当前位置:文档之家› 高功率微波武器技术综述

高功率微波武器技术综述

高功率微波武器技术综述
高功率微波武器技术综述

高功率微波武器技术综述

高功率微波武器是利用非核方式在极短时间内产生非常高的微波功率以极窄的定向波束直接射向目标雷达等微波电子设备,摧毁敌方雷达等微波电子设备和杀伤敌方人员的一种定向能武器。高功率微波源一般采用虚阴极振荡器,能产生吉瓦以上的高功率微波,微波源产生的微波经天线发射出去。

一、驱动源技术

(一)脉冲形成线

脉冲形成线(PFL)是传输线的一种,主要用来将高电压静电储能转换为一定脉宽、一定幅值的高电压脉冲,与普通的传输线最大的区别在于其可以产生高电压脉冲。PFL是脉冲功率装置的重要组成部分,它的发展与应用,与脉冲功率技术联系紧密。早期的脉冲功率装置,由于受电感、电容的限制,输出脉冲的脉宽较长,上升时间也较长,功率较低,如果直接连接负载,不但得不到高功率,而且负载往往也不能正常工作。因此,人们将传输线引入脉冲功率装置,得到了脉宽为十纳秒到百纳秒量级,上升时间为一纳秒到十纳秒量级的脉冲高电压。匹配阻抗和输出脉宽是脉冲形成线的两个重要技术参数,设计脉冲形成线的难点是保证其在额定电压内不被击穿。随着人们对脉冲功率技术研究的不断深入,PFL在民用和军事领域的应用价值也变得越来越重要。

目前,最常用的PFL是同轴PFL和螺旋PFL。同轴PFL 又分为两种:单同轴PFL和双同轴PFL。一般来说,单同轴PFL的同轴结构由两个互相绝缘的同轴直导体筒构成,其中外筒接地,内筒与充电电源相接;而双同轴PFL的同轴结构由三个相互绝缘的同轴直导体筒构成,其中外筒接地,内筒通过一定电感与外筒相接,中筒与充电电源相接。双同轴PFL 也被称为Blumlein线。

如果将单同轴PFL的内筒或者Blumlein线的中筒(有时还包括Blumlein线的内筒),换成螺旋线或螺旋带绕制而成的螺旋线筒,其他部分仍旧使用直导体筒,同轴PFL就变成了螺旋PFL。与普通的同轴PFL相比,螺旋PFL拥有较高的特征阻抗,可以产生较长的脉冲,因此,使用了螺旋PFL的脉冲功率装置可以产生更长的脉冲高电压。

(二)Tesla变压器

Tesla变压器是一种工作在双谐振模式下的脉冲变压器。其原理如图所示,首先常规交流变压器T1将输入的市电升压对储能电容器C1充电;G为火花开关,当储能电容器C1上的电压达到一定值时,火花开关导通,通过Tesla变压器T2升压对次级电容器C2充电。一般交流变压器T1将电压提升到12-50kV,Tesla变压器T2能够将电压再次提升到200kV-1MV。Tesla变压器是由两个隔离的相互感应的相关振荡回路组成的系统,与一般脉冲变压器不同的是,该系统的

初级储能和次级负载均为电容,且工作在自由振荡状态下,L1C1=L2C2使两个回路具有相等的固有振荡频率。

在脉冲功率技术中,Tesla变压器主要用来对脉冲形成线充电,以代替采用多级火花间隙开关的Marx发生器。与Marx 发生器相比,Tesla变压器具有体积小,能量传输效率高,容易实现重复频率运行等特点。

目前,为提高脉冲功率系统的性能,脉冲变压器正向高功率、高电压、高变比的方向发展,同时还希望脉冲变压器具有重量轻、体积小、价格低、效率高和长寿命等特点。

(三)高功率开关

高功率开关用于实现高功率电脉冲传输路径的切换。它不仅对脉冲功率装置的输出特性具有决定性作用,甚至是脉冲功率系统成败的关键。脉冲功率技术研究中,不仅要求高功率开关能够传输数十兆瓦到太瓦级的功率。还要求其时间抖动在纳秒范围。

高功率开关通常工作在较高功率水平下,导通和关断过

程均受控的全控开关通常仅在GW级以下的重复频率脉冲功率系统中有少量应用。因此,通常按照其功能,将高功率开关分为两个大类:

(1)闭合开关(closing switch):初始状态,开关阻抗为高阻,阻断电流使其不能向负载传输;开关动作时,开关阻抗变换为低阻,使电流通过开关及其后的传输结构向负载馈送高峰值电流。该类开关适用于电容储能电路。

(2)断路开关(opening switch):初始状态,开关阻抗为低阻,使电流通过开关流过与负载并联的旁路放电回路,使其不能向负载传输;开关动作时,开关阻抗变换为高阻,是电流通过不能通过开关所在的放电旁路,切换进入负载所在的放电回路,向负载馈送高峰值电流。该类开关适用于电感储能电路。

高功率开关通常包括电极、工作介质、壳体和引出结构三部分。开关电极一般采用黄铜、不锈钢、铜钨合金等导电性能良好的金属或合金材料制成,一只高功率开关至少包含一对电极(通常简称主电极),部分电脉冲触发型开关还有触发电极(图1)。多级开关使用多个电极,其两端与引出结构相连的电极称为主电极,其余夹持在两个主电极之间的电极称为中间电极。高功率开关的工作介质是填充在电极之间的气体、液体或固体材料,真空也是高功率开关常用的一种工作介质。对于闭合开关,工作介质初始状态是绝缘体或高

阻抗介质;开关动作时,工作介质被击穿或由高阻抗状态转变为低阻抗状态。开关壳体用于容纳工作介质,通常由绝缘材料制成,少数类型的断路开关采用电极作为壳体。开关引出结构用于实现开关电极与电路的连接,采用导电性能良好的金属或合金材料制成。

二、微波源技术

(一)磁绝缘线振荡器

磁绝缘线振荡器(MILO)是一种新型相对论正交场器件,它可以看成是直线型相对论磁控管,但它与相对论磁控管不同的是,利用阴极大电流产生的自身磁场来阻止电子流直接打上阳极,而不需要借助外加磁场实现磁绝缘,因此它是一种自绝缘型器件,电子在电场和自身磁场作用下沿轴向漂移。

MILO的优点是阻抗较低,因此能够在相对低的电压下得到较高的功率。MILO的这一特点还使它可以较好地与低阻抗脉冲功率源匹配;另外,由于MILO不再需要外加磁场,使得系统设计和制造得到了简化,降低了成本。

MILO的局限性在于它的效率低,这一方面是由于磁绝缘需要一定的电流直接打上收集极,这部分电流没有参与互作用,造成电流损失;另一方面是由于微波提取效率低,主要是因为从群速为零的模提取功率十分困难,微波能量是通过边缘场提取而不是通过波的纵向传输提取的,因而,当在

慢波线最右端(下游)提取微波功率时,只有右端的几个腔对产生微波辐射有贡献,而与上游方向的腔的个数关系不大。

(二)相对论返波管

返波管本质上是一种将电子束的动能转变为电磁能的微波源。传统返波管由于功率小,基本上已被固体器件取代,而相对论返波管则相反,不仅得到了高度重视,成为相对论电子注器件最重要的一员,而且是最早出现的高功率微波源,1970年出现的相对论返波管标志着高功率微波时代的开始。

相对论返波管(简称RBWO)是一种利用环形相对论电子束与周期性慢波结构相互作用,产生自身振荡和放大的高功率微波器件,能够在厘米、毫米微波波段产生几百MW乃至超过1GW的微波脉冲辐射,并能够实现脉冲重复频率工作。

相对论返波管由于其高功率、高效率和适合重复频率工作等特点而受到人们的重视,它是输出功率能够超出10GW 以及在GW量级功率电平上能够实现100Hz-200Hz重复频率运行的少数高功率微波器件之一,因而在高功率微波技术中占有重要地位。

提高相对论返波管效率的方法可以是增加慢波结构输出段的波纹深度可以提高耦合阻抗;也可以同时使引导磁场在输出段沿轴向逐渐降低,使电子束更靠近慢波线内壁,进一步增加束波之间的耦合;还可以改变慢波结构的周期以逐渐降低波的相速,以保持与因不断使去动能而速度下降的电

子束之间的同步。理论和实验都证明,这些措施可以使相对论返波管的效率从15%提高到45%,甚至65%以上。

在返波管中,慢波线的电子枪端微波场最强,因而截止波导由于半径相对较小最易引起高频击穿。为了避免这一现象的发生,人们提出可以用一个称为布拉格腔或布拉格反射器的谐振腔来代替截止波导。该谐振腔对相对论返波管的工作模式(通常为TM01模)产生反射而在腔中激励起另外的模式,如TM02模,该模式还可以起到对电子束进行预调制的作用。

在相对论返波管中填充等离子体可以提高束波转换效率也已被实验所证实,在束流为70A-200A时,填充等离子体可使返波管的效率从20%提高到40%;将束流提高到2000A时,效率从5%提高到40%。

相对论返波管具有可以宽带调谐、谱线窄、功率大、效率高的特点,使它适合于雷达及电子干扰等应用,也可以作其他高功率微波放大器的推动源。

三、天线与馈线技术

(一)天线技术

工作于米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。微波主要靠空间波传播,为增大通信距离,天线架设较高。在微波天线中,应用较广的有抛物面天线、喇叭抛物面天线、喇叭天线、透镜天线、开槽天线、介质天

线、潜望镜天线等。对工作于微波波段天线的要求:(1)机械强度及运用可靠性要高;(2)天线的尺寸和重量要小;(3)天线与馈线要匹配,而且易于调谐;(4)天线的制造和装配要简便,成本要低。

由于地形和环境地的影响,天线接收到的电磁波是有效直射波,还是反射绕射波或是它们的叠加,其结果决定了接收点处的场强幅度和相位,并直接影响天线的应用效果。因此,对于天线的安装也有一定要求,选择天线架设位置通常应注意以下几个方面。

(1)天线的发射或接收方向应尽量避开障碍物:例如楼房、铁塔、桥梁等高大建筑物,以免因电磁波反射、折射造成对通信极易产生影响的多径干扰。

(2)天线架设地点应尽量远离干扰源:例如高压线、飞机航线、人口稠密区、公路等,减少或避免可能产生的对微波通信的干扰;也尽可能减少微波通信系统对外界的干扰。

(3)天线应尽量架设在附近的置高点:根据微波传输的特点,这样可以增加通信距离,并可以获得相对较好的通信质量。

(4)如有几副天线同在一个铁塔上工作,应特别注意它们之间左右和上下的间距以及工作频率,以防相互耦合影响系统性能。

(二)馈线技术

馈线系统是在天线和收发信机之间用于传输信号的系统。在微波接力通信站,为了保证信道的畅通,天线往往需要架设在楼顶或铁塔顶端。这样,天线与收发信机之间,要采用数米乃至几十米的馈线来连接。因为馈线传输的是微波信号,所以又可称其为微波传输线。

馈线系统定义:由波导、旋转关节、收发开关等各种微波部件连接组成的系统称为馈线系统。馈线系统连接在发射机、接收机和天线之间。馈线系统的作用是有效地馈送微波信号能量;当多波道公用天线时,还具有发端汇合、收端分离各波道微波信号的功能。

在发信端,发信设备输出的微波信号,经馈线系统输至发射天线,成为无线电波,沿指定方向发射出去。在收信端,无线电波经接收天线输至馈线系统,成为微波信号,输至收信设备。天线馈线系统包括天线和馈线、阻抗变换器、极化分离器、波道滤波器等。

馈线有同轴电缆型和波导型两种型式。一般在分米波波段(2GHz),采用同轴电缆馈线。在厘米波段(4GHz以上频段),因同轴电缆损耗较大,故采用波导型馈线。波导馈线又分为圆波导馈线和矩形波导馈线两种。由于在一根圆波导馈线系统中可以传输相互正交的两种极化波,因此在与双极化天线连接时,只要一根圆波导馈线系统即可。故室外的馈线系统用圆波导馈线较多。

四、绝缘技术

(一)绝缘材料

绝缘材料是在允许电压下不导电的材料,但不是绝对不导电的材料,在一定外加电场强度作用下,也会发生导电、极化、损耗、击穿等过程,而长期使用还会发生老化。

1.气体绝缘材料

通常情况下,常温常压下的干燥气体均有良好的绝缘性能。作为绝缘材料的气体电介质,还需要满足物理、化学性能及经济性方面的要求。空气及六氟化硫气体是常用的气体绝缘材料。

空气有良好的绝缘性能,击穿后其绝缘性能可瞬时自动恢复,电气物理性能稳定、来源极其丰富、应用面比较广。但空气的击穿电压相对较低,电极尖锐、距离近、电压波形陡、温度高、湿度大等因素均可降低空气的击穿电压,常采用压缩空气或抽真空的方法来提高空气的击穿电压。

六氟化硫(SF6)气体是一种不燃不爆、无色无味的惰性气体,它具有良好的绝缘性能和灭弧能力,远高于空气,在高压电器中得到了广泛应用。六氟化硫气体还具有优异的热稳定性和化学稳定性,但在600℃以上的高温作用下,六氟化硫气体会发生分解,将产生有毒物质。

2.液体绝缘材料

绝缘油有天然矿物油、天然植物油和合成油。天然矿物

油应用广泛,它是从石油原油中经过不同程度的精制提炼而得到的一种中性液体,呈金黄色,具有很好的化学稳定性和电气稳定性。主要应用于电力变压器、少油断路器、高压电缆、油浸式电容器等设备。天然植物油有蓖麻油、大豆油等。合成油有氧化联苯甲基硅油、苯甲基硅油等,主要用于电力变压器、高压电缆、油浸纸介电容器中。

绝缘油在储存、运输和运行过程中会受各种因素影响导致污染和老化。热和氧在油的老化中起了最主要的作用。工业中采取的防油老化的措施有:加强散热以降低油温;用氮气、薄膜使变压器油与空气隔绝;使用干燥剂以消除水分;添加抗氧化剂;防止日光照射等。油被污染后可采取压力过滤法或电净化法进行净化和再生。

为了保证充油设备的安全运行,必须经常检查油的温升、油面高度、油的闪点、酸值、击穿强度和介质损耗角正切值,必要时还要进行变压器油的色谱分析。需要补充油时,尽量用原型号或相近型号,并应进行混合试验。

3.固体绝缘材料

固体绝缘材料的种类很多,其绝缘性能优良,在电力系统中的应用很广。常用的固体绝缘材料有:绝缘漆、绝缘胶;纤维制品;橡胶、塑料及其制品;玻璃、陶瓷制品;云母、石棉及其制品等。

绝缘漆、绝缘胶都是以高分子聚合物为基础,能在一定

条件下固化成绝缘硬膜或绝缘整体的重要绝缘材料。

绝缘漆主要由漆基、溶剂、稀释剂、填料等部分组成,绝缘漆的成膜固化后绝缘强度较高,一般可作为电动机、电器线圈的浸渍绝缘或涂覆绝缘。按用途可分为浸渍漆、漆包线漆、覆盖漆、硅钢片漆和防电晕漆等。

绝缘胶与绝缘漆相似,一般加有填料,广泛用于浇注电缆接头、套管、220kV及其以下电流互感器、10kV及其以下电压互感器。用的绝缘胶有黄电缆胶、黑电缆胶、环氧电缆胶、环氧树脂胶、环氧聚酯胶等。

绝缘纤维制品是指用绝缘纸、纸板、纸管和各种纤维织物等制成的绝缘材料。浸渍纤维制品则是用绝缘纤维制品作底材,浸以绝缘漆制成,它具有一定的机械强度、电气强度、耐潮性能,还具备了一些防霉、防电、防辐射等特殊功能。绝缘电工层压制品是以纤维作底材,浸涂不同的胶黏剂,经热压或卷制而成的层状结构绝缘材料,其性能取决于底材和胶黏剂及其成型工艺,可制成具有优良电气性能、力学性能和耐热、耐霉、耐电弧、防电晕等特性的制品。

(二)击穿

在电场作用下绝缘物内部产生破坏性的放电,绝缘电阻下降,电流增大,并产生破坏和穿孔的现象。其发生时的电压称“击穿电压”,它的数值与材料的种类、厚度及使用环境有关。

电介质在足够高的电场强度作用下瞬间(10~10s)失去介电功能的现象。是电介质击穿形式之一。在电场作用下,电介质内少量自由电子动能增大,当电场强度足够大时,自由电子不断撞击介质内的离子,并把能量传递给离子使之电离,从而产生新的次级电子,这些次级电子在电场中获得能量而加速运动,又撞击并电离更多的离子,产生更多的次级电子,如此连锁反应,如同雪崩,产生“电子潮”,使贯穿介质的电流迅速增大,导致击穿。

2.热击穿

在电场作用下,固体电介质因内部热量积累、温度过高而导致,由绝缘状态突变为良导电状态的过程。[3] 实际绝缘结构中,除了导体中电流产生的热量将传送给固体电介质外,在电场作用下,固体电介质本身也将因漏导和极化而发热。与此同时,固体电介质也要向四周散发热量,若发热量超过散热量,则固体电介质的温度将上升。由于固体电介质的损耗随温度上升而增加,因此发热量也随之增加。相应地,散热量也随固体电介质与周围环境温差的增加而增加。若在固体电介质能耐受的温度下,发热量与散热量相等,则建立起了热平衡,固体电介质正常工作;若发热量始终大于散热量,则固体电介质的温度不断上升,最终固体电介质发生炭化、熔化或开裂等现象,丧失绝缘性能,发生热击穿。

由于强激光场的作用使透明介质中发生各种损伤,光击穿是指强激光引起雪崩电离导致击穿引起的损伤,它区别于激光直接加热引起的损伤,后者称为热击穿。

固体中的光击穿的物理机制为:固体中有少量准自由电子(热激发到导带上的电子,或由于多光子光致电离产生的电子),在激光场中这些电子获得能量,在与原子碰撞时使后者电离;多次重复此过程,电子快速倍增,由于雪崩电离形成等离子体;等离子体加热和膨胀形成冲击波导致固体局部损伤,表现为漏斗状的损伤径迹(如为夹杂物引起的则为球状)。

五、诊断(测试)

(一)电压测量

测量原理:电场力对电场中的单位正电荷由一点移动到另一点所作的功称为电压。电压测量的可测频率范围极宽,从直流到几吉赫甚至更高频率;量程大,可以从纳伏到上千伏;精确度由百分之几十到万分之几。在电压测量中,往往将1兆赫以下的电压称为低频电压;而1兆赫以上的电压称为高频电压(或射频电压)。高频电压的量程一般分为大电压(10伏以上)、中电压(0.1~10伏)、小电压(1微伏~0.1伏)和微电压(1微伏以下)。其中,中电压的测量精度最高,而大、小和微电压的测量都由中电压标准定标。实际

测量的电压值有峰值、平均值和有效值。

测量交流电压的方法主要有检波法、采样法、热电法、测辐射热法和补偿法等。

检波法:利用电子管、晶体管的检波作用将交流电压转换为直流电压进行测量。检波式电压表的工作频率一般从几十赫到一千多兆赫,量程达100微伏~1000伏。频率在300兆赫以下时,精确度一般约为百分之几,频率在1000兆赫时则可达百分之几十。

采样法:采样实质上是频率变换,是用一系列离散的取样脉冲来描述一个连续变量的过程。一般是将被测高频信号变成20千赫的低频信号,再进行检波测量。这种电压表的频率范围为1~1000兆赫,甚至更高;电压范围约300微伏~1伏(外接衰减器可测量大的电压),精确度从百分之一到百分之十几。

热电法:主要采用热电转换标准或微电位计。热电转换标准由热电偶配以适当的限流电阻或衰减器组成,可测0.1~300伏或更高的电压,频率范围一般为20赫~100兆赫,若采取高频补偿措施则可达1000兆赫,测量精确度约为0.01%~1%(定标后)。利用多元热偶特制的热电转换器,在低频段的交直流转换精度可达1×10-5或更高,当代的低频电压原始标准皆属此类;微电位计主要由热电偶和圆盘电阻组成,利用已知电流乘电阻得到标准输出电压,一般为0.1微

伏~400毫伏,频率范围一般为0~1000兆赫,精确度为0.02%~5%。

测辐射热器法:一般是利用测辐射热电阻(简称测热电阻)进行测量。实用的测热电阻主要有热敏电阻、镇流电阻和薄膜热变电阻。热敏电阻的灵敏度最高(可达数万欧/瓦),但频率响应差;镇流电阻的灵敏度较高(约数千欧/瓦),频率响应也较差。薄膜热变电阻的灵敏度较低(约1~100欧/瓦),但频率响应好,可根据不同需要选用。测辐射热装置的工作原理是利用测热电阻对电功率的敏感性,将被测高频电压转换成相应的阻值变化,再根据功率替代原理,利用测热技术以已知的直流或低频电压代替高频电压。这种装置有功率计式(标准表式)和标准源式二种类型。前者是通过测量功率和阻抗换算出电压,随着功率和阻抗测量精确度的不断提高,可以达到很高的精确度,是建立高频电压原始标准的方法之一;后者是直接给出标准电压值,比较方便,可获得较高的精确度,其典型的方案是测热电阻电桥。高频电压的原始标准主要是测辐射热装置。它的量程约为0.1~1伏,频率范围约为10~1000兆赫,精确度约为0.2%~1%。

(二)电流测量

测量高频电流的主要方法有热电法、测辐射热器法。

①热电法:可用于直流、低频和高频电流测量。(如下图)

测交流电流时,将被测电流信号从左端送入,记下指示器值;再以直流输入,得到相同示值时的直流电流值即等于所测交流电流值。此直流电流须经校准以保证高精度。热电法电路的核心是热电偶,为消除其正反向误差,测直流时应调换电偶两端的接线方向,然后取两次的平均值。这种方法量程范围宽,约10-3~102安;精确度高,可达±10-5,是用得最多的一种方法。

②测辐射热器法:利用测辐射热器阻值变化仅与所加的功率大小有关而与频率无关这一特性,采用测辐射器电桥电路,以直流电流替代高频电流而测出高频电压,然后以电压和电阻求得电流。

为减少驻波影响,应使测辐射热器的阻值尽可能与传输

线特性阻抗相等。输出端口一般接有谐振回路或1/4波长短路线以减少分流影响。这种方法精确度约为±(10-2~10-3),使用频率可达几吉赫。

(三)微波频率测量

1.基本频率测量方法

测量频率的方法无非是设法将被测频率直接或间接地与标准频率进行比较。按照具体进行比较的方式不同,频率测量可分为许多种不同的方法。频率测量所能达到的精度,主要取决于作为标准器使用的频率源的精度以及所使用的测量设备和测量方法。按照测量装置中是否包含有作为标准频率的振荡源,可以分为有源法和无源法两大类。有源法是将未知频率fx的信号与仪器内部产生的或外加的频率fs为已知的信号直接比较频率。比较的方法最常用的有外差法和计数法两种。

外差法就是将外来未知信号fx与本机的外差振荡器及准确已知频率fs一同加于混频器,在混频器输出端取得差频。通常根据已知频率fs的情况可将外差法分为“零差法”、“恒差法”和“测差法”三种类型。

计数法是指以计数式频率计为代表的计数测频法,实质上仍是将未知频率fx与标准频率fs相比较。当今所有的微波计数式频率计是靠预分频技术和更多的是采用各种向下变频技术,将被测微波频率变成数百兆赫以下的频率,再由

直接计数器测量之,并能设法直接显示出被测微波频率值。按照不同的变频原理,可将微波技术频率计分为预分频式、外差变频式、频率转换式和谐波外差式等。

无源法主要是以众所周知的谐振式波长计为代表。它是将被测信号频率与一个可调谐的无源回路的自然频率相比较,并以谐振的出现作为频率相等的指示。在微博范围内,谐振波长计大都采用同轴式或波导式谐振腔。这种波长计由于结构简单,价格低廉,使用便利等,使得其在日常粗测中获得了广泛的使用。

2.微波频率计数器

由于受到器件最高运行速度的限制,直接利用计数器测量频率,其测量范围有限。为了扩大微波计数器测量频率的范围,很多采样技术得到了应用。目前,在测试仪器设计中广泛应用的采样方法有以下几种:预定标法、外差下倍频法、置换振荡法和外差谐波下倍频法。

预定标法:利用分频器来扩展微波计数器频率测量的范围,若使用N分频的计数器,则计数器可以测量的频率范围可以扩展至N倍。该法的主要优点是微波计数器结构简单,成本低;主要缺点是微波计数器分辨率低,可测量的最高频率有限。

外差下倍频法:利用混频法将输入信号与高稳定标准时钟混频,混频器差频输出频率达到普通频率计可以测量的频

率范围。下图为外差下倍频法计数器的方框图。

外差下倍频法计数器的方框图

电子计数器送出高精度的标准频率,在谐波发生器中产生它的各次谐波。被测信号 输入时,谐波滤波器由低到高选出标准时钟信号的谐波分量。被选出的第N 次谐波使差频处在计数器的计数频率范围内时,计数器开始计数得到差频值,则输入的微波信号的频率为:

x s I f Nf f =+

置换振荡法:被测频率与压控扫描振荡器频率的谐波进行混频,其差频信号输出频率为I x L f f Nf =- 。当落在差频放大器的通频带内时,鉴相器的输出电压控制压控振荡器,使它停止扫频,并由锁相环路保证与 锁定。当锁相环锁定时,被测信号频率:

x L s f Nf f =+

由于置换振荡法应用了锁相电路,其环路增益和整机灵敏度很高,但闸门时间需扩展N 倍,因而在同样测量时间情

高功率微波武器技术综述

高功率微波武器技术综述 高功率微波武器是利用非核方式在极短时间内产生非常高的微波功率以极窄的定向波束直接射向目标雷达等微波电子设备,摧毁敌方雷达等微波电子设备和杀伤敌方人员的一种定向能武器。高功率微波源一般采用虚阴极振荡器,能产生吉瓦以上的高功率微波,微波源产生的微波经天线发射出去。 一、驱动源技术 (一)脉冲形成线 脉冲形成线(PFL)是传输线的一种,主要用来将高电压静电储能转换为一定脉宽、一定幅值的高电压脉冲,与普通的传输线最大的区别在于其可以产生高电压脉冲。PFL是脉冲功率装置的重要组成部分,它的发展与应用,与脉冲功率技术联系紧密。早期的脉冲功率装置,由于受电感、电容的限制,输出脉冲的脉宽较长,上升时间也较长,功率较低,如果直接连接负载,不但得不到高功率,而且负载往往也不能正常工作。因此,人们将传输线引入脉冲功率装置,得到了脉宽为十纳秒到百纳秒量级,上升时间为一纳秒到十纳秒量级的脉冲高电压。匹配阻抗和输出脉宽是脉冲形成线的两个重要技术参数,设计脉冲形成线的难点是保证其在额定电压内不被击穿。随着人们对脉冲功率技术研究的不断深入,PFL在民用和军事领域的应用价值也变得越来越重要。

目前,最常用的PFL是同轴PFL和螺旋PFL。同轴PFL 又分为两种:单同轴PFL和双同轴PFL。一般来说,单同轴PFL的同轴结构由两个互相绝缘的同轴直导体筒构成,其中外筒接地,内筒与充电电源相接;而双同轴PFL的同轴结构由三个相互绝缘的同轴直导体筒构成,其中外筒接地,内筒通过一定电感与外筒相接,中筒与充电电源相接。双同轴PFL 也被称为Blumlein线。 如果将单同轴PFL的内筒或者Blumlein线的中筒(有时还包括Blumlein线的内筒),换成螺旋线或螺旋带绕制而成的螺旋线筒,其他部分仍旧使用直导体筒,同轴PFL就变成了螺旋PFL。与普通的同轴PFL相比,螺旋PFL拥有较高的特征阻抗,可以产生较长的脉冲,因此,使用了螺旋PFL的脉冲功率装置可以产生更长的脉冲高电压。 (二)Tesla变压器 Tesla变压器是一种工作在双谐振模式下的脉冲变压器。其原理如图所示,首先常规交流变压器T1将输入的市电升压对储能电容器C1充电;G为火花开关,当储能电容器C1上的电压达到一定值时,火花开关导通,通过Tesla变压器T2升压对次级电容器C2充电。一般交流变压器T1将电压提升到12-50kV,Tesla变压器T2能够将电压再次提升到200kV-1MV。Tesla变压器是由两个隔离的相互感应的相关振荡回路组成的系统,与一般脉冲变压器不同的是,该系统的

高功率微波定向能武器

微波武器 概述 高功率微波武器(high-power microwave weapon)又称为射频武器,是利用高功率微波束毁坏敌方的电子设备和杀伤作战人员的一种定向能武器。该武器的辐射频率通常在1~30吉赫范围内,输出脉冲功率在吉瓦级。(“吉”是数量级名称,10(U9)称为吉)高功率微波武器属“软杀伤”武器,可从远距离把电子器件“烧”坏,使整个武器失效,也能使人精神错乱、行为失常、眼睛失明、心肺功能衰竭甚至死亡。高功率微波武器的核心是微波振荡器,提高振荡器的输出功率是其中的一项关键技术。 1. 背景 微波武器高功率微波武器的研发,源于20世纪60年代的东西方技术竞赛。1962年7月,美国进行了当时最高当量,代号为“海星一号”的高空核试验。当天夜里11点零9秒(夏威夷时间),一枚140万吨当量的热核弹头在太平洋中部400千米的高空被引爆。爆炸产生的大量高密度带电粒子沿着地球磁场向外迸发。它们的回旋运动产生了一束微波脉冲,导致测量仪器失准。爆炸所产生的极光带在洋面上空闪烁,照亮了整个夜空。在距离爆点1 300多千米外的檀香(Honolulu),脉冲不仅导致防盗警报器此起彼伏,路灯也纷纷熄灭,最后连供电线路也跳闸瘫痪了。当时冷战双方的军事决策层,发现了这次实验中电磁脉冲的破坏潜能,并展开了一场利用这种潜力制造非核武器的竞赛。随后,美国、苏联、英国等都做了大量的微波武器研制工作。 2.机理 从杀伤机理上看,高功率微波武器具有电效应、病效应和热效应,既能杀伤人畜,又能破坏武器的电子设备,即具有软/硬杀伤能力。 2.1 对电子电气设备的破坏 高功率微波辐射效应从低到高可以大致划分为三级。第一级, 类似于超级干扰系统, 高于当前战场使用的干扰系统功率, 能完全压制敌方通信和雷达系统; 第二级, 功率达到足够破坏敌方电子系统中的微型电路; 第三级, 类似于家用微波炉,功率高到能够加热目标。 高功率微波脉冲对系统及器件的破坏机制主要有以下几种: 1)高压击穿。电磁能接收后转化成高电压或大电流, 由此引起结点、部件或回路间击穿; 2)器件烧毁。包括半导体器件的结烧蚀、连线熔断等; 3) 微波加温。微波可使金属、含水介质加温, 使器件不能正常工作; 4) 电涌冲击。脉冲高电压、大电流进入系统、设备, 电路像电涌一样烧毁器件、电路; 5) 瞬间干扰。当进入的功率较低,导致电路出现干扰, 不能正常工作。 表一电磁脉冲对各种电子器材的影响

功率放大器技术指标概述

功率放大器技术指标概述 工作频率范围Operating Frequency 放大器满足或优于指标参数时的工作频率范围。 输出功率Output Power: 放大器的输出功率有两种表示方式:饱和功率和1dB压缩点输出功率。前者是输出的最大功率,后者则是指增益下降1dB时的输出功率,前者一般大于后者。对脉冲放大器有峰值功率和平均功率之分,前者表示有信号时的输出功率,后者则是按时间平均后的功率,两者之间的关系与信号的占空比有关。 增益Gain 功放输入输出功率的比值。 增益平坦度Gain flatness 表示放大器在工作频段内功率增益的波动。 噪声指数Noise Figure 指的是功放输出端和输入端信噪比的比值。

输入输出三阶截取点IIP3,OIP3 反映放大器的线性特性的指标。具体指三阶谐波与输入端基波电平相同时对应的输入/输出功率电平。此指标与输入电平的大小和放大器的增益无任何关系。 电压驻波比VSWR 放大器通常设计或用于50Ω阻抗的微波系统中,输入/输出驻波表示放大器输入端阻抗和输出端阻抗与系统要求阻抗(50Ω)的匹配程度。用下式表示:VSWR = (1+|Γ|)/(1-|Γ|) 其中Γ=(Z-Z0)/(Z+Z0) VSWR:输入输电压出驻波比 Γ:反射系数 Z:放大器输入或输出端的实际阻抗 Z0:需要的系统阻抗

效率Efficiency 指输入电流×输入电压=总功率 效率=实际输出射频功率/总功率×100% 临道功率比ACPR (Adjacent Channel Power Ratio) 用来衡量主信道的功率泄漏到相邻信道的多少,和放大器的线性、信号的调制等多因素有关。主要应用在象CDMA这样的宽频谱信号的研究上。 脉冲波的上升沿时间和下降沿时间Rise Time and Fall Time 上升沿时间:从脉冲波上升沿10%上升到90%所经历的时间; 下降沿时间:从脉冲波下降沿90%下降到10%所经历的时间; 脉冲宽度:两个脉冲幅值的50%的时间点之间所跨越的时间。 占空比Duty Cycle 在一串理想的脉冲序列中(如方波),正脉冲的持续时间(脉冲宽度pulse width)与脉冲总周期(Pulse cycle)的比值。

高功率微波武器

微波武器 概述 微波武器,也称射频武器。一般由微波发生器、天线、定向微波发射装置、控制系统等组成。微波发生器用于发射微波电磁脉冲,天线将微波波束聚成方向性极强、能量极高的窄波束,定向微波发射装置将电子束的能量或爆炸的化学能量转换为微波能量。微波武器通常在远距离上对军事目标和武器的光电设备进行干扰,在近距离上实施杀伤有生力量,引爆各种装药或直接摧毁目标。由于其威力大、速度高、作用距离远,而且看不见、摸不着,往往伤人于无形,与离子束武器、激光武器并称为三大定向能武器,因此,微波武器也被军事专家誉为高技术战场上的“无形杀手”。 1. 研发背景 微波武器高功率微波武器的研发,源于20世纪60年代的东西方技术竞赛。1962年7月,美国进行了当时最高当量,代号为“海星一号”的高空核试验。当天夜里11点零9秒(夏威夷时间),一枚140万吨当量的热核弹头在太平洋中部400千米的高空被引爆。爆炸产生的大量高密度带电粒子沿着地球磁场向外迸发。它们的回旋运动产生了一束微波脉冲,导致测量仪器失准。爆炸所产生的极光带在洋面上空闪烁,照亮了整个夜空。在距离爆点1 300多千米外的檀香(Honolulu),脉冲不仅导致防盗警报器此起彼伏,路灯也纷纷熄灭,最后连供电线路也跳闸瘫痪了。当时冷战双方的军事决策层,发现了这次实验中电磁脉冲的破坏潜能,并展开了一场利用这种潜力制造非核武器的竞赛。随后,美国、苏联、英国等都做了大量的微波武器研制工作。 2.作用机理 从杀伤机理上看,高功率微波武器具有电效应、病效应和热效应,既能杀伤人畜,又能破坏武器的电子设备,即具有软/硬杀伤能力。 2.1 对电子电气设备的破坏机理 高功率微波辐射效应从低到高可以大致划分为三级。第一级, 类似于超级干扰系统, 高于当前战场使用的干扰系统功率, 能完全压制敌方通信和雷达系统; 第二级, 功率达到足够破坏敌方电子系统中的微型电路; 第三级, 类似于家用微波炉,功率高到能够加热目标。 高功率微波脉冲对系统及器件的破坏机制主要有以下几种: 1)高压击穿。电磁能接收后转化成高电压或大电流, 由此引起结点、部件或回路间击穿; 2)器件烧毁。包括半导体器件的结烧蚀、连线熔断等; 3) 微波加温。微波可使金属、含水介质加温, 使器件不能正常工作; 4) 电涌冲击。脉冲高电压、大电流进入系统、设备, 电路像电涌一样烧毁器件、电路; 5) 瞬间干扰。当进入的功率较低,导致电路出现干扰, 不能正常工作。

高功率微波武器的现状与趋势

高功率微波武器的现状与趋势 2010-07-09 11:38:33 来源:中国国防科技网 关键字:高功率微波微波武器电磁脉冲精确制导 高功率微波(HPM)是指脉冲峰值功率大于100M W以上的微波。高功率微波武器(HPMW)是与激光武器和粒子武器同时发展的三大定向能武器之一。HPMW经高增益天线定向辐射,将HPM源产生的微波能量聚集在窄波束内,以极高的强度照射目标,杀伤人员,干扰和破坏现代武器系统的电子设备,因此它又称为射频武器。一般认为HPM武器的频率范围主要在1-30GHz之间,输出脉冲功率在1GW以上。从杀伤机理上看,高功率微波武器具有电效应、病效应和热效应,既能杀伤人畜,又能破坏武器的电子设备,即具有软/硬杀伤能力。 高功率微波武器对目标系统的破坏程度取决于其到目标的距离、目标的易损性、产生的功率大小和微波辐射的特性(包括频率、猝发速率和脉冲宽度)等因素。 微波武器 微波是一种能在真空或空气中直线传播,将辐射频率为1000—300000兆赫的电磁波汇聚成一定方向,借高能量攻击损毁作战对象的新型武器。波长很短(1毫米~1米)的高频电磁波,具有传播速度快、穿透力强、抗干扰性好、能被某些物质吸收等特点。微波武器又叫射频武器或电磁脉冲武器,它是利用高能量的电磁波辐射去攻击和毁伤目标的。由于其威力大、速度高、作用距离远,而且看不见、摸不着,往往伤人于无形,因此,被军事专家誉为高技术战场上的“无形杀手”。 微波武器的工作机理,是基于微波与被照射物之间的分子相互作用,将电磁能转变为热能。其特点是不需要传热过程,一下子就可让被照射材料中的很多分子运动起来,使之内外同时受热,产生高温烧毁材料。较低功率的轻型微波武器,主要作为电子对抗手段和“非杀伤武器”使用;而高能微波武器则是一种威力极强的大规模毁灭性武器。 微波武器是隐形飞机的克星。这主要是由隐形飞机自身的设计特点造成的。 隐形飞机为了达到隐形目的,需要尽量减少翼面,有的连水平尾翼和垂直尾翼都取消了,这样就必须采用电传操纵系统、推力矢量系统等先进技术,才能解决飞机的纵向和横向安定性、操纵性等问题,因而比其它飞机对机载电子设备的依赖程度更高。另外,为了改善全机的防探测效果,它们的结构和外表通常都要采用吸波材料和涂料,以便大量吸收雷达波能,不使之反射回去,这是隐形飞机能够“隐身”的原因之一。但是,事物终究一分为二,有所长则必有所短,由于目前大部分军用雷达工作在微波波段,隐形飞机能大量吸收雷达波也就会大量吸收微波,这就铸成其自身的致命弱点,自招“杀身之祸”。当隐形飞机被微波武器发出的高能电磁波照射到时,机体会由于过

低频功率放大器概述

第4章 低频功率放大器 【课题】 4.1低频功率放大器概述 【教学目的】 1.了解低频功率放大器基本要求。 2.掌握功率放大器的三种工作状态。 3.了解功率放大器的常用耦合方式。 【教学重点】 1.低频功率放大器基本要求。 2.低频功率放大器的分类。 【教学难点】 1.低频功率放大器基本要求。 2.功率放大器的三种工作状态。 【教学参考学时】 1学时 【教学方法】 讲授法 【教学过程】 一、引入新课 1.复习电压放大器主要任务。 2.列举低频功率放大器的应用:如扩音系统或收音机电路中的功放电路。 二、讲授新课 4.1.1低频功率放大电路的基本要求 功率放大器作为放大电路的输出级, 具有以下几个特点和基本要求: 1.能向负载输出足够大的不失真功率 由于功率放大器的主要任务是向负载提供不失真的信号功率,因此,功率放大器应有较高的功率增益,即应有较高的输出电压和较大的输出电流。 2.有尽可能高的能量转换效率 功率放大器实质上是一个能量转换器,它将电源供给的直流能量转换成交流信号的能量输送给负载,因此,要求其转换效率高。 3.尽可能小的非线性失真 由于输出信号幅度要求较大,功放管(三极管)大都工作在饱和区与截止区的边沿,因此,要求功放管的极限参数I Cm 、 P Cm 、 V (BR )CEO 等除应满足电路正常工作外还要留有一定余量,以减小非线性失真。

4.功放管散热性能要好 直流电源供给的功率除了一部分变成有用的信号功率以外,还有一部分通过功放管以热的形式散发出去(管耗),因此,降低结温是功率放大器要解决的一个重要问题。 4.1.2低频功率放大器的分类 1.按电路工作状态分类 (1)甲类功放电路 甲类功放电路中的功放管始终工作在三极管输出特性曲线的线性部分如图4.1(a)所示,即在输入信号的整个周期内,功放管始终导通,故电路输出波形失真小,但因静态时,功放管处于导通状态,且静态)较大,电路转换效率较低,理想情况下最大效率 电流(I 达50%。 (2)乙类功放电路 乙类功放电路在静态时,功放管处于截止状态,如图4.1 (b)所示,即在输入信号的整个周期内,功放管只在输入信 号的半个周期内导通的。因此,电路需用两只参数基本一致的 功放管轮流工作(推挽)才能输出完整的波形信号。由于静态电 流为零,电路转换效率较高,理想情况下可达78.5%,但因电路输 出波形存在交越失真(注:该内容将在4.2 常用低频功率放大器中 学习),需解决失真问题。 (3)甲乙类功放电路 甲乙类功放电路在静态时,功放管处于微导通状态,如图 4.1 (c)所示,即在输入信号的整个周期内,功放管只在输入信号 的大半个周期内导通。与乙类功率放大器电路一样,需用两只 参数基本一致的功放管轮流工作(推挽)才能输出完整的波形 信号。由于静态时管子仍然处于导通状态,因此,在输入信号 很小时,两个功放管同时都工作,克服了交越失真。电路转换 效率略低于乙类,原因是静态时电路中仍有很小的电流,电路 会消耗部分电源功率。 图4.1 功放管的三种工作状态2.按耦合方式分类 (1)阻容耦合功放电路——功放电路输出端通过耦合电容连接负载,如:OTL功放电路。 (2)变压器耦合功放电路——功放电路输出端通过变压器连接负载。变压器具有阻抗变换作用,可使负载获得最大功率,但由于有变压器体积大、损耗大、频率特性差等不足之处,目前应用不多。 (3)直接耦合功放电路——功放电路输出端无需通过任何元件而直接与负载相连,如:OCL功放电

PIN二极管的高功率微波响应

第14卷 第2期强激光与粒子束V o l.14,N o.2 2002年3月H IGH POW ER LA SER AND PA R T I CL E B EAM S M ar.,2002 文章编号:100124322(2002)022******* P IN二极管的高功率微波响应Ξ 余 稳1,3 聂建军3, 郭杰荣3, 周传明2, 张义门1 (1.西安电子科技大学微电子研究所,陕西西安710071;2.中国工程物理研究院应用电子学研究所, 四川绵阳621900;3.常德师范学院电子学研究所,湖南常德415000) 摘 要: 利用自行编制的半导体器件模拟程序m PND1D(采用时域有限差分方法,求解器件内部 载流子所满足的非线性、耦合、刚性方程组),对P I N二极管微波限幅器在高功率微波激励下的响应进 行了计算,比较了不同条件下的计算结果,并对二极管微波响应截止频率作了探讨。计算结果表明:随着 激励源幅值的升高,器件截止频率增大;随着脉冲长度减小,器件截止频率降低;随着器件恒定温度值升 高,截止频率下降。 关键词: 二极管限幅器;高功率微波;截止频率 中图分类号:O475;O241.82 文献标识码:A 二极管在高功率微波源激励下的响应特性研究,对开展电磁波对半导体器件的破坏机理研究具有重要意义。P I N限幅器是具有典型意义的器件(如雷达接收端,其最外围部分便是P I N二极管限幅器),因此,我们利用自行研制开发的计算程序m PND1D[1]对此进行了数值计算,并根据计算结果对器件的响应情况进行了分析探讨,该结果对分析器件在不同激励情况下的响应截止频率具有一定的意义,同时也能为分析短脉冲源(如超宽带)对电子系统的作用机理提供参考。计算结果表明:随着激励源幅值的升高,器件截止频率增大;随着脉冲长度减小,器件截止频率降低;随着器件恒定温度值升高,截止频率下降。 1 数值计算 1.1 器件模型及结构参数 采用典型的P I N二极管限幅器(扩散结)模型,器件长度4Λm,截面积10-6c m2,杂质浓度1019c m-3, I区掺杂浓度5×1015c m-3,少子寿命10-6s,其结构与文献[2]中所述相似。计算所用外电路包括二极管旁路电容C(取值2p F)和串联电阻R(取值508)。 1.2 基本算法 半导体器件在外界源激励下的行为,可通过求解由器件内部载流子所满足的由连续性方程、泊松方程、热流方程等8个方程组成的非线性、耦合、刚性方程组获得。采用时域有限差分(FD TD)方法及“混合”算法求解[3]。器件两端采用欧姆接触,且与温度为300K的热阱相连;器件内部初始温度为300K,载流子浓度及电位分布为零偏压时的平衡载流子浓度及电位分布。 2 计算结果及分析 在考虑温度效应(即器件内部温度发生变化)的情况下,对P I N二极管限幅器用振幅为100V,频率在1~300GH z范围内的微波源进行激励,计算结果如图1、图2所示。图1表示在频率分别为1,4GH z 的微波源激励下的电流响应曲线(激励源幅值为负值,表示激励从负半周开始,这样低频时可在第一周期明显看出器件雪崩击穿过程),从图1可看出,随着激励源频率的增加,器件电流达到稳定值所需时间越来越长。但计算发现,当频率增加到某一数值时(此处约20GH z),器件电流幅度值明显下降,且不再有如图1所示的幅值逐渐增大的过程。图2表示器件电流振幅稳定值及达到稳定所需时间随频率的变 Ξ收稿日期:2001205218; 修订日期:2001211202 基金项目:国家863强辐谢重点实验基金项目(99202);湖南省自然科学基金项目(00JJJY2009) 作者简介:余 稳(19662),男,湖南益阳人,博士研究生,副教授。

功率放大器结构、工作状态及其原理简介

更多技术文章、资料、论文,请登录https://www.doczj.com/doc/0b2183046.html, 功率放大器结构、工作状态及其原理简介 功率放大器简称功放,在我们的生活中无处不在,人们为了从一个很小的功率得到一个仅仅是振幅变的很大的电流,因此功率放大器在世人眼中出现了。比如:我们日常用的音响就好是一个典型的例子,还有我们的手机内部功率放大器功劳是居功居伟的,磁轴承、电力系统混合仿真等方面都有功率放大器的位子。 功率放大器工作的原理 功率放大器的工作原理其实很简单,直观来说就是将音源播放的各种声音信号进行放大以推动音箱发出声音。从技术角度看,功率放大器好比一台电流的调制器,它将交流电转变为直流电,然后受音源播放的声音信号控制,将不同大小的电流,按照不同的频率传输给音箱,这样音箱就发出相应大小、相应频率的声音了。 功率放大器的三类工作状态 功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 除了以上几种按照电流导通角分类的工作状态外,还有使电子器件工作于开关状态的丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。 在音响领域里人们一直坚守着A类功率放大器的阵地。认为A类功率放大器声音最为清新透明,具有很高的保真度。但是,A类功率放大器的低效率和高损耗却是它无法克服的先天顽疾。B类功率放大器虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功率放大器,因其符合绿色革命的潮流正受着各方面的重视。 功率放大器的基本结构,可分为三个部分: 第一部分为调制器 第二部分就是D类功放 第三部分需把大功率PWM波形中的声音信息还原出来。 功率放大器采用了集成电路的后级,主流的高保真(不失真)音频功率放大器都采用互补全对称晶体管 电路,通过精心配对元件,获得电路的对称性,所有的NPN管和PNP管都是配对的。这相当于是用分立元件搭出一个运算放大器来。而且,这种分立元件放大器具有集成运放不具有的优势,分立元件的工艺可以造出集成工艺所无法制成的高频大功率晶体管来。尤其是大功率PNP型管,集成工艺目前还达不到分立元件的水平。所以集成功放芯片一般使用准互补输出,也就是以一个中功率PNP管推动一个大功率NPN管,

高功率微波武器概述

高功率微波武器 摘要:高功率微波武器作为一种新概念武器,与传统武器相比有很多自身的特点,随着技术的进步和新军事变革的进一步推进,高功率微波武器的应用势在必行。以下介绍了高功率微波武器的概念、分类、组成,发展过程以及典型的军事应用。 前言: 未来战争将是高度信息化的高技术战争,作战双方的指挥、控制、通信、情报甚至武器系统本身均离不开信息技术的支持,夺取信息优势将成为战争获胜的重要保证。在战场上,信息网络是由地面、空中和空间的各个信息节点和他们之间的链路构成的。高功率微波(HPM)武器由于其自身的特性而将成为战成信息中最为有效的攻击手段之一,而且随着武器系统和平台中电子化程度的进一步提高,其作用会更加明显。 高功率微波武器是未来电子战中对付电子设备和武器系统的新一代电子战武器装备,是电子战武器系统及其技术一次新的革命。它不仅可以与雷达兼容构成一体化系统,实施低功率探测、跟踪目标,对目标进行干扰,还可以迅速提高功率,对目标实施硬杀伤摧毁,或者对目标的电子设备实施破坏,或对人员进行杀伤使之丧失战斗能力。 1.高功率微波武器的概念与原理 高功率微波(HPM)是指峰值功率超过100MW、频率在1 ~300GHz之间的微波。高功率微波武器(HPMW)是将高功率微波源产生的微波, 经高增益天线定向辐射,将微波能量会聚在窄波束内,以极高的强度照射目标, 杀伤人员和干扰、破坏现代武器系统的电子设备。 高功率微波武器的基本原理:初级能源(电能或化学能)经过能量转换装置(强流加速器或爆炸磁压缩换能器等)车拿变为高功率脉冲相对论电子束。在特殊设计的高功率微波器件内,电子束与电磁场相互作用,产生高功率电磁波。这种电磁波经低衰减定向装置变成高功率微波波束发射,到达目标表面后,经过“前门”

射频功率放大器(RF PA)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类 根据工作状态的不同,功率放大器分类如下:

传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成 放大器有不同类型,简化之,放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。

微波功率放大器发展概述

微波功率放大器发展概述 微波功率放大器主要分为真空和固态两种形式。基于真空器件的功率放大器,曾在军事装备的发展史上扮演过重要角色,而且由于其功率与效率的优势,现在仍广泛应用于雷达、通信、电子对抗等领域。后随着GaAs晶体管的问世,固态器件开始在低频段替代真空管,尤其是随着GaN,SiC等新材料的应用,固态器件的竞争力已大幅提高[1]。本文将对两种器件以及它们竞争与融合的产物——微波功率模块(MPM)的发展情况作一介绍与分析,以充分了解国际先进水平,也对促进国内技术的发展有所助益。 1. 真空放大器件 跟固态器件相比,真空器件的主要优点是工作频率高、频带宽、功率大、效率高,主要缺点是体积和质量均较大。真空器件主要包括行波管、磁控管和速调管,它们具有各自的优势,应用于不同的领域。其中,行波管主要优势为频带宽,速调管主要优势为功率大,磁控管主要优势为效率高。行波管应用最为广泛,因此本文主要以行波管为例介绍真空器件。 1.1 历史发展 真空电子器件的发展可追溯到二战期间。1963年,TWTA技术在设计变革方面取得了实质性进展,提高了射频输出的功率和效率,封装也更加紧凑。1973年,欧洲首个行波管放大器研制成功。然而,到了20世纪70年代中期,半导体器件异军突起,真空器件投入大幅减少,其发展遭遇极大困难。直到21世纪初,美国三军特设委员会详细讨论了功率器件的历史、现状和发展,指出真空器件和固态器件之间的平衡投资战略。2015年,美国先进计划研究局DARPA分别启动了INVEST,HAVOC计划,支持真空功率器件的发展和不断增长的军事系统需要,特别是毫米波及THz行波管[2-4]。当前真空器件已取得长足进步,在雷达、通信、电子战等系统中应用广泛。 1.2 研究与应用现状 随着技术的不断进步,现阶段行波管主要呈现以下特点。一是高频率、宽带、高效率的特点,可有效减小系统的体积、重量、功耗和热耗,在星载、弹载、机载等平台上适应性更强,从而在军事应用上优势突出。二是耐高温特性,使行波管的功率和相位随着温度的变化波动微小,对系统的环境控制要求大大降低。三是

功率放大器技术参数的测量(精)

功放技术参数的测 一?常用测试仪器 信号源:GOOD WILL INSTRUMENT 公司(固伟GFG-8015G 宁波中策电子有限公司X010A 毫伏表:GOOD WILL INSTRUMENT 公司(固伟GFG-417B 宁波中策电子有限公司DF2173B 示波器:IWATSU ELECTRIC 公司(日本SS-7802A 失真仪:宁波中策电子有限公司DF4121A 二.频率响应的测量 术语:增益限制的有效频率范围 是指在振幅允许的范围内功放系统能够重放的频率范围,以及在此范围内信号 的变化量,称为频率响应。 在该频率范围内,实际频响与所要求的频响的偏差不得超过规定限度

毫伏表(测量输出值号值) 信号源 功放 员载 示波器〔监测输岀信号波形) 1.将各仪器按上图所示方法连接(可不使用示波器,功放输出端接入一额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,从毫伏表读取电压值,使功放输出为额定输出电压。 并以此为电压参考点。 3.缓慢调节信号源上的频率旋钮,从功放规定的频率下限至频率上限,其输出电压变化范围不得超过±dB。 4.若连接示波器,看观测输出电压波形。 三?失真度的测量 理想的放大器应该是把输入的信号放大后,毫无改变的还原出来。但是由于各种原因经功放放大后的信号与输入信号相比较,往往产生了不同程度的畸变,这个畸变就是失真。用百分比表示,其数值越小越好。

失真仪 何童输些信号知巴 |世>|圆8荷丽 D a DCS 0 □ D D U D (! D o D 6 功放 II IP ”目【同目[舸CE4:「 负载 示波器(监测 输出信号波形1 1.将各仪器按上图所示方法连接,功放输出端接入额定负载。 2.由函数发生器输入1KHz正弦信号,调节电位器,使功放输出为额定电压。 3.对失真仪进行相对电平(0 dB校准。 4.测量失真度,读出并记录此测量值。 5.可使用示波器监测输出波形是否异常。 四?输入灵敏度的测量 输入灵敏度:功放在额定负载上,输出额定电压时的输入激励电压称为输入灵敏度。 毫伏表1毫伏表2(测量输入信号 (测量输出信号 信号源 口O ■ ? ?

功放技术参数概述

功率放大器技术指标概述放大器参数说明 工作频率范围(F): 指放大器满足各级指标的工作频率范围。放大器实际 的工作频率范围可能会大于定义的工作频率范围。 功率增益(G): 指放大器输出功率和输入功率的比值,单位常用 “dB”。 增益平坦度(ΔG): 指在一定温度下,在整个工作频率范围内,放大器增 益变化的范围。增益平坦度由下式表示(见图1): 图1 ΔG=±(Gmax-Gmin)/2dB ΔG:增益平坦度 G max:增益——频率扫频曲线的幅度最大值 G min:增益——频率扫频曲线的幅度最小值 噪声系数(NF): 噪声系数是指输入端信噪比与放大器输出端信噪比 的比值,单位常用“dB”。 噪声系数由下式表示:NF=10lg(输入端信噪比/输出 端信噪比) 在放大器的噪声系数比较低(例如NF<1)的情况下, 通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或 NF=T/T0+1 T0-绝对温度(290K) 噪声系数与噪声温度的换算表(见图2) 1分贝压缩点输出功率(P1dB): 放大器有一个线性动态范围,在这个范围内,放大器 的输出功率随输入功率线性增加。这种放大器称之为 三阶截点(IP3): 测量放大器的非线性特性,最简单的方法是测 量1dB压缩点功率电平P1dB。另一个颇为流行的 方法是利用两个相距5到10MHz的邻近信号, 当频率为f1和f2的这两个信号加到一个放大器 时,该放大器的输出不仅包含了这两个信号, 而且也包含了频率为mf1+nf2的互调分量(IM), 这里,称m+n为互调分量的阶数。在中等饱和 电平时,通常起支配作用的是最接近基音频率 的三阶分量(见图4)。 因为三阶项直到畸变十分严重的点都起着支配 作用,所以常用三阶截点(IP3)来表征互调畸 变(见图3)。三阶截点是描述放大器线性程度 的一个重要指标。三阶截点功率的典型值比P1dB 高10-12dB。IP3可以通过测量IM3得到,计算公 式为: IP3=P SCL+IM3/2; P SCL——单载波功率; 如三阶互调点已知,则基波与三阶互调抑 制比与三阶互调点的杂散电平可由下式估计: 基波与三阶互调抑制比=2[IP3-(P IN+G)] 三阶互调杂散电平=3(P IN+G)-2IP3 输入/输出驻波比(VSWR): 微波放大器通常设计或用于50Ω阻抗的微波系 统中,输入/输出驻波表示放大器输入端阻抗和 输出端阻抗与系统要求阻抗(50Ω)的匹配程 度。 用下式表示: VSWR = (1+|Γ|)/(1-|Γ|); 其中Γ= (Z-Z0)/(Z+Z0)

音频功率放大器概述

音频功率放大器概述 原文来源:https://www.doczj.com/doc/0b2183046.html, 音频功率放大器组成声音是传送信息的媒介,当物体振动时,其周围的空气质点也随之振动而成为声音。声音以声波的形式传播,声波所波及的范围称为声场。声波传到了人的耳朵,人便有了声音的感觉,不同的声音具有大小不同的音量、高低不同的音讽和发音体所特有的音色。 如果把声音作为振动信号来研究,则音量就是振动幅度的反映,音调是振动频率的反映;而音色由振动波形决定。入耳能敏锐地判断声音的这些要素,从而识别各种特定的音响。 不仅如此,人对声音还有方位感,根据两耳所听到声音的强度和时差,就能判断出各个声源的位置。只要重放的声音保持原来的音位,便会使听者获得身临其境的感觉。这种连音位也能反映出来的声音信号就叫做立体声,能把声音信号加以放大并如实地重放出来的电声设备称为音响系统。 (一)音响系统组成一套完整的音响系统应由音频信号源、音频功率放大器和音箱三大部分组成,它们之间的关系如图l—l—l所示,其中音频功率放大器是音响系统设备的核心。

由音频信号源输出的各种节目信号,经音频功率放大器加工并放大至足够的功率,去推动扬声器工作,然后由扬声器发出与音源相同但响亮得多的声音。https://www.doczj.com/doc/0b2183046.html, 当选择电源电路和音频功率放大电路,并保证元件质量良好、线路布局合理、安装调试正确,才有可能得到满意的音质。当然信号源的音质和扬声器的质量对重放声音也有直接影响,若信号源的音质不好,则重放的声音不可能优美动听。 https://www.doczj.com/doc/0b2183046.html, 扬声器是电声转换器件,若其性能不好,则重放的声音也不可能好听。另外扬声器重放出来的声音还要经过所在场所的空间混响才能送到听众的耳朵,所以听音场所的音响条件与音箱摆放的空间位置对音质也有影响,不能忽视。

射频功率放大器(RF PA)概述复习课程

射频功率放大器(R F P A)概述

基本概念 射频功率放大器(RF PA)是发射系统中的主要部分,其重要性不言而喻。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大(缓冲级、中间放大级、末级功率放大级)获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。在调制器产生射频信号后,射频已调信号就由RF PA将它放大到足够功率,经匹配网络,再由天线发射出去。 放大器的功能,即将输入的内容加以放大并输出。输入和输出的内容,我们称之为“信号”,往往表示为电压或功率。对于放大器这样一个“系统”来说,它的“贡献”就是将其所“吸收”的东西提升一定的水平,并向外界“输出”。如果放大器能够有好的性能,那么它就可以贡献更多,这才体现出它自身的“价值”。如果放大器存在着一定的问题,那么在开始工作或者工作了一段时间之后,不但不能再提供任何“贡献”,反而有可能出现一些不期然的“震荡”,这种“震荡”对于外界还是放大器自身,都是灾难性的。 射频功率放大器的主要技术指标是输出功率与效率,如何提高输出功率和效率,是射频功率放大器设计目标的核心。通常在射频功率放大器中,可以用LC谐振回路选出基频或某次谐波,实现不失真放大。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 分类

根据工作状态的不同,功率放大器分类如下: 传统线性功率放大器的工作频率很高,但相对频带较窄,射频功率放大器一般都采用选频网络作为负载回路。射频功率放大器可以按照电流导通角的不同,分为甲(A)、乙(B)、丙(C)三类工作状态。甲类放大器电流的导通角为360°,适用于小信号低功率放大,乙类放大器电流的导通角等于180°,丙类放大器电流的导通角则小于180°。乙类和丙类都适用于大功率工作状态,丙类工作状态的输出功率和效率是三种工作状态中最高的。射频功率放大器大多工作于丙类,但丙类放大器的电流波形失真太大,只能用于采用调谐回路作为负载谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然接近于正弦波形,失真很小。 开关型功率放大器(Switching Mode PA,SMPA),使电子器件工作于开关状态,常见的有丁(D)类放大器和戊(E)类放大器,丁类放大器的效率高于丙类放大器。SMPA将有源晶体管驱动为开关模式,晶体管的工作状态要么是开,要么是关,其电压和电流的时域波形不存在交叠现象,所以是直流功耗为零,理想的效率能达到100%。 传统线性功率放大器具有较高的增益和线性度但效率低,而开关型功率放大器具有很高的效率和高输出功率,但线性度差。具体见下表: 电路组成

相关主题
文本预览
相关文档 最新文档