当前位置:文档之家› 离散傅立叶变换及谱分析

离散傅立叶变换及谱分析

离散傅立叶变换及谱分析
离散傅立叶变换及谱分析

数字信号处理实验

实验二、离散傅立叶变换及谱分析

学院:信息工程学院

班级:电子101班

姓名:***

学号:******

一、实验目的

1.掌握离散傅里叶变换的计算机实现方法。

2.检验实序列傅里叶变换的性质。

3.掌握计算序列的循环卷积的方法。

4.学习用DFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT。

二、实验内容

1.实现序列的离散傅里叶变换并对结果进行分析。(自己选择序列,要求包括复序列,实序列,实偶序列,实奇序列,虚奇序列)

本例检验实序列的性质DFT[xec(n)]=Re[X(k)] DFT[xoc(n)]=Im[X(k)] (1)设 x(n)=10*(0.8).^n(0<=n<=10),将x(n)分解为共扼对称及共扼反对称部分

n=0:10;

x=10*(0.8).^n;

[xec,xoc]=circevod(x);

subplot(2,1,1);stem(n,xec);

title('Circular -even component')

xlabel('n');ylabel('xec(n)');axis([-0.5,10.5,-1,11])

subplot(2,1,2);stem(n,xoc);

title('Circular -odd component')

xlabel('n');ylabel('xoc(n)');axis([-0.5,10.5,-4,4])

figure(2)

X=dft(x,11);

Xec=dft(xec,11);

Xoc=dft(xoc,11);

subplot(2,2,1);stem(n,real(X));axis([-0.5,10.5,-5,50])

title('Real{DFT[x(n)]}');xlabel('k');

subplot(2,2,2);stem(n,imag(X));axis([-0.5,10.5,-20,20])

title('Imag{DFT[x(n)]}');xlabel('k');

subplot(2,2,3);stem(n,Xec);axis([-0.5,10.5,-5,50])

title('DFT[xec(n)]');xlabel('k');

subplot(2,2,4);stem(n,imag(Xoc));axis([-0.5,10.5,-20,20])

title('DFT[xoc(n)]');xlabel('k');

实验说明:

复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量,复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的反对称分量,复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的实数部分,复序列反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

(2)计算序列的循环卷积程序

X1=[1 3 5 7 9]

X2=[2 4 6 8 10]

N=8

if length(x1)>N

error('N must be >= the length of x1')

end

if length(x2)>N

error('N must be >= the length of x2')

end

x1=[x1 zeros(1,N-length(x1))];

x2=[x2 zeros(1,N-length(x2))];

m=[0:1:N-1];

x2=x2(mod(-m,N)+1);

H=zeros(N,N);

for n=1:1:N

H(n,:)=cirshftt(x2,n-1,N);

end

y=x1*H'

实验结果:

y =

92 10 28 60 110 148 160 142 (3)补零序列的离散傅立叶变换

序列)()(5n R n x ,写出序列的傅立叶变换程序和将原序列补零到20长序列的DFT 。 n=0:4;

x=[ones(1,5)];

k=0:999;w=(pi/500)*k;

X=x*(exp(-j*pi/500)).^(n'*k); Xe=abs(X);

subplot(3,2,1);stem(n,x);ylabel('x(n)');

subplot(3,2,2);plot(w/pi,Xe);ylabel('|X(ejw)|'); N=20;x=[ones(1,5),zeros(1,N-5)]; n=0:1:N-1; X=dft(x,N); magX=abs(X);

k=(0:length(magX)'-1)*N/length(magX);

subplot(3,2,3);stem(n,x);ylabel('x(n)'); subplot(3,2,4);stem(k,magX);

axis([0,20,0,5]);ylabel('|X(k)|');

(4)高密度谱和高分辨率谱之间的区别。 补零到40长: M=10; n=0:M-1;

x=2*cos(0.35*pi*n)+cos(0.5*pi*n); N=40;x=[x,zeros(1,N-10)];

Y=dft(x,N);

k1=0:1:N-1;w1=2*pi/N*k1;

subplot(2,1,2);stem(w1/pi,abs(Y));title('信号的频谱');

40个有效采样点:

M=40;

n=0:M-1;

x=2*cos(0.35*pi*n)+cos(0.5*pi*n);

subplot(2,1,1);stem(n,x);title('没有足够采样点的信号'); Y=dft(x,M);

k1=0:M-1;w1=2*pi/M*k1;

subplot(2,1,2);stem(w1/pi,abs(Y));title('信号的频谱');

实验说明:

高密度是在原有序列后插0,高分辨谱是增大采样点,高密度谱呈现多谱线性,补的0越多,谱线越密集。高分辨率谱在取样点达到一定程度后,没有密集度。

三、实验心得:

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

离散时间傅里叶变换.

第3章 离散时间傅里叶变换 在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。本章将介绍离散时间系统的频域分析方法。 3.1 非周期序列的傅里叶变换及性质 3.1.1 非周期序列傅里叶变换 1.定义 一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为: 正变换: ∑∞ -∞ =ω-ω = =n n j j e n x e X n x DTFT )()()]([ (3-1-1) 反变换: ? π π -ωωω-ωπ = =d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2) 记为: )()(ω?→←j F e X n x 当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。 [例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得 ωω=--=--== = ω-ω-ωω-ω-ωω-ω -ω-ω-=ω-∞ -∞ =ω ∑∑ 2 1sin 3sin )() (11)()(2 521 212133365 6j j j j j j j j j n j n n j n j e e e e e e e e e e e n R e X 2.离散时间序列傅里叶变换存在的条件: 图3-1

离散信号的傅里叶变换(MATLAB实验)

离散信号的变换(MATLAB 实验) 一、实验目的 掌握用Z 变换判断离散系统的稳定与否的方法,掌握离散傅立叶变换及其基本性质和特点,了解快速傅立叶变换。 二、实验内容 1、已经系统函数为 5147.13418.217.098.2250 5)(2342-++--+=z z z z z z Z H (1) 画出零极点分布图,判断系统是否稳定; (2)检查系统是否稳定; (3) 如果系统稳定,求出系统对于u(n)的稳态输出和稳定时间b=[0,0,1,5,-50];a=[2,-2.98,0.17,2.3418,-1.5147]; subplot(2,1,1);zplane(b,a);title('零极点分布图'); z=roots(a); magz=abs(z) magz = 0.9000 0.9220 0.9220 0.9900 n=[0:1000]; x=stepseq(0,0,1000); s=filter(b,a,x); subplot(2,1,2);stem(n,s);title('稳态输出'); (1)因为极点都在单位园内,所以系统是稳定的。 (2)因为根的幅值(magz )都小于1,所以这个系统是稳定的。 (3)稳定时间为570。 2、综合运用上述命令,完成下列任务。 (1) 已知)(n x 是一个6点序列: ???≤≤=其它,050,1)(n n x

计算该序列的离散时间傅立叶变换,并绘出它们的幅度和相位。 要求:离散时间傅立叶变换在[-2π,2π]之间的两个周期内取401个等分频率上进行数值求值。 n=0:5;x=ones(1,6); k=-200:200;w=(pi/100)*k; X=x*(exp(-j*pi/100)).^(n'*k); magX=abs(X);angX=angle(X); subplot(2,1,1);plot(w/pi,magX);grid;title('幅度'); subplot(2,1,2);plot(w/pi,angX);grid;title('相位'); (2) 已知下列序列: a. ,1000),52.0cos()48.0cos()(≤≤+=n n n n x ππ; b .)4sin()(πn n x =是一个N =32的有限序列; 试绘制)(n x 及它的离散傅立叶变换 )(k X 的图像。 a . n=[0:1:100];x=cos(0.48*pi*n)+cos(0.52*pi*n); subplot(2,1,1);plot(n,x);title('x(n)的图像'); X=dft(x,101); magX=abs(X); subplot(2,1,2);plot(n,magX);title('丨X(k)丨的图像');

实验五 傅立叶变换与频率域滤波

实验五傅立叶变换与频率域滤波 一、实验目的 1.理解傅立叶变换; 2.熟悉MATLAB中各种傅立叶变换相关的函数; 3.掌握频域滤波的步骤以及MATLAB的实现方法; 4.理解频域滤波器与空域滤波器的关系。 二、实验内容及步骤 1、傅立叶变换及傅立叶反变换 (1)傅立叶变换相关函数 MATLAB提供了几个和傅立叶变换相关的函数。其说明如下: F=fft2(f); 二维傅立叶变换 real(F); 傅立叶变换的实部 imag(F); 傅立叶变换的虚部 abs(F); 获得傅立叶频谱 fftshift(F); 将变换的原点移至频率矩形的中心 ifft2(F); 二维傅立叶反变换 iffshift(F); 反中心平移 (2)傅立叶频谱 傅立叶频谱反映了图像的频率成分。幅值谱的能量往往集中于中低频部分,并且中低频部分的能量反映了图像的实体。图像的噪声往往集中于高频部分。 下面的例子对课本中123页的图Fig4.03(a).jpg进行傅立叶变换,得到傅立叶频谱。 例:x=imread('Fig4.03(a).jpg'); F=fft2(x); %二维傅立叶变换 FP=sqrt(real(F).^2+imag(F).^2); %计算傅立叶频谱,或者使用abs()函数 imshow(uint8(FP)) %显示傅立叶频谱,直流成分分布在四个边角 figure(2); imshow(uint8(fftshift(FP))) % 中心平移的频谱图

思考题1:对课本125页的图Fig4.04(a).jpg进行傅立叶变换,得到傅立 叶频谱,为清楚地显示该谱,将其进行对数变换处理,增强其灰度细节。结果类似于图5_1。 图5_1 Fig4.04(a)的傅立叶谱 x=imread('Fig4.04(a).jpg'); F=fft2(x); FP=sqrt(real(F).^2+imag(F).^2); Image=log(1+double(fftshift(FP))); imshow(x); figure(2);imshow(Image,[]); (3)傅立叶变换对

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换 摘要 本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。 1. 离散时间傅里叶变换 1.1离散时间傅里叶变换及其逆变换 离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{n j e ω-}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展开,为离散时间信号和线性时不变系统提供了一种频域表示,其中ω是实频率变量。时间序列x[n]的离散时间傅里叶变换)(ωj e X 定义如下: ∑∞ -∞ =-= n n j j e n x e X ωω ][)( (1.1) 通常)(ωj e X 是实变量ω的复数函数同时也是周期为π2的周期函数,并且)(ωj e X 的幅度函数和实部是ω的偶函数,而其相位函数和虚部是ω的奇函数。这是由于: ) ()()(tan ) ()()() (sin )()()(cos )()(2 22 ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X = +=== (1.2) 由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从)(ωj e X 中算出: ωπ ωπ πω d e e X n x n j j )(21 ][?- = (1.3)

傅里叶变换 讲解最通俗易懂的一片

【纯技术帖】为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶 变换?来源:胡姬的日志 写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,内容非我所原创。在此 向多位原创作者致敬!!! 一、傅立叶变换的由来 关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解,最近,我偶尔从网上看到一个关于数字信号处理的电子书籍,是一个叫Steven W. Smith, Ph.D.外国人写的,写得 非常浅显,里面有七章由浅入深地专门讲述关于离散信号的傅立叶变换,虽然是英文文档,我还是硬着头皮看完了有关傅立叶变换的有关内容,看了有茅塞顿开的感觉,在此把我从中得到的理解拿出来跟大家分享,希望很多被傅立叶变换迷惑的朋友能够得到一点启发,这电子书籍是免费的,有兴趣的朋友也可以从网上下载下来看一下,URL地址是: https://www.doczj.com/doc/0b12958185.html,/pdfbook.htm 要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。 二、傅立叶变换的提出 让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的 名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角 波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,

图像傅里叶变换详解

图像傅里叶变换 冈萨雷斯版<图像处理>里面的解释非常形象:一个恰当的比喻是将傅里叶变换比作一个玻璃棱镜。棱镜是可以将光分解为不同颜色的物理仪器,每个成分的颜色由波长(或频率)来决定。傅里叶变换可以看作是数学上的棱镜,将函数基于频率分解为不同的成分。当我们考虑光时,讨论它的光谱或频率谱。同样, 傅立叶变换使我们能通过频率成分来分析一个函数。 Fourier theory讲的就是:任何信号(如图像信号)都可以表示成一系列正弦信号的叠加,在图像领域就是将图像brightness variation 作为正弦变量。比如下图的正弦模式可在单傅里叶中由三个分量编码:频率f、幅值A、相位γ这 三个value可以描述正弦图像中的所有信息。1.frequency frequency在空间域上可由亮度调节,例如左图的frequency比右图的frequency 低…… 2.幅值magnitude(amplitude)sin函数的幅值用于描述对比度,或者说是图像中最明和最暗的峰值之间的差。(一个负幅值表示一个对比逆转,即明暗交换。) 3.相位表示相对于原始波形,这个波形的偏移量(左or右)。=================================================================一个傅里叶变换编码是一系列正弦曲线的编码,他们的频率从0开始(即没有调整,相位为0,平均亮度处),到尼奎斯特频率(即数字图像中可被编码的最高频率,它和像素大小、resolution有关)。傅里叶变换同时将图像中所有频率进行编码:一个只包含一个频率f1的信号在频谱上横坐标f为f1的点处绘制一个单峰值,峰值高度等于对应的振幅amplitude,或者正弦曲线信号的高度。如下图所示。

离散序列傅里叶变换习题教学教材

1、 2、 11、 试求以下各序列的时间傅里叶变换(1)1()(3)x n n δ=- (2)211 ()(1)()(1)22 x n n n n δδδ= +++- (3)3()(),01n x n a u n a =<< (4)4()(3)(4)x n u n u n =+-- 12、 设()j X e ω 是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义与性 质,求下列各序列的离散时间傅里叶变换。 (1)()()(1)g n x n x n =-- (2)()*()g n x n = (3)()*()g n x n =- (4)()(2)g n x n = (5)()()g n nx n = (6)2 ()()g n x n = (7)(), ()2 0, n x n g n n ??=???为偶数为奇数 13、 试求以下各序列的时间傅里叶变换 (1)1()(),||1n x n a u n a =< (2)2()(),||1n x n a u n a =-> (3)||3, ||()0, n a n M x n n ?≤=? ?为其他 (4)4()(3),||1n x n a u n a =+< (5)50 1 ()()(3)4n m x n n m δ∞ == -∑ (6)6sin(/3)sin(/4)()n n x n n n ππππ???? =????????

14、 设()x n 是一有限长序列,已知 1,2,0,3,2,1,0,1,2,3,4,5()0, n x n n --=?=? ?为其他 它的离散傅里叶变换为()j X e ω 。不具体计算()j X e ω ,试直接确定下列表达式的值。 (1)0 ()j X e (2)()j X e π (3)()j X e d π ωπ ω- ? (4) 2|()|j X e d π ω πω- ? (5)2 ()| |j dX e d d ωπ πωω -? 15、 试求以下各序列的时间傅里叶变换 (1)11,||()0, n N x n n ≤?=? ?为其他 (2)21||/,||()0, n N n N x n n -≤?=? ?为其他 (3)3cos(),||()20, n n N x n N n π?≤? =???为其他 6、证明:若()j X e ω 是序列()x n 的离散时间傅里叶变换,而 1(), ()0, n n x x n k k ??=???为整数 其他 则1()()j j X e X e ωω =。 7、设序列()()x n u n =,证明()x n 的离散时间傅里叶变换为 1 ()(2)1j j l X e l e ω ω πδωπ∞ -=-∞ =+--∑ 8、如图所示四个序列,已知序列1()x n 的离散时间傅里叶变换为1()j X e ω,试用1()j X e ω 表示其

傅里叶变换公式

连续时间周期信号傅里叶级数:?= T dt t x T a )(1 ??--= = T t T jk T t jk k dt e t x T dt e t x T a π ω2)(1 )(1 离散时间周期信号傅里叶级数:[][]()∑∑= - =-= = N n n N jk N n n jkw k e n x N e n x N a /21 1 0π 连续时间非周期信号的傅里叶变换:()? ∞∞ --=dt e t x jw X jwt )( 连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ? ∞ ∞ -=π 21 )( 连续时间周期信号傅里叶变换:∑+∞ -∞ =??? ? ? ? -=k k k w a jw X T 22)(πδπ 连续时间周期信号傅里叶反变换:()dw e w w t x jwt ? ∞ ∞ --=0221 )( πδπ 离散时间非周期信号傅里叶变换:∑∞ -∞ =-= n n j e n x e X ωω j ][)( 离散时间非周期信号傅里叶反变换:? = π 2d e )(e π 21][ωωωn j j X n x 离散时间周期信号傅里叶变换:∑+∞ -∞ =-= k k k a X )(π2)e (0 j ωωδω 离散时间周期信号傅里叶反变换:[]ωω ωδωd e n n j ?--=π 20 πl)2(π2π 21][x 拉普拉斯变换:()dt e t s X st -∞ ∞ -? =)(x 拉普拉斯反变换:()()s j 21 t x j j d e s X st ?∞ +∞ -= σσ π Z 变换:∑∞ -∞ =-=n n z n x X ][)z ( Z 反变换: ??-== z z z X r z X n x n n d )(πj 21d )e ()(π21][1j π2ωω

MATLAB的离散傅里叶变换的仿真

应用MATLAB对信号进行频谱分析及滤波 设计目的 要求学生会用MATLAB语言进行编程,绘出所求波形,并且运用FFT求对连续信号进行分析。 一、设计要求 1、用Matlab产生正弦波,矩形波,并显示各自的时域波形图; 2、进行FFT变换,显示各自频谱图,其中采样率、频率、数据长度自选,要求注明; 3、绘制三种信号的均方根图谱; 4、用IFFT回复信号,并显示恢复的正弦信号时域波形图。 二、系统原理 用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行频谱分析的信号是模拟信号和时域离散信号。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现频率分辨率是2π/N。 x(n)是一个长度为M的有限长序列,则x(n)的N点离散傅立叶变换为: N?1?2?kn)(nx j?W W NN e?0?n N X(k)=DFT[x(n)]=,k=0,1,...,N-1N?11?kn?)(WXk N N0?n x(n) =IDFT[X(k)]= 逆变换:,k=0,1,...,N-1 但FFT是一种比DFT更加快速的一种算法,提高了DFT的运算速率,为数字信号处理技术应用于各种信号处理创造了条件,大大提高了数字信号处理技术的发展。本实验就是采用FFT,IFFT对信号进行谱分析。 三、程序设计 fs=input('please input the fs:');%设定采样频率 N=input('please input the N:');%设定数据长度 t=0:0.001:1; f=100;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f*t); figure(1); subplot(211); plot(t,x);%作正弦信号的时域波形 axis([0,0.1,-1,1]); title('正弦信号时域波形'); z=square(50*t); subplot(212) plot(t,z) axis([0,1,-2,2]); title('方波信号时域波形');grid;

实验2 离散时间傅里叶变换

电 子 科 技 大 学 实 验 报 告 学生姓名:项阳 学 号: 2010231060011 指导教师:邓建 一、实验项目名称:离散时间傅里叶变换 二、实验目的: 熟悉序列的傅立叶变换、傅立叶变换的性质、连续信号经理想采样后进行重建,加深对时域采样定理的理解。 三、实验内容: 1. 求下列序列的离散时间傅里叶变换 (a) ()(0.5)()n x n u n = (b) (){1,2,3,4,5}x n = 2. 设/3()(0.9),010,j n x n e n π=≤≤画出()j X e ω并观察其周期性。 3. 设()(0.9),1010,n x n n =--≤≤画出()j X e ω并观察其共轭对称性。 4. 验证离散时间傅里叶变换的线性、时移、频移、反转(翻褶)性质。 5. 已知连续时间信号为t a e t x 1000)(-=,求: (a) )(t x a 的傅里叶变换)(Ωj X a ; (b) 采样频率为5000Hz ,绘出1()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论; (c) 采样频率为1000Hz ,绘出2()j X e ω,用理想内插函数sinc()x 重建)(t x a ,并对结果进行讨论。 四、实验原理:

1. 离散时间傅里叶变换(DTFT)的定义: 2.周期性:()j X e ?是周期为2π的函数 (2)()()j j X e X e ??π+= 3.对称性:对于实值序列()x n ,()j X e ?是共轭对称函数。 *()() Re[()]Re[()] Im[()]Im[()]()() ()() j j j j j j j j j j X e X e X e X e X e X e X e X e X e X e ??????????-----===-=∠=-∠ 4.线性:对于任何12,,(),()x n x n αβ,有 1212[()()][()][()]F x n x n F x n F x n αβαβ+=+ 5.时移 [()][()]()j k j j k F x n k F x n e X e e ωωω---== 6.频移 00()[()]()j n j F x n e X e ωωω-= 7.反转(翻褶) [()]()j F x n X e ω--= 五、实验器材(设备、元器件): PC 机、Windows XP 、MatLab 7.1 六、实验步骤: 本实验要求学生运用MATLAB 编程产生一些基本的离散时间信号,并通过MATLAB 的几种绘图指令画出这些图形,以加深对相关教学内容的理解,同时也通过这些简单的函数练习了MATLAB 的使用。 [()]()()(), ()j j jn z e n n F x n X e X z x n e x n ωωω∞-==-∞∞=-∞===<∞∑∑收敛条件为:

离散傅里叶变换(DFT)试题

第一章 离散傅里叶变换(DFT ) 填空题 (1) 某序列的DFT 表达式为 ∑-==1 )()(N n kn M W n x k X ,由此可以看出,该序列时域 的长 度为 ,变换后数字频域上相邻两个频率样点之间的间隔是 。 解:N ; M π 2 (2)某序列DFT 的表达式是 ∑-==1 0)()(N k kl M W k x l X ,由此可看出,该序列的时域长度 是 ,变换后数字频域上相邻两个频率样点之间隔是 。 解: N M π 2 (3)如果希望某信号序列的离散谱是实偶的,那么该时域序列应满足条件 。 解:纯实数、偶对称 (4)线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统 的极点为 ;系统的稳定性为 。系统单位冲激响应)(n h 的初值为 ;终值 )(∞h 。 解: 2,2 1 21-=- =z z ;不稳定 ;4)0(=h ;不存在 (5) 采样频率为Hz F s 的数字系统中,系统函数表达式中1 -z 代表的物理意义是 ,其中时域 数字序列)(n x 的序号 n 代表的样值实际位置是 ;)(n x 的N 点DFT )k X (中,序号k 代表的样值 实际位置又是 。 解:延时一个采样周期F T 1=,F n nT =,k N k πω2= (6)已知 }{}{4,3,2,1,0;0,1,1,0,1][,4,3,2,1,0;1,2,3,2,1][=-===k n h k n x ,则][n x 和 ][n h 的5点循环卷积为 。 解:{}]3[]2[][][][][---+?=?k k k k x k h k x δδδ {}4,3,2,1,0;2,3,3,1,0])3[(])2[(][55==---+=k k x k x k x (7)已知}{}{3,2,1,0;1,1,2,4][,3,2,1,0;2,0,2,3][=--=== k n h k n x 则][][n h n x 和的 4点循环卷积为 。

离散傅里叶变换

第三章离散傅里叶变换 离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。 § 3-1 引言 一.DFT是重要的变换 1.分析有限长序列的有用工具。 2.在信号处理的理论上有重要意义。 3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。 二.DFT是现代信号处理桥梁 DFT要解决两个问题: 一是离散与量化, 二是快速运算。 傅氏变换 § 3-2 傅氏变换的几种可能形式 一.连续时间、连续频率的傅氏变换-傅氏变换

对称性: 时域连续,则频域非周期。 反之亦然。 二.连续时间、离散频率傅里叶变换-傅氏级数 时域信号 频域信号 连续的 非周期的 非周期的 连续的 t ? ∞ ∞ -Ω-= Ωdt e t x j X t j )()(:? ∞ ∞ -ΩΩ Ω= d e j X t x t j )(21 )(:π 反

*时域周期为Tp, 频域谱线间隔为2π/Tp 三.离散时间、连续频率的傅氏变换 --序列的傅氏变换 p T 0= Ω时域信号 频域信号 连续的 周期的 非周期的 离散的 ? -Ω-= Ω2 /2 /00)(1 )(:p p T T t jk p dt e t x T jk X 正∑ ∞ -∞ =ΩΩ= k t jk e jk X t x 0)()(:0反

傅里叶变换

傅里叶变换及滤波器的设计 图像经过傅里叶变换之后得到的是图像的频域,也就是频率成分。这个频率成分表示的意义是相邻像素之间的变化,也就是说图像在空间中变化越大,他对应在频域上的数值越大。图像经过傅里叶变换,可以提取图像的轮廓或者是边界。 傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图。 图像傅里叶变换的物理意义 将图像的灰度的灰度分布函数变换为图像的频率分布函数,傅里叶逆变换是将图像的频率函数变换为灰度分布函数。 傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。 图像的傅里叶变换的过程 令),(y x f 表示一副图像大小为N M ?的图像,其中1.3,2,1,0-=M x , 1.3,2,1,0-=N y ,),(y x f 的二维离散傅里叶变换可用下式表示: )//(2101 0),(),(N vy M ux j M x N y e y x f v u F +--=-=∑∑=π ),(v u R 为),(v u F 的实部,),(v u I 为其虚部。

连续时间傅立叶变换与离散时间傅里叶变换之间的关系

连续时间傅立叶变换与离散时间傅里叶变换之间的关系 对于连续限带(B )的时间信号x (t),在满足奈奎斯特抽样定理的条件下进行抽样(抽样频率f s =1/T s = 2B'>2B ),其样点为x n =x (nT s )。可以由样点序列进行内插来恢复原始信号x (t): ()()()sin 2')s n x t x nT c B t n = -∑ (1) 证明: 抽样采用理想冲击脉冲串:()()s T s t t nT δδ= -∑ ()()()s s T x t x t t δ= ()()s s n x nT t nT δ= -∑ (2) 其中2B'=1/T s 。由傅里叶变换的频域卷积性质,理想抽样信号x s (t)的傅里叶变换为: 1()()s k s s k X f X f f T T δ?? =* - ??? ∑ (3) 其中*表示连续的卷积运算。于是得到 ()1s k s s k X f X f T T ??= - ?? ?∑ s k s k f X f T ?? =- ?? ?∑ (4) 即理想抽样信号在频域是原信号x (t)傅里叶变换(频谱密度)的周期性位移,周 期为1/T s 。其中更详细的原理请参看经典课本:奥本海姆(《信号与系统》)/樊昌信先生(《通信原理》)/周炯盘先生(《通信原理》)。本文目的是架起连续时间傅里叶变换和离散时间傅里叶变换的桥梁,这在很多课本中都是省略掉的;对抽样定理不再赘述。 在频域k=0处对抽样信号进行理想低通滤波,滤波器带宽为B'>B 。理想低通滤波器的频率响应为矩形窗函数H(f)=( )2' f B ∏,它对应的时域单位冲激响应函数

参考文献(第三章离散时间信号的傅里叶变换)

参考文献(第三章离散时间信号的傅里叶变换) (来自:胡广书, 数字信号处理导论. 北京: 清华大学出版社, 2005年第1版, 2010年1月第6次印刷.) [1] Oppenheim A V, Schafer R. Discrete-time signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [2] Oppenheim A V, Willsky A S, Young I t. Signals and systems. Englewood Cliffs, NJ: Prentice-Hall, 1983. [3] Bracewell R N. The Fourier transform and its applications (2nd ed.). New York: McGraw-Hill, 1986. [4] Proakis J G, Manolakis D G. Introduction to digital signal processing. New York: Macmillan publishing company, 1988. [5] Roberts R A, Mullis C T. Digital signal processing. Reading, MA: Addison-Wesley publishing company, 1987. [6] Sophocles J G. Introduction to signal processing. Prentice-Hall, 1996; 清华大学出版社, 1999(影印). [7] Brigham E O. The fast Fourier transform and its applications. Englewood Cliffs, NJ: Prentice-Hall, 1988. [8] Papoulis A. Signal analysis. New York: McGraw-Hall, 1977. [9] Marple S L. Digital spectral analysis with applications. Englewood Cliffs, NJ: Prentice-Hall, 1987. [10] Dudgeon D E, Mersereau R M. Mulidimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1983. [11] Lim J S. Two-dimensional digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. [12] Sanjit K. Digital signal processing: A computer-based approach (2nd ed.). New York: McGraw-Hill, 2001. [13] 郑君里等. 信号与系统. 北京: 人民教育出版社, 1981. [14] 胡广书. 数字信号处理----理论、算法与实现(第二版). 清华大学出版社, 2003.

离散傅里叶变换和快速傅里叶变换

实验报告 课程名称:信号分析与处理 指导老师 成绩: 实验名称:离散傅里叶变换和快速傅里叶变换 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 掌握DFT 的原理和实现 2. 掌握FFT 的原理和实现,掌握用FFT 对连续信号和离散信号进行谱分析的方法。 二、实验内容和原理 2.1 DTFT 和DFT 序列x (n )的离散事件傅里叶变换(DTFT )表示为:n j n j e n x e X Ω-∞ -∞ =Ω ∑= )()( , 如果x (n )为因果有限长序列,n =0,1,...,N-1,则x (n )的DTFT 表示为:n j N n j e n x e X Ω--=Ω ∑=1 )()( , x(n)的离散傅里叶变换(DFT )表达式为:)1,...,1,0()()(21 -== --=∑N k e n x k X nk N j N n π , 序列的N 点DFT 是DTFT 在 [0,2π]上的N 点等间隔采样,采样间隔为2π/N 。通过DFT ,可以完成由一组有限个信号采样值x (n )直接计算得到一组有限个频谱采样值X (k )。X (k )的幅度谱为)()()(22k X k X k X I R +=,X R (k)和X I (k)分别为X(k)的实部和虚部。X (k )的相位谱 为) () (arctan )(k X k X k R I =?。

离散傅里叶反变换(IDFT )定义为)1,...,1,0()(1 )(21 -== ∑-=N n e k X N n x nk N j N n π 。 2.2 FFT 快速傅里叶变换(FFT )是DFT 的快速算法,它减少了DFT 的运算量,使数字信号的处理速度大大提高。 三、主要仪器设备 PC 一台,matlab 软件 四、实验内容 4.1第一题 求有限长离散时间信号x (n )的离散时间..傅里叶变换(DTFT )X (e j Ω )并绘图。 (1)已知?? ?≤≤-=其他 0221)(n n x ;(2)已知1002 )(≤≤=n n x n 。 4.1.1理论分析 1) 由DTFT 计算式, ()25 2.5 2.52 0.50.52 e 1e e e sin(2.5) ()()e e 1e e e sin(0.5) j j j j j n j n j j j n n X x n Ω-ΩΩ-Ω+∞ -Ω-Ω-Ω Ω-Ω=-∞ =---ΩΩ= = = == --Ω∑∑ X (Ω)是实数,可以直接作出它的图像。

离散序列傅里叶变换习题

1、 试求以下各序列的时间傅里叶变换 (1)1()(3)x n n δ=- (2)211 ()(1)()(1)22 x n n n n δδδ= +++- (3)3()(),01n x n a u n a =<< (4)4()(3)(4)x n u n u n =+-- 2、 设()j X e ω 是序列()x n 的离散时间傅里叶变换,利用离散时间傅里叶变换的定义与性质,求 下列各序列的离散时间傅里叶变换。 (1)()()(1)g n x n x n =-- (2)()*()g n x n = (3)()*()g n x n =- (4)()(2)g n x n = (5)()()g n nx n = (6)2()()g n x n = (7)(), ()2 0, n x n g n n ??=???为偶数为奇数 3、 试求以下各序列的时间傅里叶变换 (1)1()(),||1n x n a u n a =< (2)2()(),||1n x n a u n a =-> (3)||3, ||()0, n a n M x n n ?≤=? ?为其他 (4)4()(3),||1n x n a u n a =+< (5)50 1()()(3)4n m x n n m δ∞ == -∑ (6)6sin(/3)sin(/4)()n n x n n n ππππ???? =????????

4、 设()x n 是一有限长序列,已知 1,2,0,3,2,1,0,1,2,3,4,5()0, n x n n --=?=? ?为其他 它的离散傅里叶变换为()j X e ω 。不具体计算()j X e ω ,试直接确定下列表达式的值。 (1)0 ()j X e (2)()j X e π (3)()j X e d π ωπ ω- ? (4) 2|()|j X e d π ωπ ω- ? (5)2 ()| |j dX e d d ωπ πωω -? 5、 试求以下各序列的时间傅里叶变换 (1)11,||()0, n N x n n ≤?=? ?为其他 (2)21||/,||()0, n N n N x n n -≤?=? ?为其他 (3)3cos( ),||()20, n n N x n N n π? ≤?=???为其他 6、证明:若()j X e ω 是序列()x n 的离散时间傅里叶变换,而 1(), ()0, n n x x n k k ??=???为整数 其他 则1()()j j X e X e ωω =。 7、设序列()()x n u n =,证明()x n 的离散时间傅里叶变换为 1 ()(2)1j j l X e l e ω ωπδωπ∞ -=-∞ =+--∑ 8、如图所示四个序列,已知序列1()x n 的离散时间傅里叶变换为1()j X e ω,试用1()j X e ω 表示其 他序列的离散时间傅里叶变换。

傅里叶变换算法详细介绍

傅里叶变换算法详细介绍

从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 /**************************************************** ***********************************************/ 这一片的傅里叶变换算法,讲解透彻,希望对大家会有所帮助。感谢原作者们(July、dznlong)的精心编写。 /**************************************************** **********************************************/

前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科)

相关主题
文本预览
相关文档 最新文档