当前位置:文档之家› 工程结构动力分析小论文

工程结构动力分析小论文

工程结构动力分析小论文
工程结构动力分析小论文

薄壁管件的屈曲分析

摘要:本文针对薄壁件的失稳问题,采用线性特征值屈曲分析法和非线性屈曲分析法,借助ANSYS有限元商业软件对薄壁圆管进行模拟计算。特征值分析可以确定临界载荷、屈曲模态,特征值屈曲分析法得到的临界载荷作为非线性屈曲分析分析的初步缺陷载荷,接着进行非线性分析,得到结构完整的稳定性能。将两种结果进行对比讨论,可知非线性分析的结论更切合实际。

关键词:结构屈曲,ANSYS软件,特征值分析,薄壁圆管,

1.引言

薄壁钢材具有高强度、轻质、力学性能优良的特点,是一种良好的结构材料。但是实际工程结构中薄壁钢材的截面轮廓尺寸很小,构件细长,如果其在工艺上处理不当,当受到各种载荷时容易发生局部失稳或整体破坏,给人民的生命财产造成不可估量的损失,所以薄壁结构的稳定性问题成为工程设计人员关心的焦点。所谓失稳,就是当载荷仅有微量增加时,应变增长显著。比如圆筒受到环向载荷,其压缩应力尚未达到材料的屈服点时,就突然失去自身原来的形状被压扁或产生褶皱,这种在外力作用下结构突然失去原有形状的现象叫失稳,也称为屈曲。本文针对工程上常采用的薄壁管件的稳定性问题,借助有限元软件,用线性和非线性的分析方法计算其屈曲时的临界载荷。圆筒形构件的失稳分为整体失稳和局部失稳,其中整体失稳又分为侧向失稳和轴向失稳。

图1-1侧向失稳图1-2轴向失稳

1

22. 力学建模

预测结构发生屈曲时的临界载荷和屈曲后的形状通常的方法有两种,即特征值分析和非线性屈曲分析,但是特征值分析是基于材料完全线性无缺陷的,所以得出的结果与实际有较大差距,因此工程直接运用很少,但是它也是有意义的,一般取其第一阶模态作为非线性分析的初始扰动载荷的依据。用特征值分析得到的是屈曲上限,而用非线性分析得到的是屈曲下限,如图所示。

图2-1 特征值屈曲分析示意图

下面简单介绍特征值分析的理论知识。

设在单位外载荷作用下结构的应力刚度矩阵为[]K σ,那么[]K σλ(λ为载荷乘子)就代表另一强度下的应力刚度矩阵,在线性条件下,它们均与位移函数无关。如果基准状态下的位移矩阵[]D 加上虚位移矩阵[]D —

,而作用的载荷[]R 保持

不变,那么,为了使状态[]D 和_D D ??+????保持平衡状态,必须满足: [][][][]()K K D R σλ+=和[][][]_)K K D D R σλ??++=????

( 将两个方程相减得到:[][]_)0K K D σλ??+=????

(,此即为经典的特征值问题,由[][]det()0K K σλ+=可得到特征值,其中最小的特征值就是临界载荷。

式中的λ是特征值, D ??????

—是位移特征向量,用λ乘以施加的载荷即得到临界载荷cr P ,D ??????

—是屈曲形状。

3非线性屈曲分析考虑了屈曲前变形的影响,可以更准确地确定结构发生屈曲时的极限载荷,它也是大变形分析的一种应用,基本原理就是通过逐步加载的静力分析方式去寻找临界载荷水平,在该载荷下结构开始失稳屈曲。其有限元基本格式为:

[][][]_)l nol K K D R ??+=????(

[][][][])l nol K K u P +?=?( 式中[]l K 为线弹性刚度矩阵,[]nol K 为非线性刚度矩阵,在非线性计算中与

结构的应力和位移有关,[]u ?为位移向量增量,[]P ?为节点载荷增量。 求解该方程需要用迭代法。目前有两种迭代方法:完全NR 法和经过修正的NR 法,前者是在每次平衡迭代时都要修改一次刚度矩阵,计算量很大;而后者在经过修正后每次迭代时都修正切线刚度矩阵,而在迭代过程中保持不变。ANSYS 中还存在初始刚度法,不同的方法对于不同的问题其计算速度和收敛速度会有很大差异,并且各自有其适用范围,好在ANSYS 提供了自动选择的方式帮助用户。

完全NR 法 修正的NR 法

3. 数值仿真

工程上都是采用商业有限元软件提前分析结构的屈曲行为,为优化设计提供参考依据。本文采用ANSYS 有限元软件对薄壁圆管进行屈曲分析,其中该软件的屈曲分析有特定的模块,运行时必须遵循约定的步骤。

特征值屈曲分析有五个步骤,分别是建立模型、获得静力解、获得特征值屈曲解、拓展结果、查看结果。其中注意的是在做第二步时必须激活预应力选项,因为特征值分析需要通过首次运算得到的静力解来计算应力刚度矩阵。一般施加单位载荷即可,这样得到的特征值就是屈曲临界载荷。提取特征值时,ANSYS

4供了两种算法:子空间迭代法(subspace 法)和分块的兰索斯法(block-lanczos 法)。一般只提取第一节特征值。

子空间迭代法主要是由“同时反迭代法”和“R-R 分析法”有机结合而成,其基本思想是,选择m 个线性无关的初始向量,而后相继使用同时反迭代法和R-R 法进行迭代,求得系统前m 阶特征解的近似值。其中同时反迭代法的作用是使m 个迭代向量所张的子空间m V 向前m 阶特征向量所张子空间m E 逼近,R-R 法

的作用是使迭代向量正交化,并且当m V 很接近于m E 时,用它就可求得较精确的

前m 阶特征解。

Lanczos 法本质上也是向量反迭代法和R-R 法结合的一种方法,其基本思想是选择一个初始向量,通过多次反迭代,正交化和模规范化处理,形成m 个Lanczos 向量,而正交化和模规范化系数形成一个三角形矩阵,这个三角形矩阵的特征解与原广义特征问题的前若干阶特征解有一定的关系,利用此关系,就求得了原广义特征问题的前若干阶特征解。

非线性屈曲分析是在大变形效应下所作的一种静力分析,该分析过程亦可同时考虑材料的塑性行为。该分析过程一直进行到结构的极限载荷为止,其基本步骤有施加载荷增量、自动时间步、施加初始扰动、求解查看结果等。但是需要注意的是,非收敛解不一定意味着结构已经达到了它的最大载荷,它也可能是数值上的不稳定造成的,这可以通过细化模型来纠正。

选用算例基本参数:薄壁圆管,壁厚0.0216m ,直径0.4m ,高度2.16m ,材料的弹性模量210GPa ,泊松比0.3,圆管两端固定约束。周向受压,分析其发生屈曲时的临界载荷。

此薄壁圆管的壁厚远小于直径,而且壁厚是均匀的,材料结构简单,所以单元类型选用shell-93—八节点壳单元。有限元分析的精度与效率与网格划分的疏密和几何形状的选择有很大关系,按照相应的误差准则和网格疏密程度,应该避免出现网格畸形,划分网格时尽量采用映射式网格划分模式。本例所选结构规则对称,选择映射模式划分。

建立模型、划分网格、施加约束,如下图所示。

打开预应力选项,施加单位外载荷,静力分析结果如下:

5

表3-1薄壁圆筒临界压力与模态

的第一阶特征值就是临界压力,本例为117.4MPa。为了验证该临界值的可靠性,

6

同时采用不同的壳单元和不同的网格密度进行计算,结果得到的数值几乎一样,这样就证明了仿真的可靠性。

根据工程上经验公式来判断,此圆筒属于长圆筒,这类圆筒两端的封头或管板对筒体中部的变形不能起到有效的支撑作用,最容易失稳压瘪,出现波纹数为2的扁圆形,根据勃莱斯公式得到临界压力为73Mpa,这是因为特征值分析采用的模型是完全线型无缺陷的,得到的是屈曲上限值,而勃莱斯公式是工程实际应用所采用的,计算出的值为设计所采用,经过长期经验积累,为了设计的安全可靠,公式计算值难免趋于保守。

勃莱斯公式:

3

2

2

(1)

cr

S

E

P

D

μ

??

= ?

-??

(3-1)

S—圆筒的计算壁厚;D—圆筒直径;E—材料的弹性模量;μ—泊松比;

4.结论

固体力学研究领域的所有现象都是非线性的,即它的总体刚度矩阵是随着载荷的变化而发生变化,外载荷与位移呈非线性关系,需要采用非线性理论处理。但是对于许多工程问题,存在一个精度与经济的问题,即在处理实际的工程问题时,如果采用非线性理论及方法去分析求解的话精度可能没有很大的提高而成本却大幅度增加,所以综合考虑两方面的因素,采用近似线性的理论(即结构的总体刚度矩阵不随外载荷的变化而变化,载荷与位移呈线性关系)来计算即可就可符合工程的精度要求,而且这样做建模方便,计算简单切实可行。

通常结构的非线性问题并不是单纯的某类问题,而是需要同时考虑几何非线性和材料非线性问题,称为双重非线性问题,有时甚至还需考虑状态非线性问题,这样的话分析就比较全面,但是计算量也计算难度也急剧增大,还需要具体分析适当简化模型,减小计算量。

本文采用的薄壁管件模型扎住了结构的主要部分,忽略了两端部分的结构,也可以进行良好分析。因为进行实物屈曲抗压分析成本比较高,仿真计算出的值为了有个参考,采用改变建模方式来多次重复计算获得参照,这样获得的结论有较高的可信度,当然也可以采用不同的有限元软件进行仿真获得对照。

文中建模采用的材料是单一类型的,目前比较热的是采用夹芯结构,因为该种结构的一大良好力学性能是抗压能力较强,可以把该结构引入管件结构中。

7

参考文献

[1].工程结构动力分析数值方法,陈玲莉编,西安交通大学出版社,2006年

[2].工程结构数值分析,王新敏编,人民交通出版社,2007年

[3].有限元法基础,李人宪编,国防工业出版社,2012年

[4].基于ANSYS/LS-DYNA进行显式动力分析,时党勇编,清华大学出版社,2008年

8

结构动力学 论文

《结构动力学》 课程论文

结构动力学在道路桥梁方面的应用 摘要:随着大跨径桥梁结构在工程中的应用日趋广泛,施工控制问题也越来越受重视。结构动力学在各方面都有极为重要的作用,其特性也被广泛应用于桥梁结构技术状态评估中。结构动力学在道路桥梁方面应用十分广泛,比如有限元模型、模态挠度法、桥梁结构(强度、稳定性等)、状态评估、结构模态、结构自由衰减响应及其在结构阻尼识别中的应用、结构无阻尼固有频率与有阻尼固有频率的关系及其应用等,尤其是结合桥梁的检测、桥梁荷载试验与状态评价。本文就其部分内容进行介绍。 关键词:结构动力学道路桥梁应用 如今,科学技术越发先进,结构动力特性越来越广泛地应用于桥梁结构抗震设计、桥梁结构故障诊断和桥梁结构健康状态监测等工程技术领域,由此应用而涉及到的一些动力学基本概念理解的问题应运而生。对于此类知识,我了解的甚少,上课期间,老师虽有讲过这相关内容,但无奈我学到的只是皮毛。我记忆最深的是老师给我们放的相关视频,有汶川地震的,有桥梁施工过程的,还有很多因强度或是稳定性收到破坏而倒塌的桥梁照片。老师还告诉了我们修建建筑物的原则:需做到小震不坏,中震可修,大震不倒。还有强剪弱弯,强柱弱梁,强结点强锚固。桥梁在静止不受外力扰动时是不会破坏的,大多时候在静止的荷载作用下也不会发生破坏,但当桥梁受到动力荷载时就很容易发生破坏了,所以我们在修建桥梁是必须事先计算好最佳强度等等需要考虑的量。下面简单介绍一下结构固有频率及其应用和弹性模量动态测试。 1.结构固有频率及其应用 随着对结构动力特性的深入研究,其被越来越广泛地应用于结构有限元模型修正、结构损伤识别、结构健康状态监测等研究领域.一般情况下,由于结构阻尼较小,因此在结构动力特性的计算分析中,往往不计及结构阻尼以得到结构的振型和无阻尼的固有频率fnj(j=1,2,∧∧);而在结构的动态特性的试验中,识别的却是结构有阻尼的固有频率fdj.理论上有[1,2]fdj

结构力学课程设计

一、 课程设计题目 一)矩阵方程 1. 利用全选主元的高斯约当(Gauss-Joadan )消去法求解如下方程组,并给出详细的程序注解和说明: ??? ?????? ? ????????=?????????????????????? ???????? ?? ???1536353424543214019753910862781071567554321x x x x x 2. 利用追赶法求解如下方程组,并给出详细的程序注解和说明。 ?? ? ?? ?? ?? ? ????????-=???????????????????????????????????862031234567891011121354321x x x x x 3. 利用全选主元的高斯约当(Gauss-Joadan )消去法如下求解大型稀疏矩阵的大型方程 组,并给出详细注解及说明。 ???? ?? ??????? ?????????????----=????????????????????????????? ??? ?????????????????????4292728642-0 1 -0 1 00001-0402003-0001050006000102-00034-000200000 6-00060020001-0087654321x x x x x x x x 二) 结构力学 1. 试求解图示平面桁架各杆之轴力图,已知各材料性能及截面面积相同, 27.90,210cm A Gpa E ==。(注:在有限元分析中,桁架杆的模拟只能选择Ansys 的Link 单元)。 2. 试求解图示平面刚架内力图(轴力图、剪力图和弯矩图),已知各材料性能及截面面

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

工程结构动力分析小论文

薄壁管件的屈曲分析 摘要:本文针对薄壁件的失稳问题,采用线性特征值屈曲分析法和非线性屈曲分析法,借助ANSYS有限元商业软件对薄壁圆管进行模拟计算。特征值分析可以确定临界载荷、屈曲模态,特征值屈曲分析法得到的临界载荷作为非线性屈曲分析分析的初步缺陷载荷,接着进行非线性分析,得到结构完整的稳定性能。将两种结果进行对比讨论,可知非线性分析的结论更切合实际。 关键词:结构屈曲,ANSYS软件,特征值分析,薄壁圆管, 1.引言 薄壁钢材具有高强度、轻质、力学性能优良的特点,是一种良好的结构材料。但是实际工程结构中薄壁钢材的截面轮廓尺寸很小,构件细长,如果其在工艺上处理不当,当受到各种载荷时容易发生局部失稳或整体破坏,给人民的生命财产造成不可估量的损失,所以薄壁结构的稳定性问题成为工程设计人员关心的焦点。所谓失稳,就是当载荷仅有微量增加时,应变增长显著。比如圆筒受到环向载荷,其压缩应力尚未达到材料的屈服点时,就突然失去自身原来的形状被压扁或产生褶皱,这种在外力作用下结构突然失去原有形状的现象叫失稳,也称为屈曲。本文针对工程上常采用的薄壁管件的稳定性问题,借助有限元软件,用线性和非线性的分析方法计算其屈曲时的临界载荷。圆筒形构件的失稳分为整体失稳和局部失稳,其中整体失稳又分为侧向失稳和轴向失稳。 图1-1侧向失稳图1-2轴向失稳 1

22. 力学建模 预测结构发生屈曲时的临界载荷和屈曲后的形状通常的方法有两种,即特征值分析和非线性屈曲分析,但是特征值分析是基于材料完全线性无缺陷的,所以得出的结果与实际有较大差距,因此工程直接运用很少,但是它也是有意义的,一般取其第一阶模态作为非线性分析的初始扰动载荷的依据。用特征值分析得到的是屈曲上限,而用非线性分析得到的是屈曲下限,如图所示。 图2-1 特征值屈曲分析示意图 下面简单介绍特征值分析的理论知识。 设在单位外载荷作用下结构的应力刚度矩阵为[]K σ,那么[]K σλ(λ为载荷乘子)就代表另一强度下的应力刚度矩阵,在线性条件下,它们均与位移函数无关。如果基准状态下的位移矩阵[]D 加上虚位移矩阵[]D — ,而作用的载荷[]R 保持 不变,那么,为了使状态[]D 和_D D ??+????保持平衡状态,必须满足: [][][][]()K K D R σλ+=和[][][]_)K K D D R σλ??++=???? ( 将两个方程相减得到:[][]_)0K K D σλ??+=???? (,此即为经典的特征值问题,由[][]det()0K K σλ+=可得到特征值,其中最小的特征值就是临界载荷。 式中的λ是特征值, D ?????? —是位移特征向量,用λ乘以施加的载荷即得到临界载荷cr P ,D ?????? —是屈曲形状。

结构力学课程设计报告

一. 课程设计的目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要 功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2. 通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规 律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打 下坚实的基础 二. 课程设计的内容 (1).对图示两类桁架进行分析 在相同荷载作用下,比较各类桁架的受力特点; 讨论各种杆件(上弦杆,下弦杆,竖杆,斜杆)内力随 随高跨比变化的规律; 若增加杆件使其成为超静定桁架,内力有何变化。 (2).两种结构在静力等效荷载作用下,内力有哪些不同? 平行弦桁架 1/2 1 1 1 1 1 1/2 三角桁1/2 1 1 1 1 1 1/2

(3)、用求解器自动求解功能求a=2和a=1.0时的各杆内力。比较两种情况内力分布,试用试算法调整a 的大小,确定使弯矩变号的临界点a 0,当a=a 0时结构是否处于无弯矩状态? (4) 、图示为一个两跨连续梁,两跨有关参数相同(l =6m ,E =1.5*106kPa ,截面0.5*0.6m 2,线膨胀系数1.0*10-5)。第一跨底部温度升高60oC ,分析变形和内力图的特点。 (4) 、计算下支撑式五角形组合屋架的内力,并分析随跨高 比变化内力变化规律。当高度确定后内力随f 1,f 2的比例不同的变化规律(四个以上算例)。 1/4 11×(1/2) 1/4 1/2 1 1 1 1 1 1/2 a a a a 3 6m 6m

一. 课程设计的数据 1. 第(1)题数据 1) 平行弦桁架 a) 高跨比1:4(每小格比例2:3) 输出图形: 输出内力值: 内力计算 杆端内力值 ( 乘子 = 1) ----------------------------------------------------------------------------------------------- 3m 3m 3m 3m f 2 f 1 f =1.2m q =1kN/m

《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 (a)(b) 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 EI l W l/4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。 EI W o o l/2l/2 k 12、求图示体系的自振频率ω。 m l EI EI l 0.5l 0.5 2 13、求图示体系的自振频率ω。EI = 常数。 m l l0.5 14、求图示结构的自振频率ω。 m l l l l EI=常数

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 m 16、求图示体系的自振频率ω。杆长均为l 。 EA=o o EI m EI EI 17、求图示结构的自振频率和振型。 m m EI EI EI l /2 l /2 l /2 18、图示梁自重不计,W EI ==??2002104kN kN m 2 ,,求自振圆频率ω。 EI W A B C 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 h EI EI W

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构 抗震中的应用研究 摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。 关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载 一、综述 随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。 传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动 当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为: 式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。 体系的初始条件为: 该方程的解为: 解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为: 其中,为自振频率的振幅: 解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中:为激振频率振幅: 比较两部分振动的振幅得到: 由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1 θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1 θ>时,自振部分在结构反应中将占相当重要的部分。 三、单自由度有阻尼受迫振动 在简谐荷载作用下,单自由度体系的运动方程和初始条件为: 该方程解为:

结构力学专题论文

结构力学专题论文 超静定梁的极限荷载分析与计算 一、 概述 弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。因此弹性设计法不能充分的利用结构的承载能力,是 不够经济的。 塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准: max []Pu P p u F F F k ≤= 其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。u k 是相应的安全系数。 对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。另外还要采用以下假设: (1) 材料为理想弹塑性材料。其应力与应变关系如图所示。(图1.1) 图1.1 (2) 比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载 现象。 (3) 结构的弹性变形和塑性变形都很小。 从应力与应变图中看出,一旦进入塑性阶段(AB 段),应力与应变不再是一一对应的关系,只有了解全部受力变形过程才能得到结构的弹塑性解答。但塑性分析法只考虑结构破坏状态时对应的极限荷载,所以比弹塑性分析法要简单的多。 值得注意的是,塑性分析只适用于延性比较好的弹塑性材料组成的结 D s σσ

构,而不适用于脆性材料组成的结构,也不适用于对变形条件要求较严的结构。 二、 相关概念 1、极限弯矩 (1)屈服弯矩 随着M 的增大,截面最外层纤维处的应力达到屈服应力s σ时,截面承受的弯矩称作弹性极限弯矩或者屈服弯矩。 e s M W σ= 式中,W 是弹性弯曲截面系数。 (2)极限弯矩 M 不断增大,整个截面的应力达到屈服应力s σ时,截面承受的弯矩称作极限弯矩。 u s s M W σ= s W 是塑性截面系数,其值为等截面轴上、下部分面积对该轴的静矩。 可见,纯弯曲时,M 只与材料的屈服应力s σ和截面的几何尺寸、形状 有关。剪力和轴力对M 的影响可以忽略不计。 2、塑性铰 2.1 概念 当整个截面应力达到屈服极限时,保持极限弯矩不变,两个无限靠近的截面可以发生有限的相对转动,这样的截面称为塑性铰。 2.2 塑性较的特点 (1)塑性铰可以承受极限弯矩。 (2)塑性铰是单向铰。 (3)卸载时塑性铰消失。 (4)随着荷载分布的不同,塑性铰可以出现在不同的位置。 3、破坏机构 结构在极限荷载作用下,由于出现足够多的塑性铰而形成的机构叫做破坏机构。 破坏机构可以在整体结构中形成,比如简支梁;也可以在结构上的某一局部形成,比如多跨连续梁。同一结构荷载不同时,破坏机构一般也不同。 静定结构在弯矩峰值截面形成一个塑性铰后,就形成破坏机构而丧失承载能力。对于超静定结构,因为有多余约束,要形成足够多的塑性铰才能丧失承载能力,这也是我们在做结构时,要设计成超静定结构的重要原因之一。 三、 判定极限荷载时的一般定理

力学小论文

题目:自行车力学探究 摘要:自行车是我们日常生活中见到的最普遍的交通工具,然而当我们骑车时它的具体受力情况是怎样的我们却不太清楚,本实验目的主要是探究自行车轮胎的摩擦力系数的测定,并在此基础上探究它在转弯的时候的受力情况。 关键词:摩擦力系数、力偶、杠杆、自行车 引言: 自行车上的力学、结构方面应用了很多科学知识,简单举例:1、杠杆原理:车闸,你在车闸处轻轻一握,就可以产生一个很大的拉动刹车装置的力量。 2、滑动磨擦(两种情况的利用):刹车、车轮,刹车是利用了滑动磨擦使车子停下来,而车轮则正好相反,他利用了滑动磨擦,使车子向前行进,车轮上的花纹就是为了增大他的磨擦系数的。 3、滚动磨擦:他的目的是为了省力。自行车用滚动磨擦的地方

很多,比如在转向装置、车轮轴里安装的轴承,就是利用了滚动磨擦。 4、力偶的原理:手在车把上产生的力正在是以前车叉为原点的一对力偶,力偶比一个单向力更容易控制,也更省力。 5、弹性碰撞的原理:说白了主要就是减震,充气轮胎、车子上的弹簧,都是把钢性碰撞改变成弹性碰撞,从而减少对人体的冲击力,使人骑起来更舒适。 对于本实验,考虑到自行车运动时与地面的摩擦是滚动摩擦,于是用自行车轮胎制成滑块测出橡胶与地面的摩擦系数。我们采用在不同场地多次测量取平均值的方法,来测橡胶轮胎与摩擦面的摩擦系数,在进行这个实验时要注意两点:一是拉力保持水平;二是尽量使滑块保持匀速运动。 器材:5个弹簧秤、2个滑轮、自行车(说明:多个弹簧秤和滑轮是打算在单个弹簧秤不足时用的) 数据: 表一水磨地 表二水泥地

结果:摩擦力系数:水磨地取平均值:0.38 水泥地取平均值:0.72 讨论:当过弯半径R分别为50m、20m、10m时,在水泥地上骑车最大速度Vm分别为多少。受力图如下: 自行车M:10 Kg 人m:60 Kg (M+m)Vm^2/R=μG Vm=(μGR/(m+M))^1/2 当转弯半径为50m时:Vm=18.2m/s 当转弯半径为50m时:Vm=11.9m/s 当转弯半径为50m时:Vm=8.4m/s 结论: 1、橡胶轮与水磨地的摩擦力系数为0.38 橡胶轮与水 泥地摩擦力系数为0.72;

结构力学钢结构课程设计

华北水利水电学院 课程设计 任务书及计划书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

课程设计任务书 教研室

课程设计计划书 注:指导老师在课程设计期间每天指导时间不少于2小时。 教学院长、教学主任:_________________ 教研室主任:__________________填表人:____________________填表时间:2012 年12月20日

结构力学与钢结构课程设计 钢吊车梁设计分组及设计参数 2、吊车采用大连重工起重集团有限公司2003年DSQD系列产品。

华北水利水电学院 课程设计 指导书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

结构力学与钢结构课程设计指导书 钢吊车梁设计概述 一、吊车梁所承受的载荷 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载和沿吊车梁纵向的水平荷载。如图1所示。 图1 吊车梁承受荷载 纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。 吊车沿轨道运行、起吊、卸载、以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应诚意动力系数。对悬挂吊车(包裹电动葫芦)及工作级别A1--A5的软钩吊车,动力系数可取1.05:对工作级别A6--A8的软钩吊车、硬钩吊车和其他种吊车,动力系数可取1.1。 吊车的横向水平荷载由小车横行引起,其标准值赢取横行小车重量与额定起重之和的下列百分数,并乘以重力加速度: (1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16--50吨时,应取10%;当额定起重量不小于75吨时,应取8%。

结构力学论文

结构力学论文

————————————————————————————————作者: ————————————————————————————————日期:

成绩 土木工程与建筑学院 结构力学论文 (2016—2017 学年度第一学期) 课程名称:结构力学 论文题目: 浅谈位移法 任课教师: 姓名: 班级: 学号: 2017 年 1 月 1

日 浅谈位移法 摘要位移法是超静定结构分析的基本方法之一,也称变位法或刚度法,通常以结点位移作为基本未知数。位移法有两种计算方式,一种是应用基本结构列出典型方程进行计算,另一种是直接应用转角位移方程建立原结构上某结点或截面的静力平衡方程进行计算。 关键词基本原理典型方程超静定结构 一、简介 位移法以广义位移(线位移和角位移)为未知量,求解固体力学问题的一种方法。位移法的思想是法国的C.-L.-M.-H.纳维于1826年提出的。 位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。 二、计算种类 1.典型方程法 位移法可按两种思路求解结点位移和杆端弯矩:典型方程法和平衡方程法。下面给出典型方程法的解题思路和解题步骤。 1.1位移法典型方程的建立: 欲用位移法求解图a所示结构,先选图b为基本体系。然后,使基本体系发生与原结构相同的结点位移,受相同的荷载,又因原结构中无附加约束,故基本体系的附加约束中的约束反力(矩)必须为零,即:R1=0,R2=0。 而Ri是基本体系在结点位移Z1,Z2和荷载共同作用下产生的第i个附加约束中的反力(矩),按叠加原理Ri也等于各个因素分别作用时(如图c,d,e所示)产生的第i个附加约束中的反力(矩)之和。于是得到位移法典型方程:

振动力学课程设计报告

振动力学课程设计报告 课设题目: 单位: 专业/班级: 姓名: 指导教师: 2011年12月22日

一、前言 1、课题目的或意义 振动力学课程设计是以培养我们综合运用所学知识解决实际问题为目的,通过实践,实现了从理论到实践再到理论的飞跃。增强了认识问题,分析问题,解决问题的能力。带着理论知识真正用到实践中,在实践中巩固理论并发现不足,从而更好的提高专业素养。为认识社会,了解社会,步入社会打下了良好的基础。 通过对GZ电磁振动给料机的振动分析与减振设计,了解机械振动的原理,巩固所学振动力学基本知识,通过分析问题,建立振动模型,在通过软件计算,培养了我们独立分析问题和运用所学理论知识解决问题的能力。 2、课题背景: 随着科学技术发展的日新月异,电磁振动给料机已经成为当今工程应用中空前活跃的领域,在生活中可以说是使用的广泛,因此掌握电磁振动给料机技术是很有必要的和重要的。 GZ系列电磁振动给料机广泛应用于矿山、冶金、煤炭、建材、轻工、化工、电力、机械、粮食等各行各业中,用于把块状、颗粒状及粉状物料从贮料仓或漏斗中均匀连续或定量地给到受料装置中去。特别适用于自动配料、定量包装、给料精度要求高的场合。例如,向带式输送机、斗式提升机,筛分设备等给料;向破碎机、粉碎机等喂料,以及用于自动配料,定量包装等,并可用于自动控制的流程中,实现生产流程的自动化。 GZ电磁振动给料机的工作原理: GZ电磁振动给料机的给料过程是利用电磁振动器驱动给料槽沿倾斜方向做直线往复运动来实现的,当给料机振动的速度垂直分量大于策略加速度时,槽中的物料将被抛起,并按照抛物线的轨迹向前进行跳跃运动,抛起和下落在1/50秒完成,料槽每振动一次槽中的物料被抛起向前跳跃一次,这样槽体以每分钟3000次的频率往复振动,物料相应地被连续抛起向前移动以达到给料目的。 GZ系列电磁振动给料机主要用途:

结构力学课程设计

结构力学课程设计报告 系别:() 专业:() 班级:() 姓名:() 指导教师:()

一、绪言 1、课程设计目的或意义: 1、通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2、通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础 2、结构的工程应用背景简介: 此次设计的结构是桥梁结构,在生活中桥梁在交通运输中起着重要的作用,比如架在江湖、峡谷之间的桥梁起着连接两地的纽带作用。桥梁之上可以过行人、汽车、火车。极大的缩短了两地之间的距离,方便又快捷。 3、课程设计的主要内容: 一:了解明确课程设计的目的,查找工程实际中的桥梁结构 二:参考实际结构设计自己的桥梁结构。 三:估计轴力,初步选择桥梁的钢材。 四:做出内力图。 五:校核,再择钢材。 六:总结优化。

二、结构设计与荷载简化 1、结构简介 此结构形状主要由三角形组成的的下承式组合结构 2、结构参数: 本次设计的桥梁结构跨度为四十米,高二十米。结构中杆件间主要以铰接连接。根据桥梁及承载要求,材料为Q235刚,极限压应力为300MPa,E=210GPa 选择20b号工字型刚,截面面积为46.5平方厘米 3、荷载简化与分析: 设计的结构为火车通道,主要承受火车的质量。将火车看作质量分布均匀的,所受均布荷载为50KN/m

三、结构内力和变形分析 1、结构计算简图 2、内力分析 结构轴力图 结构剪力图 1 11

结构动力学论文

浅议“动力有限元法” 摘要:有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数。该方法在工程中有着广泛的应用,比如:桥梁,建筑上部和建筑基础等。 关键词:有限元;动力;位移 Abstract: Finite element method is currently the most widely used as a discrete numerical method. Its basic idea is going to artificially continuum structure which is divided into a finite number of units. Each unit provids common to a group of deformed form, which is known as an unit displacement mode or interpolation function. This method works with a wide range of applications. Example: bridges, buildings and construction base and so on. Key words: Finite element; Force;Displacement 1 动力有限元法基本过程 有限元法是目前应用最为广泛的一种离散化数值方法,其基本思想就是人为地将连续体结构分为有限个单元,规定每个单元所共有的一组变形形式,称之为单元位移模式或插值函数[1]。动力学的有限元法同静力学问题, 是把物体离散为有限个单元体, 考虑单元的惯性力和阻尼力等动力因素的特性。在运动物体单位体积上作用的体力可以用下式表达: {}{}δδδνδρt t a -=22a - } Ps { P} { (1-1) 式中 {Ps}——静力; {δ}——位移; {}δρ22 a t a ——惯性力; {}δδδνt ——阻尼力。 用有限单元法求解动力问题的位移模式: {}e δ ] [N f} {= (1-2) 式中 [N]——形函数矩阵; {}e δ——单元节点位移矩阵。

结构力学小论文参考题目

结构力学小论文参考题目 1、不同结构型式主要内力及其特点分析 说明:相同跨度和相同荷载(全跨受均布荷载q),可以比较简支梁、伸臂梁、三角形三铰拱、抛物线三铰拱、梁式桁架、组合结构等。 2、各类平面桁架内力分布情况的比较。 说明:桁架的外形对桁架的内力分布影响很大,分析常见的平行弦桁架、三角形桁架、抛物线桁架、折线形桁架的内力分布情况。 3、桁架结构结点按铰接点计算的依据 说明:桁架结构的结点并不是理想铰,但是实际中可以按照铰接点来进行计算,原因、理由? 4、影响组合屋架内力的主要因素分析 说明:影响组合屋架(如:下撑式五角形组合屋架)内力状态的主要因素有高跨比f/l,已经高度f确定以后,f1与f2的比例不同影响结构内力 5、单位移动荷载是水平方向或者斜向时,做结构某个量值(内力或者支座反力)的影响线。分析其含义和做法与竖向移动单位荷载下影响线的异同。 6、含有均布荷载的移动荷载时确定荷载最不利位置 7、杆件截面对中性轴不对称,则对温度改变引起的位移的影响 说明:课本上再推导温度改变引起的位移计算时,是假设杆件截面对中性轴对称,而实际工程结构中杆件截面不一定是对称的,如果不对称,则对位移的计算有什么影响? 8、如何减小荷载作用引起的结构位移? 说明:比如,增加各杆刚度? 9、位移计算时忽略轴向变形和剪切变形时误差分析 说明:选取矩形截面细长杆(h/l=1/8~1/18),分析荷载作用下,忽略轴向变形和剪切变形对位移有多大的误差? 10、用力矩分配法求结点转角 说明:用力矩分配法计算出每根杆件的杆端弯矩,将该端各次所得分配力矩相加,再除以该杆的转动刚度,得结点角位移的渐进值。 11、支座移动和温度变化时,用力矩分配法计算的条件 12、对称性在结构内力计算中的应用 13、对称性在力法中的应用 14、对称性在结构力学中的应用 15、结构各杆刚度改变对静定结构和超静定结构内力的影响?

结构力学设计

科学技术学院 课程设计报告 2012----2013学年第二学期 学生姓名: 学号: 专业班级: 时间: 17周(6.17-6.21) 理工学科部

一、课程设计目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2.通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打下坚实的基础。 二、课程设计内容 (一)对三类桁架进行受力分析 1、平行弦桁架分析 变量定义,h=1,l=6 变量定义,c=1/6,h=c*l 结点,1,0,0 结点,2,1/6l,0 结点,3,2/6l,0 结点,4,3/6l,0 结点,5,4/6l,0 结点,6,5/6l,0 结点,7,6/6l,0 结点,8,6/6l,h 结点,9,5/6l,h 结点,10,4/6l,h 结点,11,3/6l,h 结点,12,2/6l,h 结点,13,1/6l,h 结点,14,0/6l,h 单元,1,2,1,1,0,1,1,0 单元,2,3,1,1,0,1,1,0 单元,3,4,1,1,0,1,1,0 单元,4,5,1,1,0,1,1,0 单元,5,6,1,1,0,1,1,0 单元,6,7,1,1,0,1,1,0 单元,7,8,1,1,0,1,1,0 单元,8,9,1,1,0,1,1,0 单元,9,10,1,1,0,1,1,0 单元,10,11,1,1,0,1,1,0 单元,11,12,1,1,0,1,1,0 单元,12,13,1,1,0,1,1,0单元,13,14,1,1,0,1,1,0 单元,14,1,1,1,0,1,1,0 单元,14,2,1,1,0,1,1,0 单元,2,13,1,1,0,1,1,0 单元,13,3,1,1,0,1,1,0 单元,3,12,1,1,0,1,1,0单元,12,4,1,1,0,1,1,0 单元,4,11,1,1,0,1,1,0 单元,4,10,1,1,0,1,1,0 单元,10,5,1,1,0,1,1,0 单元,5,9,1,1,0,1,1,0 单元,9,6,1,1,0,1,1,0 单元,6,8,1,1,0,1,1,0结点支承,1,3,0,0,0结点支承,7,1,0,0结点荷载,14,1,0.5,-90结点荷载,13,1,1,-90结点荷载,12,1,1,-90结点荷载,11, 1,1,-90结点荷载,10,1,1,-90结点荷载,9,1,1,-90结点荷载,8,1,0.5,-90

材料力学课程论文

问题一:许可载荷试验分析 在本学期材料力学的学习过程中,有幸继续在叶敏老师的班上学习,本学期中叶老师延续去年理论力学课通过设计试验来锻炼学生动手操作能力的教学方式,设计了“许可载荷试验”这样一个项目。 题目即用A4纸制作成如图形状 的,测试其许可载荷。并通过裁剪制 作出符合要求的纸形。 在制作过程中,为了使数据更有 规律性,同时制作起来更方便,我们 选取中间为正圆弧,并且两侧对称。 根据圣维南定理,可以推测中间 受力基本均匀,且中间最窄,应力最大,最先断。试验也得以验证。 数据分析,我认为误差20克是很难达到的。分析如下: 1.中间裁剪误差: 中间受力均匀,可假设中间的应力σ=m*g/S,S为中间的截面 面积,许可应力为固定值,S与宽度d成正比,所以所能承受 的质量m与d成正比。根据数据对应关系,d=2cm时,m至少 为4kg(实际值大概在7至8kg),根据正比关系,每毫米的 误差在200克以上,也就是说裁剪时误差超过一毫米,则误 差就会超过200克,相对于要扣除50分。而实际学生使用的 制图工具精确度为1毫米,所以可见,误差难以控制。

2.平行度误差 根据线性分析,所测质量为1Kg 时,纸条中间宽度在3毫米左右 (根据纸质不同),而两次受力 区域宽度为6cm,是中线宽度的 20倍。 及受力不是竖直方向,对于三毫 米的宽度,是非常容易出现撕裂 的现象,两侧不是同时断,即应力不均,使m偏小。纸质为 纤维,更容易出现内部结构变动,从而不满足材料力学连续 性、各项同性等的假设。 综上,容易出现误差的地方也是试验中必须控制的因素。为保证试验进行正常,需使两侧对称,尽量裁剪精细,同时两侧受力务必平行,否则影响会非常大。

土力学桩基础课程设计

桩基础课程设计题目:某机械加工车间桩基设计指导教师: 班级: 姓名: 学号: 建筑工程学院 2010年7月21日

某机械加工车间桩基设计 一、设计资料 1、某机械粗加工车间上部结构(柱子300×400mm2)传至基础顶面的最大荷载为:轴力F k=4500KN,弯矩M k=200KN.m,剪力H k=35KN。 2、工程地质勘察报告引致课程指导书 3、土层名称及厚度如下图所示,地下水位为-0.50m

附表: 土的物理力学性质指标表 二、设计过程 1、确定桩形、截面 根据结构类型和层数,荷载情况、地质条件和施工能力等,选择预制桩,其截面尺寸为400?400mm2。 2、选择桩长 暂取桩顶伸入承台的长度为50mm,承台埋深1.5m,承台高度1.0m,钢筋保护层厚度70mm 则承台有效高度为:h0=1.0-0.070=0.93m 桩中间段长:h1=15-1.50 =13.5m 桩端进入持力层厚度:4.875d=4.875?400=1950mm 桩长为:h=0.05+13.5+0.5+1.95=16.00m

3、初步设定承台的地面标高,承台底面面积,选择桩和承台的混凝土强度等级 初定承台标高为:-1.5m,假定承台底面面积为8m2 为便于施工,桩和承台的混凝土强度等级均取C30

4、确定单桩承载力 KN l q u A q R i sis p p ps .27402.45)3704.919.35.012.5 2.6019.21.00.4(2040.414502a =?+?+?+?+??+?=+=∑ 5、确定桩数 根 根,暂取88.57.2 740)1764500(2.1)(2.1176.012.44105.12.4420a k =+?=+≥=???-???=-=R G F n KN Ah Ad G k w w G K γγ 6、桩的平面布置 初选承台尺寸 桩距:取桩距S=1200m, 承台长边:a=2×(0.6+0.4+0.4+0.3+0.3)=4m 承台短边: b=2×(0.4+0.3+0.3)=2m 7、单桩承载力验算 取承台及其上土的平均重度γG =20KN/m 3 桩顶平均竖向力: KN R KN n G F Q a k k k 2.74084.558 1764500=<=+= +=22max max min 2.142.1).0135200(84.55)(???+±=+±=∑i K K k x x h H M Q Q

结构力学论文

桥梁中不同结构的比较 班级:土木二班姓名:孙俊若学号:201300206104 设计桥梁可有多种结构形式选择:石料和混凝土梁式桥只能跨越小河;若以受压的拱圈代替受弯的梁,拱桥就能跨越大河和峡谷;若采用钢桁架可建造重载铁路大桥;若采用主承载结构受拉的斜拉桥和悬索桥,不仅轻巧美观,而且是跨越大江和海峡大跨度桥梁的优选形式。桥梁中不同结构有不同的优点和缺点,通过比较选择合理、经济的结构是我们应该研究的问题。下面阐述了一些结构形式的比较,以及改善的方法。 桁架桥的特点 桁架是由一些用直杆组成的三角形框构成的几何形状不变的结构物。杆件间的结合点称为节点(或结点)。根据组成桁架杆件的轴线和所受外力的分布情况,桁架可分为平面桁架和空间桁架。屋架或桥梁等空间结构是由一系列互相平行的平面桁架所组成。若它们主要承受的是平面载荷,可简化为平面桁架来计算。 桁架桥是桥梁的一种形式,一般多见于铁路和高速公路;分为上弦受力和下弦受力两种。桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;由于杆件本身长细比较大,虽然杆件之间的连接可能是“固接”,但是实际杆端弯矩一般都很小,因此,设计分析时可以简化为“铰接”。简化计算时,杆件都是“二力杆”,承受压力或者拉力。 由于桥梁跨度都较大,而单榀的桁架“平面外”的刚度比较弱,

因此,“平面外”需要设置支撑。设计桥梁时,“平面外”一般也是设计成桁架形式,这样,桥梁就形成双向都有很好刚度的整体。 有些桥梁桥面设置在上弦,因此力主要通过上弦传递;也有的桥面设置在下弦,由于平面外刚度的要求,上弦之间仍需要连接以减少上弦平面外计算长度。 桁架的弦杆在跨中部分受力比较大,向支座方向逐步减小;而腹杆的受力主要在支座附件最大,在跨中部分腹杆的受力比较小,甚至有理论上的“零杆”。 不同简支梁式桁架的比较 不同形式的桁架,其内力分布情况和适用场合也各不同。简支梁式桁架分为平行弦桁架、折弦桁架、三角形桁架;在均布荷载作用下,简支梁的弯矩分布图形是抛物线形的,两边小中间大。 a、在平行弦桁架中,弦杆的力臂是一常数,故弦杆内力与弯矩的变化规律相同,即两端小中间大。竖杆内力与斜杆的竖向分力各等于相

相关主题
文本预览
相关文档 最新文档