的分子量、分子尺寸、分子形态、链的柔顺性及分子链在各种环境中所采取的构象,其表征方法主要有:静态、动态光散射、粘度法、膜渗透压、尺寸排除色谱、中子散射、端基分析、沸点升高、冰点降低法等。高聚物的聚集态结构主要指高分子链间相互作用使其堆积在一起形成晶态、非晶态、取向态等结构。其表征方法主要有:x-射线衍射、膨胀计法、光学解偏振法、偏光显微镜法、光学双折射法、声波传播法、扫描电镜、透射电镜、原子力显微镜、核磁共振,热分析、力学分析等。 8.什么叫做高分子的构型?试讨论线型聚异戊二烯可能有哪些不同的构型。 答:由化学键所固定的原子或基团在空间的几何排布。 1,2:头-头,全同、间同、无规;头-尾,全同、间同、无规 3,4:头-头,全同、间同、无规;头-尾,全同、间同、无规 1,4:头-头,顺、反;头-尾,顺、反 9.什么叫做高分子构象?假若聚丙烯的等规度不高,能不能用改变构象的办法提高其等规度?说明理由。答:由于单键内旋转而产生的分子在空间的不同形态(内旋转异构体)称为构象。不能用改变构象的办法提高其更规度。等规度是指高聚物中含有全同和间同异构体的总的百分数,涉及的是构型问题,要改变等规度,即要改变构型。而构型是由化学键所固定的原子或基团在空间的几何排布,改变构型必须通过化学键的断裂和重组。 11.假定聚丙烯主链上的键长为0.154纳米,键角为109.5°,根据下表所列数据,求其等效自由结合链的链段长度l e及极限特征比C∞。 聚合物溶剂温度(℃)A×104(nm)σ 聚丙烯(无规)环已烷、甲苯30 835 1.76

高分子物理课后答案

第一章:高分子链的结构 一、根据化学组成不同,高分子可分为哪几类? (1、分子主链全部由碳原子以共价键相连接的碳链高分子2、分子主链除含碳外,还有氧、氮、硫等两种或两种以上的原子以共价键相连接的杂链高分子3、主链中含有硅、硼、磷、铝、钛、砷、锑等元素的高分子称为元素高分子4、分子主链不含碳,且没有有机取代基)二、什么是构型,不同构型分别影响分子的什么性能? (构型是指分子中由化学键所固定的原子在空间的几何构型;1、旋光异构影响旋光性2、几何异构影响弹性 3、键接异构对化学性能有很大影响) 三、什么是构造,分子构造对高分子的性能有什么影响? (分子构造是指聚合物分子的各种形状,线性聚合物分子间没有化学键结构,可以在适当溶剂中溶解,加热时可以熔融,易于加工成型。支化聚合物的化学性质与线形聚合物相似,但其物理机械性能、加工流动性能等受支化的影响显著。树枝链聚合物的物理化学性能独特,其溶液黏度随分子量增加出现极大值。) 四、二元共聚物可分为哪几种类型? (嵌段共聚物、接枝共聚物、交替共聚物、统计共聚物) 五、什么是构象?什么是链段?分子结构对旋转位垒有什么影响? (构象表示原子基团围绕单元链内旋转而产生的空间排布。把若干个链组成的一段链作为一个独立运动的单元,称为链段。位垒:1、取代基的基团越多,位垒越大2、如果分子中存在着双键或三键,则邻近双键或三键的单键的内旋转位垒有较大下降。) 六、什么是平衡态柔性?什么是动态柔性?影响高分子链柔性的因素有哪些? (平衡态柔性是指热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差。动态柔性是指外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式与旁式构象之间转变位垒与外场作用能之间的联系。影响因素:一、分子结构:1、主链结构2、取代基3、支化交联4、分子链的长链二、外界因素:温度、外力、溶剂) 七、自由连接链?自由旋转链?等效自由连接链?等效自由旋转链?蠕虫状链? (自由连接链:即键长l 固定,键角⊙不固定,内旋转自由的理想化模型。自由旋转链:即键长l 固定(l=0.154nm),键角⊙(=109.5°)内旋转自由的长链分子模型。等效自由连接链:实际高分子链不是自由连接链,而且,内旋转也不是完全自由的,为此,将一个原来含有几个键长为l ,键角⊙固定,旋转不自由的键组成的链视为一个含有Z 个长度为b 的链组成的“等效自由连接链”。蠕虫状链:由几个长度为b ,键角为π-a 并可进行自由旋转的想象键组成的链状分子,在保持其轮廓长度l 及持久长度a 不变的条件下,使想象键的数目n →∞,键角π-a →π时所得到的一种极限状况的模型链。) 八、为什么等规聚丙烯分子链是螺旋形构象,而聚乙烯分子链是平面锯齿构象? (如果聚丙烯分子链取平面锯齿形构象,从一级近程排斥力来看,它是稳定的。但是应该注意相隔一个碳上还有2个甲基,甲基的范德华半径为0.20nm ,两个甲基相距0.25nm ,比其范德华半径总和0.4nm 小,必然要产生排斥作用,这种排斥力为二级排斥力。显然,这种构象是极不稳定的,必须通过C-C 键的旋转,加大甲基间的距离,形成反旁螺旋形形象,才能满足晶体中分子链构想能最低原则。相比之下,对聚乙烯而言,由于氢原子体积小,2个氢原子之间二级近程排斥力小,所以,晶体中分子链取全反式平面锯齿构象时,能量最低。) 九、构象与构型有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同力构聚丙烯?为什么? (不能,因为构型是稳定的,要改变构型,必须经过化学键的断裂和重组。)

高分子物理(何曼君第三版版)课后习题答案-38页剖析

高分子物理课后习题答案 第一章 高分子链的结构 1 写出由取代的二烯(1,3丁二烯衍生物) CH 3CH CH CH CH COOCH 3 经加聚反应得到的聚合物,若只考虑单体的1,4-加成,和单体头-尾相接,则理论上可有几种立体异构体? 解:该单体经1,4-加聚后,且只考虑单体的头-尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: CH CH CH CH CH 3 COOCH 3n 即含有两种不对称碳原子和一个碳-碳双键,理论上可有8种具有三重有规立构的聚合物。 2 今有一种聚乙烯醇,若经缩醛化处理后,发现有14%左右的羟基未反应,若用HIO 4氧化,可得到丙酮和乙酸。由以上实验事实,则关于此种聚乙烯醇中单体的键接方式可得到什么结论? 解:若单体是头-尾连接,经缩醛化处理后,大分子链中可形成稳定的六元环,因而只留下少量未反应的羟基: CH 2 CH CH 2 CH CH 2 CH CH 2O CH 2 CH O CH 2 O CH CH 2 CH 2 CH OH 同时若用HIO 4氧化处理时,可得到乙酸和丙酮: CH 2 CH CH 2 OH CH CH 2 OH CH OH 4 CH 3C OH O + CH 3C O CH 3 若单体为头-头或尾-尾连接,则缩醛化时不易形成较不稳定的五元环,因之未反应的OH 基数应更多(>14%),而且经HIO 4氧化处理时,也得不到丙酮: CH 2 CH CH CH 2 CH 2 CH CH 2O CH O 2 O CH CH 2 CH 2 CH OH CH 2 CH CH CH 2CH 2 CH 4 CH 3C OH O + OH C O CH 2CH 2C OH O 可见聚乙烯醇高分子链中,单体主要为头 -尾键接方式。 3 氯乙烯( CH 2CH Cl )和偏氯乙烯( CH 2CCl 2 )的共聚物,经脱除HCl 和裂解后,产物有: ,Cl ,Cl Cl ,Cl Cl Cl 等,其比例大致为10:1:1:10(重量),由以上 事实,则对这两种单体在共聚物的序列分布可得到什么结论? 解:这两种单体在共聚物中的排列方式有四种情况(为简化起见只考虑三单元): CH 2 CH Cl CH 2 C Cl Cl + (V) (D)

高分子物理第四版课后题答案

一、单项选择题 1.高分子的基本运动是( B )。 A.整链运动B.链段运动C.链节运动 2.下列一组高聚物分子中,柔性最大的是( A )。 A.聚氯丁二烯 B.聚氯乙烯 C.聚苯乙烯 3. 下列一组高聚物中,最容易结晶的是( A ). A.聚对苯二甲酸乙二酯 B. 聚邻苯二甲酸乙二酯 C. 聚间苯二甲酸乙二酯 4.模拟线性聚合物的蠕变全过程可采用( C )模型。 A.Maxwell B. Kelvin C. 四元件 5.在半晶态聚合物中,发生下列转变时,判别熵值变大的是( A )。(1)熔融(2)拉伸取向(3)结晶(4)高弹态转变为玻璃态 6.下列一组高聚物分子中,按分子刚性的大小从小到大的顺序是(ADBFC )。 A.聚甲醛; B.聚氯乙烯; C.聚苯乙烯; D. 聚乙烯;F. 聚苯醚 7..假塑性流体的特征是( B )。 A.剪切增稠B.剪切变稀C.粘度仅与分子结构和温度有关 8.热力学上最稳定的高分子晶体是( B )。 A.球晶B.伸直链晶体C.枝晶 9.下列高聚物中,只发生溶胀而不能溶解的是( B )。 A. 高交联酚醛树脂; B. 低交联酚醛树脂; C.聚甲基丙稀酸甲脂 10.高分子-溶剂相互作用参数χ1( A )聚合物能溶解在所给定的溶剂中

A. χ1<1/2 B. χ1>1/2 C. χ1=1/2 11.判断下列叙述中不正确的是( C )。 A.结晶温度越低,体系中晶核的密度越大,所得球晶越小; B.所有热固性塑料都是非晶态高聚物; C.在注射成型中,高聚物受到一定的应力场的作用,结果常常得到伸直链晶体。 12. 判断下列叙述中不正确的是( C )。 A.高聚物的取向状态是热力学上一种非平衡态; B.结晶高聚物中晶片的取向在热力学上是稳定的; C.取向使材料的力学、光学、热性能各向同性。 13.关于高聚物和小分子物质的区别,下列( D )说法正确 ⑴高聚物的力学性质是固体弹性和液体粘性的综合; ⑵高聚物在溶剂中能表现出溶胀特性,并形成居于固体和液体的一系列中间体系; ⑶高分子会出现高度的各向异性。 A. ⑴⑵对 B. ⑵⑶对 C. ⑴⑶对 D.全对 三、问答题:

高分子物理何曼君第3版课后答案

第1章 1请你列举出20种?常?活中经常接触到的?分?材料,并写出其中10种聚合物的名称和化学式。 解答:常?的?分?材料:聚?烯塑料桶、聚丙烯编织袋、涤纶(聚对苯?甲酸? ?醇酯)、EVA热熔胶(聚?烯和聚醋酸?烯酯的共聚物)、顺丁橡胶鞋底、尼?袜、ABS塑料、环氧树脂黏合剂、环氧树 脂泡沫、聚氨酯泡沫、聚氨酯涂料、油改性聚酯清漆、育秧薄膜(聚氯?烯)、电线包?(聚氯?烯)、有机玻璃(聚甲基丙烯酸甲酯)、维尼?(聚?烯醇缩甲醛)、尼?66 、奶瓶(聚碳酸酯)、聚四氟?烯、丁苯橡胶、塑料拖鞋(聚氯?烯)、?机表?的光敏涂料、天然橡胶、复合地板(脲醛树脂)、凉?塔(不饱和树脂玻璃钢)等。 2有8本?说,它们的厚度不同,分别为250?、280?、300?、350?、400?、450?、500?和600?,请算出它们的数均?数和重均?数以及分布宽度指数。请思考为什么重均?数?于数均?数。 解答: 分布宽度指数=重均?数/数均?数=423.61/391.25=1.08; 按书?重量统计平均的?数为重均?数,其值等于每书的?数乘以其重量分数的总和。数 均?数相当于总?数除以书本数。 对于重均?数,重的分?的权重?,数均?数的话,权重都是1。所以重均?数?于数均?数。 3试?较聚苯?烯与苯?烯在性能上有哪些差别。 解答:差别: (1)聚苯?烯是有?定强度的?聚物,在外观上是固体,在分?结构上没有双键;苯?烯是?分?的液体,分?结构上有双键。

(2)苯?烯做出来的产品?聚苯?烯做出来的产品要脆。另外苯?烯暴露在空?中会逐渐被氧化,?聚苯?烯不会。 4为什么说黏度法测得的分?量是相对的分?量,渗透压法测得的是数均分?量,光散射法测得的是重均分?量? 解答:(1)黏度法是由公式得到,?α?是从得到。在测α时所?到的[η]是通过相对黏度和增?黏度计算得到。因此[η]不是溶剂的绝对黏度,那么得到的分?量也是相对的分?量。 (2)渗透法测定分?量依据为时 所以 即渗透压法测得分?量为数均分?量。 (3)在光散射法中常?θ=90°时的瑞利?R90计算溶质的分?量。 因此测得的是重均分?量。 5如果知道聚合物的分?量分布函数或分布曲线,如何求得和? 解答:

何曼君 高分子物理课后答案_第三版

第三章 高分子的溶解过程与小分子相比有什么不同? 高分子与溶剂分子的尺寸相差悬殊,两者运动分子运动速度差别很大,现是溶剂分子渗入高聚物内部,是高聚体膨胀,称为“溶胀”,然后高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高分子只停留在溶胀阶段,不会溶解。 第二维里系数A2的物理意义? 第二维利系数的物理意义是高分子链段和链段间的内排斥与高分子链段和溶剂分子间能量上相互作用、两者相互竞争的一个量度。它与溶剂化作用和高分子在溶液里的形态有密切关系。良溶剂中,高分子链由于溶剂化作业而扩张,高分子线团伸展,A2是正值;温度下降或在非良溶剂,高分子线团收缩,A2是负值;当链段与链段、溶剂与高分子链段相互作业想等时,高分子溶液符合理想溶液的性质,A2为零,相当于高分子链处于无扰状态。 高分子的理想链和真实链有哪些区别? ①理想链是一种理论模型,认为化学键不占体积,自由旋转,没有键角和位垒的限制,而真实链有键角限制和位垒的限制。 ②理想链没有考虑远程相互作用和近程相互作用,而真实链要考虑链节与链节之间的体积排除和链与周围环境的相互作用以及链与链之间的相互作用等。 高分子的稀溶液、亚浓溶液、浓溶液有哪些本质的区别? 三种溶液最本质的区别体现在溶液中和高分子无规线团之间的相互作用和无规线团的形态结构不同: ①稀溶液:高分子线团是相互分离的,溶液中高分子链段的分布也是不均一的;线团 之间的相互作用可以忽略。 ②浓溶液:大分子链之间发生相互穿插和缠结,溶液中链段的空间密度分布趋于均一。 ②亚浓溶液:亚浓溶液介于稀溶液和浓溶液之间,高分子线团开始相互穿插交叠,整 个溶液中链段的分布趋于均一;高分子线团与临近线团开始相互作用。 第四章 一般共混物的相分离与嵌段共聚物的微相分离在本质上有何差别? 由于嵌段共聚物的嵌段间不相容而发生相分离,平均相结构微区的大小只有几十到几百纳米,即微相分离,两相之间的作用力是化学键。两种聚合物共混时,由于混合熵很小,混合晗决定于聚合物之间的相互作用,通常较小,所以两种聚合物混合自由能通常大于零,是分相的。而一般共混物两相界面之间的作用力是分子间作用力或氢键,其分相可能是宏观可见的,添加增容剂后,并经强烈的机械混合,增容剂提高了两相界面之间的相互作用,可形成稳定的微相分离结构 第五章聚合物的非晶态 3.何谓“松弛”?请举例说明松弛现象。用什么物理量表示松弛过程的快慢? 答:“松弛”过程是指一个从非平衡态到平衡态进行的过程,它首先是很快地进行,然后逐步放慢甚至于时间达到无穷长。√ 例如,一直杆的长度比两刚壁之间的固定距离L稍长;将直杆强制地装入两刚壁之间,在开始时,直杆与刚壁的接触面之间有相互作用的压力P,在直杆内任一截面上也有内压力P;以后,随着时间的增长,这些压力的数值渐渐减小,而且温度越高时减小得越快。岩石和

高分子物理习题答案

高分子物理习题集-答案 第一章高聚物的结构 4、高分子的构型和构象有何区别?如果聚丙烯的规整度不高,是否可以通过单键的内旋转提高它的规整度? 答:构型:分子中由化学键所固定的原子或基团在空间的几何排列。这种排列是稳定的,要改变构型必须经过化学键的断裂和重组。 构象:由于单键内旋转而产生的分子在空间的不同形态。构象的改变速率很快,构象时刻在变,很不稳定,一般不能用化学方法来分离。 不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现,而且分子中的单键内旋转是随时发生的,构象瞬息万变,不会出现因构象改变而使间同PP(全同PP)变成全同PP(间同PP);而改变构型必须经过化学键的断裂才能实现。5、试写出线型聚异戊二烯加聚产物可能有那些不同的构型。 答:按照IUPAC有机命名法中的最小原则,CH3在2位上,而不是3位上,即异戊二烯应写成 (一)键接异构:主要包括1,4-加成、1,2-加成、3,4-加成三种键接异构体。 (二)不同的键接异构体可能还存在下列6中有规立构体。 ①顺式1,4-加成 ②反式1,4-加成 ③1,2-加成全同立构 ④1,2-加成间同立构 ⑤3,4-加成全同立构 ⑥3,4-加成间同立构 6.分子间作用力的本质是什么?影响分子间作用力的因素有哪些?试比较聚乙烯、聚氯乙烯、聚丙烯、聚酰胺(尼龙-66)、聚丙烯酸各有那些分子间作用力? 答:分子间作用力的本质是:非键合力、次价力、物理力。 影响因素有:化学组成、分子结构、分子量、温度、分子间距离。PE、PP是非极性聚合物,其分子间作用力为:色散力;

高分子物理 课后答案

第1章 高分子链的结构 1. 写出聚氯丁二烯的各种可能构型。 略 2. 构型与构象有何区别?聚丙烯分子链中碳-碳单键是可以旋转的,通过单建的内旋转是否可以使全同立构的聚丙烯变为间同立构的聚丙烯?为什么? 答:构型:是指分子中由化学键所固定的原子在空间的几何排列。 构象:由于分子中的单键内旋转而产生的分子在空间的不同形态。 全同立构聚丙烯与间同立聚丙烯是两种不同构型,必须有化学键的断裂和重排。 3. 为什么等规立构聚苯乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙稀分子链在晶体中呈平面锯齿构象? 答:因为等规PS 上的苯基基团体积较大,为了使体积较大的侧基互不干扰,必须通过C -C 键的旋转加大苯基之间的距离,才能满足晶体中分子链构象能量最低原则;对于间规PVC 而言,由于氢原子体积小,原子间二级近程排斥力小,所以,晶体中分子链呈全反式平面锯齿构象时能量最低。 4. 哪些参数可以表征高分子链的柔顺性?如何表征? 答: 空间位阻参数δ 21 2,20??????=r f h h δ δ越大,柔顺性越差;δ越小,柔顺性越好; 特征比C n 220nl h c n = 对于自由连接链 c n =1 对于完全伸直链c n =n ,当n→∞时,c n 可定义为c ∞,c ∞越小,柔

顺性越好。 链段长度b:链段逾短,柔顺性逾好。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺型好。该聚合物为什么室温下为塑料而不是橡胶? 答:因为聚乙烯结构规整,易结晶,故具备了塑料的性质,室温下聚乙烯为塑料而不是橡胶。 6. 从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯腈与碳纤维; 线性高分子梯形高分子 (2)无规立构聚丙烯与等规立构聚丙烯; 非晶高分子结晶性高分子 (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯; 柔性 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000个主链C原子中约含15~35个短支链),结晶度较低,具有一定的韧性,放水和隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯和低密度聚乙烯要好。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解:(1)PE>PVC>PAN 主链均为C-C结构,取代基极性-CN﹥-Cl,所以,聚丙烯腈的柔顺性较聚氯乙烯差; (2)2>1>3 1与3中都含有芳杂环,不能内旋转;3中全为芳环,柔顺性最差;主链中-O-会增加链的柔顺性; (3)3>2>1

何曼君第三版高分子物理答案 新版答案

课后作业答案: 第一章 2、 W 1=250/(250+280+300+350+400+450+500+600)=250/3130= W 2= W 3= W 4= W5= W6= W7= W8= 111 3910.07990.08950.09580.11180.12780.14380.15970.19170.002556 250280300350400450500600n i i M w M = ===+++++++∑424w i i M w M ==∑; 2 2 (1)12903w n n n M M M σ=-=; 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标志线所需的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子的结构、形态和在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液,而散射光的强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数N (m )和质量微分分布函数W(m),则可通过下式求出n M 和w M . 6、 2 i i i i i i w i i i i i i i i n M W M M W M n M W = ==∑∑∑∑∑ 1/()i i i M W M ααη=∑ ; 以为α值在-1到1之间,因此n w M M M η≤≤ 7、今有一混合物,有1克聚合物A 和2 克同样类型的聚合物B 组成,A 的分子量M A = 1×105 g .mol -1; B 的分子量M B = 2×105 g .mol -1。计算该混合物的数均分子量M n ,重均分子量M W 和多分散指数d 。 解:W1=1/(1+2)=1/3 W2=2/(1+2)=1/3 8、高分子溶液的热力学性质与理想溶液的偏差很大,只有在无限稀释的情况下才符合理想溶液的规律。因此必须求取浓度为零时的外推值作为计算的依据。当高聚物的分子量很大,测定用的溶液浓度又很稀时不需外推。 11、 21()RT A C C M π=+ 以C π 对C 作图得一直线。 ( 3*10C π - ) 则直线截距 3 10.0774*10RT M = ; 453 8.48*10*298 3.26*100.0774*10n M ==

高分子物理课后习题答案

高分子物理答案详解(第三版) 第1章高分子的链结构 1、写出聚氯丁二烯的各种可能构型。 等。 2.构象与构型有何区别?聚丙烯分子链中碳—碳单键就是可以旋转的,通过单键的内旋转就是否可以使全同立构聚丙烯变为间同立构聚丙烯?为什么? 答:(1)区别:构象就是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则就是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯就是不同的构型。 3、为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象? 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总与小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象就是能量最低的构象。 4、哪些参数可以表征高分子链的柔顺性?如何表征? 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5.聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不就是橡胶? 答:这就是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不就是橡胶。

6、从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维; (2)无规立构聚丙烯与等规立构聚丙烯; (3)顺式聚1,4-异戊二烯(天然橡胶)与反式聚1,4-异戊二烯(杜仲橡胶)。 (4)高密度聚乙烯、低密度聚乙烯与交联聚乙烯。 (1)线性高分子梯形高分子 (2 非晶高分子结晶性高分子 (3)柔性 (4)高密度聚乙烯为平面锯齿状链,为线型分子,模量高,渗透性小,结晶度高,具有好的拉伸强度、劲度、耐久性、韧性;低密度聚乙烯支化度高于高密度聚乙烯(每1000 个主链C 原子中约含15~35 个短支链) ,结晶度较低, 具有一定的韧性,放水与隔热性能较好;交联聚乙烯形成了立体网状的结构,因此在韧性、强度、耐热性等方面都较高密度聚乙烯与低密度聚乙烯要好。 7、比较下列四组高分子链的柔顺性并简要加以解释。 解:

高分子物理课后习题答案金日光第三版

高分子物理答案(第三版) 第1章高分子的链结构 1.写出聚氯丁二烯的各种可能构型。 等。 2. 构象与构型有何区别聚丙烯分子链中碳—碳单键是可以旋转的,通过单键的内旋转是否可以使全同立构聚丙烯变为间同立构聚丙烯为什么 答:(1)区别:构象是由于单键的内旋转而产生的分子中原子在空间位置上的变化,而构型则是分子中由化学键所固定的原子在空间的排列;构象的改变不需打破化学键,而构型的改变必须断裂化学键。 (2)不能,碳-碳单键的旋转只能改变构象,却没有断裂化学键,所以不能改变构型,而全同立构聚丙烯与间同立构聚丙烯是不同的构型。 3. 为什么等规立构聚丙乙烯分子链在晶体中呈31螺旋构象,而间规立构聚氯乙烯分子链在晶体中呈平面锯齿构象 答(1)由于等归立构聚苯乙烯的两个苯环距离比其范德华半径总和小,产生排斥作用,使平面锯齿形(…ttt…)构象极不稳定,必须通过C-C键的旋转,形成31螺旋构象,才能满足晶体分子链构象能最低原则。 (2)由于间规聚氯乙烯的氯取代基分得较开,相互间距离比范德华半径大,所以平面锯齿形构象是能量最低的构象。 4. 哪些参数可以表征高分子链的柔顺性如何表征 答:(1)空间位阻参数(或称刚性因子),值愈大,柔顺性愈差; (2)特征比Cn,Cn值越小,链的柔顺性越好; (3)连段长度b,b值愈小,链愈柔顺。 5. 聚乙烯分子链上没有侧基,内旋转位能不大,柔顺性好。该聚合物为什么室温下为塑料而不是橡胶 答:这是由于聚乙烯分子对称性好,容易结晶,从而失去弹性,因而在室温下为塑料而不是橡胶。 6. 从结构出发,简述下列各组聚合物的性能差异: (1)聚丙烯睛与碳纤维;

何曼君第三版高分子物理答案(新版答案)

i i i i 课后作业答案: 第一章 2、W 1=250/(250+280+300+350+400+450+500+600)=250/3130=0.0799 W=0.0895 W 3=0.0958 W 4=0.1118 W5=0.1278 W6=0.1438 W7=0.1597 W8=0.1917 一2 _______ 2 V w =M w (d -1) =15173 4、粘度法测定分子量,得到的数据为不同浓度的溶液流经乌氏粘度计的两到标 志线所需 的时间。粘度一方面与聚合物的分子量有关,另一方面也与聚合物分子 的结构、形态和 在溶剂中的扩张程度有关。因此,粘度法测得的分子量为相对分 子量。 渗透压法测定分子量,得到的数据为不同浓度的溶液对应的平衡渗透压,与 溶液中溶剂和溶质的摩尔分数有关,因此测得的是数均分子量。 光散射法测定分子量,是将固定波长的光线通过不同浓度的溶液, 而散射光的 强度是由各种大小不同的分子所贡献的。因此测得的分子量为重均分子量。 5、如知道分子量的数量微分分布函数 N (m 和质量微分分布函数 W(m),则可通 过下式 求出M n 和M w ? MW 二 o W(m)MdM 7、今有一混合物,有1克聚合物A 和2克同样类型的聚合物B 组成,A 的分 子量M A = 1X 105 g . mol -1; B 的分子量M B = 2X 105 g . mol -1。计算该混合物的 0.0799 250 0.0895 0.0958 0.1118 0.1278 0.1438 0.1597 280 300 350 400 450 500 0.1917 600 M w =為 W j M j =424 ; -1) =12903; 1 0.002556 391 N(m)MdM ■ WN} 0 M dM 6、 Z nM i 2 WM i 八 WM j M i M i M 「=(' W J M i :) 1/: 以为 值在-1至U 1之间,因此M n 乞M < M 2

相关主题
文本预览
相关文档 最新文档