当前位置:文档之家› 2014-2015数学选修2-2导数的概念及其运算单元测试

2014-2015数学选修2-2导数的概念及其运算单元测试

导数的概念及其运算(1)

第Ⅰ卷(选择题 共60分)

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.) 1、函数2

1()ln 2

f x x x =-

,则()f x 的导函数'()f x 的奇偶性是 ( ) A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数 2、若0()2f x '=,则=--→k

x f k x f k 2)

()(lim

000

( )

A.0

B. 1

C. —1

D.2

3、若曲线4x y =的一条切线l 与直线084=-+y x 垂直,则l 的方程为( )

A.034=--y x

B.034=-+y x

C.034=+-y x

D.034=++y x 4、曲线423+-=x x y 在点)3,1(处的切线的倾斜角为( )

A.?30

B.?45

C.?60

D.?120

5、设))(()(,),()(),()(,sin )(112010N n x f x f x f x f x f x f x x f n n ∈'='='==+ ,则2010()f x =( )

A.x sin

B. x sin -

C.cos x -

D.cos x 6、曲线)12ln(-=x y 上的点到直线032=+-y x 的最短距离是( )

A.5

B.52

C.53

D.0

7、已知函数2log ,0,

()2,0.x x x f x x >?=?≤?

若'()1f a =,则a =( )

A.2log e 或22log (log )e

B.ln 2

C.2log e

D.2或22log (log )e

8、下列结论不正确的是( )

A.若3y =,则0y '=

B.若3y x =,则1|3x y ='=

C.若y =则

y '= D.若y =

,则y '=9、已知函数3()f x x =的切线的斜率等于3,则切线有( )

A.1条

B.2条

C.3条

D.不确定

10、已知点P(1,2)是曲线22y x =上一点,则P 处的瞬时变化率为 ( )

A.2

B.4

C.6

D.2

1

11、曲线n y x =在2x =处的导数为12,则n =( )

A.1

B.2

C.3

D.4

12、设a ∈R ,函数()e e x x f x a -=+?的导函数是()f x ',且()f x '是奇函数.若曲线()y f x =的一

条切线的斜率是3

2

,则切点的横坐标为 ( )

A.ln 2

B.ln 2-

C.ln 22

D.ln 2

2

-

第Ⅱ卷(非选择题 共90分)

二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上.) 13、已知2()2(1)f x x x f '=+?,则=')0(f ________ 14、直线b x y +=

2

1

是曲线)0(ln >=x x y 的一条切线,则实数=b _________ 15、已知曲线12-=x y 在0x x =点处的切线与曲线31x y -=在0x x =处的切线互相平行,则

0x 的值为____________

16、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)

()(2

>-'x

x f x f x (0)x >,则不等式()0f x >的解集是 .

三、解答题(本大题共6小题,共74分,解答应写出必要的文字说明、证明过程及演算步骤.) 17、(12分)已知函数))(2ln(2)(2R a x ax x f ∈-+=,设曲线)(x f y =在点))1(,1(f 处的切线为l ,若l 与圆4

1

:22=+y x C 相切,求a 的值.

18、(12分)设函数())(0)f x ??π=+<<,且()()f x f x '+为奇函数.

(1)求?的值;

(2)求()'()f x f x +的最值.

19、(12分)

如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.

20、(12分)已知函数d cx bx x x f +++=23)(的图象过点)2,0(P ,且在点))1(,1(--f M 处的切线方程为076=+-y x ,求函数)(x f y =解析式.

21、(12分)设函数x

b

ax x f -

=)(,曲线)(x f y =在点))2(,2(f 处的切线方程为 01247=--y x .

(1)求)(x f y =的解析式

(2)证明:曲线)(x f y =上任一点处的切线与直线0=x 和直线x y =所围成的三角形面积为定值,并求此定值.

22、(14分) 已知关于x 的方程sin ((0,1))x

k k x

=∈在(3,0)(0,3)-ππ内有且仅有4个根,从小到大依次为1234,,,x x x x .

(1)求证:44tan x x =;

(2)是否存在常数k ,使得234,,x x x 成等差数列?若存在求出k 的值,否则说明理由.

参考答案

一. 选择题

1.D ()f x 的定义域为(0,)+∞,不关于原点对称.

2.C 原式=00001[()]()1lim ()12()2

k f x k f x f x k -→+--'-

=-=--. 3.A 与直线084=-+y x 垂直的直线l 为04=+-m y x ,即4x y =在某一点的导数为4,而

34x y =',所以4x y =在)1,1(处导数为4,过此点的切线为034=+-y x .故选A 4.B 232-='x y ,1=∴k ,倾斜角为?45

5.D 1()cos f x x =,2()sin f x x =-,3()cos f x x =-,4()sin f x x =,201050242=?+, ∴2010()f x =1()cos f x x =.

6.A 由曲线得221y x '=

-,设直线20x y c -+=与曲线切于点00(,)P x y ,则02

221

x =-, ∴01x =,00ln(21)0y x =-=,得(1,0)P ,

所求的最短距离为d ==7.C 当0a >时,21

'()1log ln 2

f a a e a =

=?=; 当0a ≤时,'()2ln21a f a ==,而021,0ln21a <≤<<,矛盾! 8.D

9.B 33)(2=='x x f ,解得1±=x ,故有两个切点)1,1(和)1,1(--,所以有两条切线 10.B 4411=='==x x x y 11.C 3,4312212

1

2=∴?==?=?='-=-=n n x n y n x n x

12.A '()x x f x e ae -=-,()f x '是奇函数'(0)10f a =-=,∴1a =,有'()x x f x e e -=-, 设切点为00(,)x y ,则0003'()2x x f x e e -=-=,得02x e =或01

2

x e =-(舍去),∴0ln2x =. 二、填空题

13.—4 ()22(1)(1)22(1)f x x f f f ''''=+?=+,∴(1)2f '=-,有2()4f x x x =-,

()24f x x '=-,∴(0)4f '=-.

14.12ln - x y 1=

',令211=x 得2=x ,故切点为)2ln ,2(,代入直线方程,得b +?=22

1

2ln ,所以12ln -=b

15.00x =或023x =- 212,y x y x '=-?=3213y x y x '=-?=-,∴2

0023x x =-,

解得00x =或02

3

x =-.

16.),1()0,1(+∞- 可得()

'()f x f x x

>,由导数的定义得,当01x <<时,

()(1)()

1f x f f x x x

->-,又0)1(=f ,()(1)()xf x x f x <-,∴()0f x <;当1x >时,

同理得()0f x <.又)(x f 是奇函数,画出它的图象得()0f x >?(1,0)(1,)x ∈-+∞. 三、解答题

17.解:依题意有:)2(2

2

2)(,)1(<-+

='=x x ax x f a f , l ∴的方程为02)1(2=-+--a y x a l 与圆相切,8

11211

)1(4|2|2=?=

+--∴

a a a ∴a 的值为

11

8

.

18.解:(1)()'()f x f x +)3sin(3)x ??=++

53)6

x π?=++

, 又0?<<π,()'()f x f x +是奇函数,∴=

?6

π.

(2)由(1)得()'()f x f x +)=+π=-. ∴()'()f x f x +的最大值为2,最小值为2-. 19.解: 切线与直线34+=x y 平行, 斜率为4 又切线在点0x 的斜率为0

32

0(10)31x x y x x x '

'

=+-=+

∵4132

0=+x ,∴10±=x ,有??

?-==810

0y x ,或???-=-=12100y x , ∴切点为)8,1(-或)12,1(--,

切线方程为)1(48-=+x y 或)1(412-=+x y ,

即124-=x y 或84-=x y .

20.解:由f(x)的图象经过)2,0(P ,知2=d ,所以2)(23+++=cx bx x x f

.23)(2c bx x x f ++='

由在))1(,1(--f M 处的切线方程是076=+-y x ,知07)1(6=+---f , 即6)1(,1)1(=-'=-f f

∴326

121b c b c -+=??-+-+=?,即???=--=-032c b c b ,解得3-==c b , 故所求的解析式是 .233)(23+--=x x x x f 21.解:(1)方程01247=--y x 可化为34

7-=

x y ,当12,2x y ==时;

又2)(x b a x f +=',于是???

????

=+=-4742

122b a b a ,解得???==31b a

故x

x x f 3

)(-

= (2)证明:设),(00y x P 为曲线上任一点,由23

1x

y +

='知曲线在点),(00y x P 处的切线方程为))(31(02

0x x x y y -+

=-,即))(3

1()3(020

00x x x x x y -+=-- 令0=x ,得06x y -

=,从而得切线与直线0=x 的交点坐标为6

,0(0

x -; 令x y =,得02x x y ==,从而得切线与直线x y =的交点坐标为)2,2(00x x ; 所以点),(00y x P 处的切线与直线0=x ,x y =所围成的三角形面积为

6|2||6

|2100

=-x x ; 故曲线)(x f y =上任一点处的切线与直线0=x ,x y =所围成的三角形面积为定值,此定值为6.

22.解:(1)由原方程得sin (0)x kx x =≠,设函数()sin f x x =,()g x kx =(0)x ≠,它们的图象如图所示:

方程得sin (0)x kx x =≠在(3,0)(0,3)-ππ内有

且仅有4个根,4x 必是函数()g x kx =与()sin f x x =在

5(2,

)2

π

π内相切时切点的横坐标,即切点为44(,sin )x x ,()g x kx =是()sin f x x =的切线. 由'()cos f x x =,∴4cos k x =,又∵44sin x kx =,于是44tan x x =. (2)由题设知23x x =-,又234,,x x x 成等差数列,得3242x x x =+,∴341

3

x x =

. 由33sin x kx =,得4411sin 33x kx =,即441

sin 3sin 3x x =.

由题设45(2,)2x π∈π,得425(,)336

x ππ

∈,

∴41sin

(,)322x ∈,有433sin (,)322x ∈,即43sin (,22

x ∈,与4sin 1x <矛盾!

故不存在常数k 使得234,,x x x 成等差数列.

导数的概念及运算基础+复习+习题+练习

导数的概念及运算 一,导数的概念 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数 ()y f x =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0x x y =',即0000()() ()lim x f x x f x f x x ?→+?-'=? 在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因 此,导数的定义式可写成 000000 ()()()() ()lim lim x o x x f x x f x f x f x f x x x x ?→→+?--'==?-. 2.求函数()y f x =的导数的一般步骤:()1求函数的改变量)()(x f x x f y -?+=? ()2求平均变化率 x x f x x f x y ?-?+= ??)()(;()3取极限,得导数y '=()f x '=x y x ??→?0lim 3.导数的几何意义: 导数0000()() ()lim x f x x f x f x x ?→+?-'=?是函数)(x f y =在点0x 处的瞬时变化率,它 反映的函数)(x f y =在点0x 处变化.. 的快慢程度. 它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果 )(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 000()()()y f x f x x x -='- 4.导函数(导数):如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个 ),(b a x ∈,都对应着一个确定的导数()f x ',从而构成了一个新的函数()f x ', 称这个函 数()f x '为函数)(x f y =在开区间内的导函数,简称导数,也可记作y ',即()f x '=y '= x x f x x f x y x x ?-?+=??→?→?) ()(lim lim 00 函数)(x f y =在0x 处的导数0 x x y =' 就是函数)(x f y =在开区间),(b a )) ,((b a x ∈

导数的概念及运算

导数的概念及运算 一、选择题 1.设曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,则a=( ) A.0 B.1 C.2 D.3 解析∵y=e ax-ln(x+1),∴y′=a e ax- 1 x+1 ,∴当x=0时,y′=a-1.∵ 曲线y=e ax-ln(x+1)在x=0处的切线方程为2x-y+1=0,∴a-1=2,即a=3.故选D. 答案 D 2.若f(x)=2xf′(1)+x2,则f′(0)等于( ) A.2 B.0 C.-2 D.-4 解析∵f′(x)=2f′(1)+2x,∴令x=1,得f′(1)=-2, ∴f′(0)=2f′(1)=-4. 答案 D 3.(2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. 答案 C 4.(2017·石家庄调研)已知曲线y=ln x的切线过原点,则此切线的斜率为( ) A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则 y′|x=x 0= 1 x ,切线方程为y-ln x0= 1 x (x-x0),因为切线过点(0,0),所

以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1 e . 答案 C 5.(2016·郑州质检)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则 g ′(3)=( ) A.-1 B.0 C.2 D.4 解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-1 3,∴f ′(3)=- 1 3 ,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,所以g ′(3)=1+3×? ???? -13=0. 答案 B 二、填空题 6.(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数, f ′(x )为f (x )的导函数,若f ′(1)=3,则a 的值为________. 解析 f ′(x )=a ? ? ???ln x +x ·1x =a (1+ln x ),由于f ′(1)=a (1+ln 1)=a , 又f ′(1)=3,所以a =3. 答案 3 7.(2016·全国Ⅲ卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________. 解析 设x >0,则-x <0,f (-x )=ln x -3x ,又f (x )为偶函数,f (x )=ln x -3x , f ′(x )=1 x -3,f ′(1)=-2,切线方程为y =-2x -1. 答案 2x +y +1=0

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) =x 2+b x +c f /(x)的图象是( ) 4.下列求导数运算错误..的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 3. 若函数()f x 满足,321()(1),3 f x x f x x '=-?-则(1)f '的值 A x D C x B

苏教版 导数的概念及运算

导数的概念及运算 一、填空题 1.设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为________. 解析 由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. 答案 e 2.设y =x 2e x ,则y ′=________. 解析 y ′=2x e x +x 2e x =()2x +x 2 e x . 答案 (2x +x 2)e x 3.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于________. 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1. 答案 -1 4.(2015·苏北四市模拟)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 解析 由y ′=2ax ,又点(1,a )在曲线y =ax 2上,依题意得k =y ′|x =1=2a =2,解得a =1. 答案 1 5.(2015·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________. 解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),? ?? ?? 23,23,故围 成的三角形的面积为12×1×23=1 3. 答案 13 6.(2015·长春质量检测)若函数f (x )=ln x x ,则f ′(2)=________. 解析 ∵f ′(x )=1-ln x x 2,∴f ′(2)=1-ln 2 4.

北师大文科数学高考总复习练习:导数的概念及运算 含答案

第三章导数及其应用 第1讲导数的概念及运算 基础巩固题组 (建议用时:40分钟) 一、选择题 1.设y=x2e x,则y′= () A.x2e x+2x B.2x e x C.(2x+x2)e x D.(x+x2)e x 解析y′=2x e x+x2e x=(2x+x2)e x. 答案 C 2.已知函数f(x)的导函数为f′(x),且满足f(x)=2x·f′(1)+ln x,则f′(1)等于 () A.-e B.-1 C.1 D.e 解析由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x , ∴f′(1)=2f′(1)+1,则f′(1)=-1. 答案 B 3.曲线y=sin x+e x在点(0,1)处的切线方程是 () A.x-3y+3=0 B.x-2y+2=0 C.2x-y+1=0 D.3x-y+1=0 解析y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0. 答案 C 4.(2017·成都诊断)已知曲线y=ln x的切线过原点,则此切线的斜率为

() A.e B.-e C.1 e D.- 1 e 解析y=ln x的定义域为(0,+∞),且y′=1 x ,设切点为(x0,ln x0),则y′|x =x0=1 x0 ,切线方程为y-ln x0=1 x0(x-x0),因为切线过点(0,0),所以-ln x0 =-1,解得x0=e,故此切线的斜率为1 e. 答案 C 5.(2017·昆明诊断)设曲线y=1+cos x sin x在点? ? ? ? ? π 2,1处的切线与直线x-ay+1=0 平行,则实数a等于 () A.-1 B.1 2 C.-2 D.2 解析∵y′=-1-cos x sin2x ,∴=-1. 由条件知1 a =-1,∴a=-1. 答案 A 二、填空题 6.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________. 解析因为y′=2ax-1 x ,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线 平行于x轴,故其斜率为0,故2a-1=0,解得a=1 2. 答案1 2 7.(2017·长沙一中月考)如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x) 在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=________.

高中导数的概念与计算练习题带答案

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C . ln 2 2 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()s i n f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x = 等于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1)1 ()2ln f x ax x x =-- (2)2 ()1x e f x ax =+ (3)21 ()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

导数典型例题.doc

导数典型例题 导数作为考试内容的考查力度逐年增大 .考点涉及到了导数的所有内容,如导数的定 义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等, 考查的题型有客观题(选择题、填空题) 、主观题(解答题)、考查的形式具有综合性和多 样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考 查成为新的热点. 一、与导数概念有关的问题 【例1】函数f(x)=x(x-1) (x-2)…(x-100)在x= 0处的导数值为 2 A.0 B.100 C.200 D.100 ! 解法一 “(0、_ .. f (° tx) _f(o) .. .-xC-x-DO-2V'^-100)-0 解法 f (0)_叽 L _叽 - _ ||m (A x-1)( △ x-2)…(△ x-100)_ (-1) (-2)-( - 100) =100 ! ???选 D. .x _0 解法二 设 f(x)_a 101x 101 + a 100X 100+ …+ a 1X+a 0,则 f z (0)_ 而 a 1_ (-1)(-2 ) - (- 100) _100 ! . ???选 D. 点评解法一是应用导数的定义直接求解, 函数在某点的导数就是函数在这点平均变化 率的极限.解法二是根据导数的四则运算求导法则使问题获解 111 【例2】已知函数f(x)_ c ; c ^x ? — C ;X 2亠■亠— C ;X k 亠■亠一

导数练习题(含答案).

3 B 10 3 C 16 3 D 13 = 2 导数概念及其几何意义、导数的运算 一、选择题: 1 已知 f ( x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于 A 19 3 2 已知直线 y = kx + 1 与曲线 y = x 3 + ax + b 切于点(1,3),则 b 的值为 A 3 B -3 C 5 D -5 3 函数 y (x + 2a )(x-a ) 的导数为 A 2( x 2 - a 2 ) B 3(x 2 + a 2 ) C 3(x 2 - a 2 ) D 2( x 2 + a 2 ) 1 4 4 曲线 y = x 3 + x 在点 (1, ) 处的切线与坐标轴围成的三角形的面积为 3 3 A 1 2 1 2 B C D 9 9 3 3 5 已知二次函数 y = ax 2 + bx + c 的导数为 f '( x ), f '(0) > 0 ,对于任意实数 x ,有 f ( x ) ≥ 0 ,则 最小值为 f (1) f '(0) 的 A 3 B 5 2 C 2 D 3 2 6 已知函数 f ( x ) 在 x = 1 处的导数为 3,则 f ( x ) 的解析式可能为 A C f ( x ) = ( x -1)2 + 3(x - 1) f ( x ) = 2( x - 1)2 B f ( x ) = 2( x - 1) D f ( x ) = x - 1 7 下列求导数运算正确的是 A 1 1 ( x + )' = 1 + x x 2 B (log x )' = 2 1 x ln 2 C (3x )' = 3x ? log e D ( x 2 cos x )' = -2 x sin x 3 8 曲线 y = A π 6 1 3 x 3 - x 2 + 5 在 x = 1 处的切线的倾斜角为 3π π π B C D 4 4 3 9 曲线 y = x 3 - 3x 2 + 1 在点 (1,-1) 处的切线方程为 A y = 3x - 4 B y = -3x + 2 C y = -4 x + 3 D y = 4 x - 5 10 设函数 y = x sin x + cos x 的图像上的点 ( x , y ) 处的切线斜率为 k ,若 k = g ( x ) ,则函数 k = g ( x ) 的图

导数的概念与计算练习题带答案

导数的概念与计算练习 题带答案 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

导数概念与计算 1.若函数42()f x ax bx c =++,满足'(1)2f =,则'(1)f -=( ) A .1- B .2- C .2 D .0 2.已知点P 在曲线4()f x x x =-上,曲线在点P 处的切线平行于直线30x y -=,则点 P 的坐标为( ) A .(0,0) B .(1,1) C .(0,1) D .(1,0) 3.已知()ln f x x x =,若0'()2f x =,则0x =( ) A .2e B .e C .ln 22 D .ln 2 4.曲线x y e =在点(0,1)A 处的切线斜率为( ) A .1 B .2 C .e D .1e 5.设0()sin f x x =,10()'()f x f x =,21()'()f x f x =,…,1()'()n n f x f x +=,n N ∈,则2013()f x =等 于( ) A .sin x B .sin x - C .cos x D .cos x - 6.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)f =( ) A .e - B .1- C .1 D .e 7.曲线ln y x =在与x 轴交点的切线方程为________________. 8.过原点作曲线x y e =的切线,则切点的坐标为________,切线的斜率为____________. 9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式: (1) 1 ()2ln f x ax x x =-- (2) 2 ()1x e f x ax = + (3)21()ln(1)2 f x x ax x =--+ (4)cos sin y x x x =- (5)1cos x y xe -= (6)1 1 x x e y e +=-

高中数学一轮复习 第1讲 导数的概念及其运算

第1讲 导数的概念及其运算 1.已知函数3 2 ()32f x ax x =++,若f′(-1)=4,则a 的值等于( ) A.193 B.163 C.133 D.103 【答案】 D 【解析】 f′2 ()36x ax x f =+,′(-1)=3a 10643 a -=,=. 2.设y=-2e x sinx,则y′等于( ) A.-2e x cosx B.-2e x sinx C.2e x sinx D.-2e (x sinx+cosx) 【答案】 D 【解析】 ∵y=-2e x sinx, ∴y′=(-2e )x ′sinx+(-2e )(x sinx)′ =-2e x sinx-2e x cosx =-2e (x sinx+cosx). 3.已知3 270()x m f x mx m <,=+,且f′(1)18≥-,则实数m 等于( ) A.-9 B.-3 C.3 D.9 【答案】 B 【解析】 由于f′2 27()3x mx m =+,故f′27(1)183m m ≥-?+≥ -18 , 由m<0得2 27318318270m m m m +≥-?++≤?2 3(3)m +0≤,故m=-3. 4.设曲线11 x y x +=-在点(3,2)处的切线与直线ax+y+1=0垂直,则a 等于( ) A.2 B.12 C.12 - D.-2 【答案】 D 【解析】 因为y′22(1) x -= ,-所以切线斜率k=y′|3 x ==1 2-,而此切线与直线ax+y+1=0垂直, 故有()1k a ?-=-,因此12a k ==-. 5.已知12()f x =sin2x+sinx,则f′(x)是( ) A.仅有最小值的奇函数 B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数 D.非奇非偶函数 【答案】 B 【解析】 f′12()x =cos 22x ?+cosx=cos2x+cosx =2cos 21x -+cosx=2(cos 29148)x +-. 故f′(x)是既有最大值2,又有最小值98-的偶函数,选B 项.

导数的概念及运算专题训练

导数的概念及运算专题训练 基础巩固组 1.已知函数f(x)=+1,则--的值为() A.- B. C. D.0 2.若f(x)=2xf'(1)+x2,则f'(0)等于() A.2 B.0 C.-2 D.-4 3.已知奇函数y=f(x)在区间(-∞,0]上的解析式为f(x)=x2+x,则曲线y=f(x)在横坐标为1的点处的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=0 4.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的距离的最小值为() A.1 B. C. D. 5.已知a为实数,函数f(x)=x3+ax2+(a-3)x的导函数为f'(x),且f'(x)是偶函数,则曲线y=f(x)在原点处的切线方程为() A.y=3x+1 B.y=-3x C.y=-3x+1 D.y=3x-3 6.设曲线y=sin x上任一点(x,y)处切线的斜率为g(x),则函数y=x2g(x)的部分图象可以为() 7.一质点做直线运动,由始点经过t s后的距离为s=t3-6t2+32t,则速度为0的时刻是() A.4 s末 B.8 s末 C.0 s末与8 s末 D.4 s末与8 s末 8.函数y=f(x)的图象在点M(2,f(2))处的切线方程是y=2x-8,则=. 9.(2018天津,文10)已知函数f(x)=e x ln x,f'(x)为f(x)的导函数,则f'(1)的值为. 10.已知函数f(x)=x++b(x≠0)在点(1,f(1))处的切线方程为y=2x+5,则a-b=. 11.函数f(x)=x e x的图象在点(1,f(1))处的切线方程是. 12.若函数f(x)=x2-ax+ln x存在垂直于y轴的切线,则实数a的取值范围是. 综合提升组 13.已知函数f(x)=x ln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为() A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 14.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(- 1)=() A. B.- C. D.-或 15.直线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=.

导数经典例题1

经典例题导讲 [例1]已知2)2cos 1(x y +=,则='y . 错因:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致错解为:)2cos 1(2sin 2x x y +-='. 正解:设2u y =,x u 2cos 1+=,则)2()2sin (2)2cos 1(2'?-?='+=''='x x u x u u y y x u x )2cos 1(2sin 42)2sin (2x x x u +-=?-?=∴)2cos 1(2sin 4x x y +-='. [例2]已知函数???????>+≤+=)1)(1(2 1)1)(1(2 1)(2 x x x x x f 判断f(x)在x=1处是否可导? 错解:1)1(,1) 11(2 1]1)1[(2 1 lim 2 2 ='∴=?+- +?+→?f x x x 。 分析: 分段函数在“分界点”处的导数,须根据定义来判断是否可导 . 解: 1) 11(2 1]1)1[(2 1 lim lim 2 2 =?+- +?+=??- - →?→?x x x y x x ∴ f(x)在x=1处不可导. 注:+→?0x ,指x ?逐渐减小趋近于0;-→?0x ,指x ?逐渐增大趋近于0。 点评:函数在某一点的导数,是一个极限值,即x x f x x f x ?-?+→?) ()(lim 000 ,△x →0,包括△x →0+,与△x →0- ,因此,在判定分段函数在“分界点”处的导数是否存在时,要验证其左、右极限是否存在且相等,如果都存在且相等,才能判定这点存在导数,否则不存在导数. [例3]求322+=x y 在点)5,1(P 和)9,2(Q 处的切线方程。 错因:直接将P ,Q 看作曲线上的点用导数求解。 分析:点P 在函数的曲线上,因此过点P 的切线的斜率就是y '在1=x 处的函数值; 点Q 不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线. 解:4.4,3212= ' ∴='∴+==x y x y x y 即过点P 的切线的斜率为4,故切线为:14+=x y .

高中导数经典知识点及例题讲解

高中导数经典知识点及 例题讲解 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

§ 1.1 变化率与导数 1.1.1 变化率问题 自学引导 1.通过实例分析,了解平均变化率的实际意义. 2.会求给定函数在某个区间上的平均变化率. 课前热身 1.函数f (x )在区间[x 1,x 2]上的平均变化率为Δy Δx =________. 2.平均变化率另一种表示形式:设Δx =x -x 0,则Δy Δx =________,表示函数 y =f (x )从x 0到x 的平均变化率. 1.f (x 2)-f (x 1)x 2-x 1 答 案 2. f (x 0+Δx )-f (x 0) Δx 名师讲解 1.如何理解Δx ,Δy 的含义 Δx 表示自变量x 的改变量,即Δx =x 2-x 1;Δy 表示函数值的改变量,即Δy =f (x 2)-f (x 1). 2.求平均变化率的步骤 求函数y =f (x )在[x 1,x 2]内的平均变化率. (1)先计算函数的增量Δy =f (x 2)-f (x 1). (2)计算自变量的增量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f x 2-f x 1 x 2-x 1 . 对平均变化率的认识 函数的平均变化率可以表现出函数在某段区间上的变化趋势,且区间长度越小,表现得越精确.如函数y =sin x 在区间[0,π]上的平均变化率为0,而在 [0,π2]上的平均变化率为sin π 2-sin0 π2-0 =2π. 在平均变化率的意义中,f (x 2)-f (x 1)的值可正、可负,也可以为零.但Δx =x 2-x 1≠0.

高中数学导数的概念、运算及其几何意义练习题.doc

导数的概念、运算及其几何意义 1.已知物体做自由落体运动的方程为s s(t) 1 gt 2 , 若t 无限趋近于0 时, s(1 t) s(1) 无限趋近于 2 9.8m / s ,那么正确的说法是() t A.9.8m/ s是在 0~ 1s 这一段时间内的平均速度 B.9.8m/ s是在 1~( 1+ t )s这段时间内的速度 C.9.8m/ s是物体从 1s 到( 1+ t )s这段时间内的平均速度 D.9.8m/ s是物体在t 1s 这一时刻的瞬时速度 . 2.已知函数f’(x) = 3x2 , 则 f (x) 的值一定是() A. x 3+x B.x 3 C. x 3+c (c 为常数 ) D. 3x+c (c 为常数 ) 3.若函数f(x)=x2+b x+c的图象的顶点在第四象限,则函数 f / (x) 的图象是() y y y y o x o x o x o A B C D 4. 下列求导数运算错误的是() .. A.(x2013c)2013x 2012(c为常数) B.(x2lnx)2xlnx x C. (cosx )xsinx cosx D . (3x) 3x ln 3 x x 2 5. . 已知曲线的一条切线的斜率为,则切点的横坐标为

A. 2 B. 3 C . D . 1 6.函数 y=(2x - 3) 2的导数为函数 y= e- x的导数为 7. 若函数f ( x)满足,f ( x) 1 x3 f (1) x2 x, 则 f (1) 的值 3 x 8. 曲线y x 2 在点(- 1,- 1)处的切线方程为 9. 已知函数 f ( x) ln( x 1) 1 a f ( x) 在点 (1, f (1)) ax ,若曲线 y x 1 处的切线与直线 l : y 2x 1平行, 则 a 的值

高三数学一轮复习——导数的概念及运算

高三数学一轮复习——导数的概念及运算 考试要求 1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y =c ,y =x ,y =x 2,y =x 3,y =1 x ,y =x 的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f (ax +b ))的导数;6.会使用导数公式表. 知 识 梳 理 1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ?→ f (x 0+Δx )-f (x 0)Δx =0lim x ?→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0lim x ?→Δy Δx = lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0). 2.函数y =f (x )的导函数 如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x ) Δx 称为函数y =f (x )在开区间内的导 函数. 3.导数公式表 基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0

高中数学复习典型题专题训练20---导数的概念与几何意义

高中数学复习典型题专题训练20 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率00()() f x x f x y x x +?-?= ??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”, 符号“→”读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 3.可导与导函数: 如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数.记为()f x '或y '(或x y '). 导函数通常简称为导数.如果不特别指明求某一点的导数,那么求导数指的就是求导函数. 4.导数的几何意义: 设函数()y f x =的图象如图所示.AB 为过点00(,())A x f x 与00(,())B x x f x x +?+?的一条割线.由此割线的斜率是00()() f x x f x y x x +?-?= ??,可知曲线割线的斜率就是函数的平均变化知识内容 板块一.导数的概念 与几何意义 y D C B A

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数的概念、几何意义及其运算

导数的概念、几何意义及其运算 常见基本初等函数的导数公式和常用导数运算公式 : +-∈==N n nx x C C n n ,)(;)(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1 )(log ;1)(ln ''== 法则1: )()()]()([' ''x v x u x v x u ±=± 法则2: )()()()()]()(['''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (一)基础知识回顾: 1.导数的定义:函数)(x f y =在0x 处的瞬时变化率 x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈, 都对应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数)(x f y =在开区间内的导函数,简称导数,也可记作/ y ,即)(/ x f =/ y = x x f x x f x ?-?+→?) ()(lim 0 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数 )(x f y =在0x 处的导数0 /x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y == )(0/x f 。 2. 由导数的定义求函数)(x f y =的导数的一般方法是: (1).求函数的改变量 )()(f x f x x f -?+=?; (2).求平均变化率 x x f x x f x ?-?+= ??)()(f ; (3).取极限,得导数/ y =x x ??→?f lim 0。 3.导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率。 基础练习: 1.曲线324y x x =-+在点(13), 处的切线的倾斜角为( ) A .30° B .45° C .60° D .120° 2.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( ) A .1 B . 1 2 C .1 2 - D .1 -

相关主题
文本预览
相关文档 最新文档